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The SARS-CoV-2 pandemic has increased demands for surgical and respirator masks for 
healthcare workers (HCWs) and other frontline staff. The debate over the importance of 
airborne transmission of SARS-CoV-2 continues, but SARS-CoV-2 has been detected in air and 
laboratory studies demonstrate viability >12 hours in aerosols [1–3]. Low sampling volumes, air 
outlet fan location, and potential virus damage during sampling may explain SARS-CoV-2 
detection variability [1,3]. 

Limited mask supply creates a risk for HCW exposure to SARS-CoV-2. Non-traditional materials 
are widely recommended for public use (source control) and have been considered in place of 
regulated masks in healthcare, especially in social-care settings. While various materials are 
effective for filtering large droplets, aerosols generated from sneezing, coughing, and aerosol-
generating procedures may more readily pass through materials or leakage points [4]. There is 
a small amount of data on filtration efficacy but currently no quantitative modelling of efficacies 
for infection risk reduction.  

We developed a probabilistic model to estimate infection risks for short (30-second, brief patient 
check) and long (20-minute, the duration required for patient intubation) inhalation exposure 
scenarios. These included situations in a COVID-19 patient room in which no mask was worn; 
an FFP2 (N95), FFP3 (N99) respirator or surgical mask was worn; or a non-traditional material 
mask (silk, tea towel, vacuum cleaner bag, pillowcase, antimicrobial pillowcase, cotton mix, 
100% cotton t-shirt, linen, and scarf) was worn. 

Inhaled viral dose was estimated using published concentrations (RNA/m3) of SARS-CoV-2 for 
>4 and 1-4 µm droplets measured in a hospital setting [1]. We used ranges from reported 
concentration data originating from a symptomatic and an asymptomatic patient to calculate 
minimum and maximum of randomly sampled uniform distributions [1]. Viral exposure for these 
two size ranges were summed to estimate a total inhaled dose. Doses were estimated for three 
assumed infectious fractions of total detected viral RNA: 0.1%, 1%, and 10%. Inhaled volumes 
(m3) were estimated using inhalation rates for men and women, where 5th and 99th percentiles 
of inhalation rates offered the uniform distribution minimum and maximum, respectively [5]. 

Filtration efficacies (fraction of total virus filtered out by the material) were used to model the 
reduction in viral inhalation exposure per material type. Due to lack of particle size-specific 
filtration efficacy data for these materials, we assumed filtration efficacy distributions were 
applicable to both particle size ranges. For each 10,000 combinations investigated, a filtration 
efficacy was randomly sampled from a normal distribution, left- and right-truncated at 0 and 1, 
respectively. For surgical mask and non-traditional materials, mean and standard deviations of 
efficacies were informed by MS2 filtration efficacies [6]. Mean efficacies of 95% and 99% were 
assumed for FFP2 and FFP3 respirators, respectively. SDs were provided by Rengasamy et al. 
(2009), where larger SDs of two manufacturer versions were chosen as a conservative risk 
approach [7]. 

Data from SARS-CoV-1 and human coronavirus 229E (HCoV-229E) dose-response curves 
were used to estimate a  SARS-CoV-2 exact beta-Poisson curve [8]. Based on current 
epidemiological knowledge, we assume the infectivity of SARS-CoV-2 lies between SARS-CoV-
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1 and HCoV-229E. Pairs of bootstrapped � and β values were used to estimate infection risk per 
dose. 

Comparing no protection (baseline) for 20-minute and 30-second exposures, we predicted that 
mean infection risks were reduced by 24 - 94% and by 44 - 99% depending on the mask. Risk 
reductions decreased as exposure durations increased. The greatest reduction in estimated 
mean infection risk was for FFP3 masks, which as expected reduced baseline mean risks by 
94% and 99% for 20-minute and 30-second exposures, respectively (Figure 1). Of non-
traditional materials, the vacuum cleaner bag resulted in the greatest reduction in mean 
infection risk (20-minute exposure: 58%, 30-second exposure: 83%), while scarves offered the 
lowest (20-minute exposure: 24%, 30-second exposure: 44%) (Figure 1). However, large 
filtration variability, such as for silk or the tea towel, should be considered when comparing non-
traditional mask materials (Figure 1).  

Limitations include not accounting for viral transfer from the hands to the mask during mask 
adjustments and assuming all masks were worn in the same way. Realistically, homemade 
mask fit is likely to be more variable than for regulated masks. While the HCoV-229E data 
utilized for the dose-response curve was based on human data, the SARS-CoV-1 dose-
response data originated from an animal-feeding study [8]. Future work includes updating the 
dose-response curve as data on SARS-COV-2 emerges and addressing the effects of design/fit 
on infection risk. 

We demonstrate that some materials, like vacuum cleaner bags, may be effective alternatives 
for reducing infection risk. While N95 masks (and similar respirators) are recommended for 
HCWs and others in close proximity to aerosol generating procedures, alternative materials may 
be useful where there are PPE shortages. This may be of particular relevance in low resource 
settings where access to PPE is considerably more limited. 
 
Code, Materials 
Under a Creative Commons Zero v1.0 Universal license (CC-BY), code can be accessed at: 
https://github.com/awilson12/COVID-19-Mask-Note 
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Figure 1. Distributions of estimated infection risks for FFP3, FFP2, surgical masks,  masks 
made of non-traditional materials (vacuum cleaner bag, tea towel, cotton mix, antimicrobial 
pillowcase, linen, pillowcase, silk, 100% cotton T-shirt, scarf) and no mask for 30 seconds (0.5 
minutes) or 20 minutes of inhalation exposure* 
 
*Vertical lines indicate the 25th, 50th, and 75th infection risk percentiles 


