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Abstract
Endurance and strength training are effective strategies for counteracting age-associated reductions in physical performance 
in older adults, with a combination of both exercise modes recommended to maximise potential fitness benefits. This 
meta-analysis sought to quantify the effects of same-session combined endurance and strength training on fitness in adults 
aged over 50 years. Five electronic databases were searched with studies required to include one of the following outcome 
measures: VO2peak, 6-min walk test (6MWT), 8-ft timed up-and-go (TUG), and 30-s chair stand. Separate random-effects 
meta-analyses compared combined training with (1) no-exercise control, (2) endurance training, and (3) strength training 
with probabilistic magnitude-based inferences subsequently applied. Twenty-seven studies involving 1346 subjects with a 
mean age of 68.8 years (range 54–85 years) were included in the analysis. The meta-analysed effect on VO2peak was a mod-
erately beneficial effect for the combined training compared to no-exercise controls (3.6 mL kg−1 min−1; ± 95% confidence 
limits 0.8 mL kg−1 min−1) with additional increases for studies with greater proportions of female participants and shorter 
training interventions. Combined training also had small-to-moderately beneficial effects on VO2peak when compared to 
endurance training (0.8 mL kg−1 min−1; ± 1.0 mL kg−1 min−1), 30-s chair stand when compared with strength training (1.1 
repetitions; ± 0.5 repetitions) and on TUG (0.8 s; ± 0.7 s), 30-s chair stand (2.8 repetitions; ± 1.7 repetitions), and 6MWT 
(31.5 m; ± 22.4 m) when compared to no-exercise controls. All other comparisons were unclear. Same-session combined 
training can induce clinically relevant fitness improvements in older adults.
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Introduction

Human ageing is associated with progressive declines across 
multiple physiological systems, with changes in the cardi-
orespiratory and neuromuscular systems some of the most 

pronounced. Reduced levels of cardiorespiratory [1] and 
muscular fitness [2] have been associated with increased 
mortality and morbidity. Improving both of these physi-
cal components offers the most effective strategy to reduce 
all-cause and cardiovascular mortality risk [3]. However, 
despite the implications of reduced physiological function-
ing on disease risk and lifespan, maintaining an independent 
and inclusive lifestyle may be of greater relevance to older 
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adults. Previous work has demonstrated that cardiorespira-
tory fitness is related to functional capacity and the odds 
of independent living [4, 5], while muscular fitness (e.g., 
muscular strength and power) is a critical determinant of 
physical functioning in older adults [6, 7]. Despite the inevi-
table declines in physiological functioning observed with 
ageing, older adults remain highly trainable into advanced 
age with substantial fitness improvements possible follow-
ing short-term training programmes [8, 9]. As higher levels 
of both cardiorespiratory and muscular fitness are related 
to improved functional performance and reduced mor-
tality risk, these physical components are key targets for 
intervention.

Traditionally, endurance-type activities (e.g., running, 
cycling) are prescribed for improving cardiorespiratory 
fitness with muscle-strengthening activities (e.g., free 
weights, resistance machines, elastic resistance bands) used 
to improve muscular fitness. However, as neither endur-
ance nor strength training performed in isolation promotes 
holistic fitness improvement, exercise recommendations for 
older adults typically advocate training programmes con-
sisting of a combination of endurance and strength training 
activities [10, 11]. As a result, ‘combined’ or ‘concurrent’ 
training programmes—involving endurance and strength 
training performed within the same, or separate exercise 
sessions of a training programme, respectively—are com-
monly prescribed. This approach has been suggested to be 
a more effective strategy than either endurance or strength 
training performed alone because of the potential to impact 
upon multiple components of fitness simultaneously [10, 
12]. Recent observational data support this assertion as older 
adults who meet both the endurance and muscle-strengthen-
ing activity guidelines perform significantly better on meas-
ures of muscular and functional fitness [13].

However, despite the well-documented and wide-rang-
ing benefits of exercise training, the requirement to perform 
separate endurance and strength training sessions places 
considerable time demands on individuals. This remains an 
important consideration in a population where adherence 
to exercise guidelines remains poor [14] and where lack of 
time remains one of the most commonly cited barriers to 
exercise [15]. Consequently, training programmes involving 
a reduced time commitment via delivery of endurance and 
strength training within the same training session may be a 
more time-efficient, and thereby, attractive proposition for 
potential exercisers. It seems feasible to suggest that asking 
individuals to complete a reduced frequency of exercise ses-
sions per week may be more achievable.

Although previous work has reviewed strategies and pro-
vided recommendations for the prescription of combined 
exercise training in older adults [12], there is currently no 
systematic review examining the effect of same-session 
combined exercise training on measures of fitness in older 

adults. Accordingly, the aim of our investigation was to sys-
tematically review and meta-analyse the effects of same-
session combined exercise training on measures of fitness in 
adults aged over 50 years, while also exploring the modify-
ing effects of study and subject characteristics. By doing so, 
we aimed to provide a practically relevant quantification of 
this training approach to support clinicians and practitioners 
to make informed decisions relating to the prescription of 
exercise training.

Methods

Protocol and registration

This review was carried out in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines [16] and was prospectively registered 
on the International Prospective Register of Systematic 
Reviews (PROSPERO) as CRD42015019577.

Search strategy

Electronic searching of five databases (PubMed, MED-
LINE, Scopus, BIOSIS, and Web of Science) was performed 
from the earliest date available up to July 2018. Independ-
ent variable search terms were ‘multicomponent training’, 
‘multicomponent exercise’, ‘circuit training’, ‘circuit resist-
ance training’, ‘combined exercise training’, ‘combined 
training’, ‘multi-modal exercise training’, ‘same-session 
exercise’, ‘concurrent training’, and ‘concurrent exercise’. 
Dependent variable search terms were ‘functional fitness’, 
‘functional performance’, ‘physical performance’, ‘quality 
of life’, ‘functional decline’, ‘aerobic fitness’, ‘strength’, and 
‘power’. Independent variable search terms were combined 
with dependent variable search terms using the ‘AND’ oper-
ator, giving a total of 80 search combinations. Reference lists 
from retrieved studies were also examined for potentially 
eligible papers.

Inclusion criteria

Study design

This review considered only original research articles, pub-
lished in English. Randomised and non-randomised con-
trolled trials were included, while uncontrolled, cross-sec-
tional, and single-group, pre–post studies were excluded.

Participants

Only studies involving healthy, community-dwelling partici-
pants aged > 50 years were included. We defined an age of 
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50 years as our cut-off point for inclusion as there are clear 
physical and physiological declines beyond this age in adults 
[17, 18]. In addition, evidence suggests that physical capa-
bility in midlife is predictive of physical performance in later 
life [19], implying that earlier intervention at ~ 50 years of 
age can have positive long-term implications. It is acknowl-
edged, however, that the use of an arbitrary threshold implies 
synonymy between chronological and biological age; yet, 
there remains no consensus on when old age begins, suggest-
ing that any arbitrary definition is likely to be imperfect [20].

Studies involving participants with non-communicable 
disease (e.g., cardiovascular disease, type 2 diabetes mel-
litus, cancers, and chronic obstructive pulmonary disease) 
or who were being prescribed a specific pharmacological 
treatment were excluded. Studies were not automatically 
excluded if participants were labelled as an alternative 
population group (e.g. obese), as these were considered an 
extension of a healthy population rather than an alternative 
clinical group. For example, the study of Stewart et al. [21] 
categorised their participants as having ‘untreated milder 
forms of hypertension’, so was suitable for inclusion.

Training interventions

To be considered for inclusion in this systematic review, 
studies were required to include at least one combined 
exercise training group and a comparator group of either 
(1) no-exercise control; (2) endurance training only; or (3) 
strength training only. To be considered ‘combined training’ 
each training session within the intervention had to con-
tain discrete, standalone activities of (1) endurance training 
and (2) strength training. Endurance training was defined as 
exercise involving large muscle groups in dynamic activities 
that result in substantial increases in heart rate and energy 
expenditure and was not limited to any specific modes of 
exercise [22]. Strength training was defined as any muscle-
strengthening activities including where participants worked 
against or moved an external resistance (e.g., free weights, 
weight machines, elastic resistance bands, body weight 
exercises) [22, 23]. Interventions where training sessions 
contained additional training elements targeting improve-
ment in other fitness components (e.g., balance, flexibility, 
coordination) were not excluded if endurance and strength 
training activities were present in each session. Activities 
prescribed as ‘warm up’ or ‘recovery’ were not considered. 
Training interventions were required to be a minimum of 
2 weeks in duration with all training sessions supervised 
to ensure the fidelity of the intervention as previous work 
has suggested that exercise adherence is generally higher 
in supervised programmes [24] and observed effects may 
be greater when training is supervised [25]. Studies involv-
ing nutritional interventions were only included if there was 
a combined training and a comparator group (described 

previously) which were not exposed to these interventions. 
Interventions labelled as ‘circuit training’ typically involving 
subjects performing resistance exercises interspersed with 
aerobic exercises were not included as circuit training and 
combined training are two discrete training modes.

Outcome measures

As an important aim of the present work was to generate 
practically relevant information for clinicians and practi-
tioners in the applied environment, we sought to provide 
meaningful context to our results by reporting raw mean dif-
ferences rather than standardised mean differences (SMD). 
The SMD can be difficult to interpret on a practical level 
[26] and the use of the standard deviation (SD) to standard-
ise each effect can introduce heterogeneity that is unrelated 
to any real differences in the effect between studies [27]. 
The SMD is often used when studies assess the same out-
come but measure it in a variety of ways; however, it may be 
inappropriate to use different, albeit similar tests of physical 
fitness interchangeably unless equivalence has been dem-
onstrated. This is because successful performance may be 
determined by different physiological parameters and issues 
such as reliability and test sensitivity may vary [28].

Accordingly, we selected a range of specific outcome 
measures to assess the effectiveness of same-session com-
bined exercise training with our decision influenced by the 
personal experience of the authors as well as the desire to 
include functionally relevant measures of fitness with lim-
ited floor and ceiling effects. Studies required to contain at 
least one of the following outcome measures to be included 
in this meta-analysis: (1) peak oxygen uptake (VO2peak) or 
maximal oxygen uptake (VO2max), assessed via maximal 
incremental test—associated with the ability to maintain 
independent function and prevent disability [4, 5]; (2) six-
minute walk test (6MWT)—a valid and reliable measure of 
physical endurance associated with self-reported functional 
ability with performance determined by leg strength and 
power [29, 30]; (3) 8-ft timed up-and-go (TUG)—a compos-
ite measure of performance related to dynamic balance and 
mobility measured over a distance of 8 ft [31]. We selected 
the 8-ft distance as previous authors [31] have suggested that 
this version of the test can be more feasibility administered 
in a home setting, is simpler for participants to perform, and 
has better sensitivity than alternative versions [28]; (4) 30-s 
chair stand—a valid measure of lower body muscle function-
ing [32] capable of detecting change in functional capacity 
in older adults [33]. Assessment of functional fitness (e.g., 
30-s chair stand, TUG) provides a composite measure of 
physical capability as successful performance on these tests 
is determined by several factors [34], providing a function-
ally relevant and ecologically valid assessment of fitness.
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Study selection

To identify relevant studies, all records were screened inde-
pendently for eligibility by two authors (CH and KLW) 
with any disagreements resolved by a third reviewer (MW). 
Papers that were clearly not relevant were removed from the 
database list before assessing all other titles and abstracts 
using our pre-determined inclusion and exclusion criteria. 
Following this, full-text papers, including reviews, were 
then collected for evaluation. When full texts were not 
available, the corresponding author was contacted. After 
removal of duplicates and elimination of papers based on 
title and abstract screening, there were 413 studies remaining 
(Fig. 1). After evaluation of full texts, there were 27 papers 
that met our inclusion criteria and were, therefore, included 
in the meta-analysis.

Data extraction

Data were extracted from eligible studies into a custom-
made spreadsheet by the lead author with a second inves-
tigator checking the extracted data for accuracy (KW/SM). 
Mean and standard deviation of pre-training and post-train-
ing values along with sample size from the combined and 
comparator groups were extracted for each outcome meas-
ure. In studies where standard deviations were not reported, 
they were calculated using the standard errors or confidence 
intervals provided [35]. Data for potential moderator vari-
ables that could reasonably influence the overall effect of 
training on changes in fitness were also extracted. This 
included both participant (mean age, proportion of males, 
and baseline fitness) and intervention characteristics [inter-
vention duration (weeks) and training frequency (sessions 
per week)]. Where intervention duration was expressed as 
months, this value was converted to weeks based on 1 month 
being equal to 4.3 weeks. Attempts were made to contact 
corresponding authors via e-mail to obtain further informa-
tion or clarity when needed.

In studies with multiple data sets [36–41] where more 
than one comparison was possible (e.g., combined versus 
no-exercise control and combined versus endurance only) 
sample size was halved where necessary to avoid dou-
ble counting in analysis [42]. Several studies [36, 43–45] 
reported data at several time points or after a period of 
detraining; in all instances, pre- and post-intervention data 
only were analysed. In studies where there were more than 
one combined training group performing the same exercise 
training, but, in a different order (i.e., endurance training 
first or strength training first within a session) [37, 46, 47], 
data were combined using procedures as described in the 
Cochrane handbook [35].

Assessment of study quality

Methodological risk of bias was assessed by two investiga-
tors (CH and KW) according to the Cochrane Collabora-
tion’s tool for assessing risk of bias [35]. Any disagreements 
were resolved by discussion to reach consensus.

Data analysis

Meta-analysis

All data analyses were performed using Comprehensive 
Meta-Analysis software, version 3 (Biostat Inc., Engle-
wood, NJ, USA). Separate random-effects meta-analyses 
were performed to determine the pooled effect of change in 
each outcome measure for (1) combined training compared 
with no-exercise control, (2) combined training compared 
with endurance training only, and (3) combined training 
compared to strength training only. The precision of the 
pooled effect was expressed as 95% confidence limits (CL), 
calculated using the Knapp and Hartung approach [48]. To 
provide a real-world, measure for practical/clinical inter-
pretation of our results, we evaluated the effects for each 
outcome measure against pre-specified thresholds for small, 
moderate, and large effects [49]. As robust clinical anchors 
for our outcome measures remain to be determined in this 
population, magnitude of effects were defined as standard-
ised mean differences of 0.2, 0.6, and 1.2 between-subject 
standard deviations (SD) for small, moderate, and large 
effects, respectively [50]. The SD of the pooled baseline 
values was used for this purpose, as the post-intervention 
SD can be inflated by individual differences in response to 
an intervention [51]. Magnitude thresholds for small, moder-
ate, and large effects, respectively, were: VO2peak, 0.6, 1.8, 
and 3.6 mL kg−1 min−1; 6MWT, 12.5, 37.6, and 75.1 m; 
TUG, 0.2, 0.5, and 1.1 s; 30 s-sit-to-stand, 1, 3, and 6 repeti-
tions (expressed as an integer as partial repetitions are not 
possible).

Using the pooled effect for each outcome measure, 
together with its uncertainty (i.e. the confidence interval), 
the probability of the true effect being trivial, beneficial, 
or harmful was calculated, and then interpreted using the 
following scale: < 0.5%, most unlikely or almost certainly 
not; 0.5–5%, very unlikely; 5–25%, unlikely or probably not; 
25–75%, possibly; 75–95%, likely; 95–99.5%, very likely; 
> 99.5%, most likely [50]. Effects were evaluated clinically, 
given that exercise interventions can be potentially harmful 
(i.e., reduce physical performance and functional capacity) 
as well as beneficial to individuals, and were considered 
unclear if the chance of benefit (improved physical perfor-
mance) was high enough to warrant use of the intervention 
but with an unacceptable risk of harm (reduced physical 
performance). An odds ratio of benefit to harm of < 66 was 
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used to identify such unclear effects. Between-study het-
erogeneity [Tau (τ)] was expressed as an SD [52], calcu-
lated using DerSimonian and Laird’s generalised method of 

moments [53], and doubled to interpret its magnitude against 
the above scale of effect sizes [54].

Fig. 1  PRISMA flow diagram 
of the study selection process. 
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Meta-regression

Meta-regression was performed to explore the effect of 
five putative moderator variables which could reasonably 
influence the effect of training on fitness. These continu-
ous variables were baseline fitness, intervention duration, 
weekly training frequency, age, and maleness (i.e., the pro-
portion of males in the study sample). The modifying effects 
of these variables were calculated as the effect of two SDs 
(i.e., the difference between a typically low and a typically 
high value) and were evaluated non-clinically [50]. Meta-
regression was performed only when there were > 10 data 
sets [35].

Publication bias

Publication bias was assessed using Egger’s test to evaluate 
asymmetry of funnel plots [55]. However, caution in inter-
preting these results is warranted when there are less than 
ten studies in the meta-analysis as the power of the test is too 
low to distinguish chance from real asymmetry [35].

Results

Study characteristics

Final analysis included 27 studies involving 1346 subjects 
with a mean age of 68.8 ± 5.9 years. There were 15 studies 
included in the meta-analysis of VO2peak [21, 38–40, 46, 47, 
56–64], nine studies for 6MWT [37, 41, 43–45, 65–68], four 
for TUG [41, 45, 65, 69], and seven for 30-s chair stand [36, 
41, 45, 46, 65, 68, 70]. Overall, there were 24 studies which 
included a no-exercise control group, six studies including a 
strength training only group, and seven studies including an 
endurance training only group. Individual study characteris-
tics and intervention characteristics can be found in Table 1 
and the electronic supplementary material (ESM) available 
with this article (ESM 1).

Risk of bias assessment

A summary of risk of bias assessment is presented in Fig. 2. 
Individual study-level data can be found in the electronic 
supplementary material available with this article (ESM 2). 
Risk of bias was predominantly low or unclear across all 
domains.

Effect of combined exercise training on VO2peak

The meta-analysed effect of combined training, when 
compared to no-exercise controls (Fig.  3), was a most 
likely moderate (possibly large) beneficial effect on 

VO2peak (3.6  mL  kg−1  min−1; ± 95% confidence limits 
0.8 mL kg−1 min−1). Between-study heterogeneity (τ) was 
± 0.9 mL kg−1 min−1 (small magnitude). Egger’s coeffi-
cient was − 1.89 (95% CI − 3.27 to − 0.51; p = 0.01). Of the 
five moderator variables selected, meta-regression analy-
sis revealed a greater additional beneficial effect (possibly 
moderate) for studies with a higher proportion of female 
participants (2.1 mL kg−1 min−1; ± 1.8 mL kg−1 min−1) and 
a likely small additional benefit for typically shorter train-
ing programmes (1.6 mL kg−1 min−1; ± 1.5 mL kg−1 min−1). 
The effect of all other putative modifiers was unclear. When 
compared against endurance training only (Fig.  4), the 
meta-analysed effect of combined training was a possibly 
small beneficial effect on VO2peak (0.8 mL kg−1 min−1; 
± 1.0 mL kg−1 min−1). Between-study heterogeneity was 
trivial (± 0 mL kg−1 min−1) and Egger’s coefficient was 
− 0.41 (− 1.62 to 0.80; p = 0.36).

Effect of combined training on 6MWT performance

When compared to no-exercise controls (Fig. 5), there was 
a very likely small beneficial effect for combined training 
on 6MWT performance (29.6 m; ± 20.5 m). Between-study 
heterogeneity (τ) was small (± 18.7 m), while Egger’s coeffi-
cient was 1.26 (− 2.10 to 4.63; p = 0.39). The meta-analysed 
effect of combined training versus strength training only 
(Fig. 6) was unclear (5.8 m; ± 20.2 m) with between-study 
heterogeneity trivial (± 0 m) and Egger’s coefficient 0.65 
(− 1.82 to 3.12; p = 0.18).

Effect of combined training on TUG performance

The meta-analysed effect of combined training compared 
with no-exercise controls (Fig. 7) was a likely moderate ben-
eficial effect on timed up-and-go performance (0.8 s; ±0.4 s). 
Between-study heterogeneity (τ) was small (± 0.2 s), while 
Egger’s coefficient was − 1.63 (− 7.73 to 4.47); p = 0.37. 
Compared with strength training only (Fig. 8), the effect for 
combined training was unclear (0.3 s; ± 0.6 s). Assessment 
of publication bias was not possible for combined training 
versus strength training only as there were only two data 
sets. Between-study heterogeneity (τ) was trivial (± 0 s).

Effect of combined training on 30‑s chair stand test 
performance

Compared to no-exercise controls, the meta-analysed 
effect of combined training (Fig.  9) was a most likely 
small (possibly moderate) beneficial effect on 30-s chair 
stand performance (3.1 repetitions; ± 1.3 repetitions). 
Between-study heterogeneity (τ) was moderate (± 1.5 
repetitions) and Egger’s coefficient was − 0.17 (− 4.37 
to 4.04; p = 0.92). Compared with strength training only 
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Table 1  Descriptive characteristics of included studies

Study Study design Participants Outcome measures

Randomised or 
non-randomised

Experimen-
tal groups

Age (years) n allocated 
(male/female)

n analysed 
(male/female)

Cadore et al. [38] Randomised COM 66.8 ± 4.8 10 (10/0) 8 (8/0) VO2peak

STR 64.0 ± 3.5 10 (10/0) 8 (8/0)
END 64.4 ± 3.5 9 (9/0) 7 (7/0)

Campos et al. [37] Randomised COM 62.0 ± 2.5 6 (0/6) 5 (0/5) 6MWT
COM 66.0 ± 3.5 6 (0/6) 5 (0/5)
END 63.6 ± 2.5 6 (0/6) 5 (0/5)
STR 70.0 ± 6.3 6 (0/6) 4 (0/4)
CON 74.0 ± 4.4 6 (0/6) 3 (0/3)

Carvalho et al. [45] Randomised COM 68.4 ± 2.9 32 (0/32) 32 (0/32) 6MWT, TUG, 30-s chair stand
CON 69.6 ± 4.2 25 (0/25) 25 (0/25)

Cress et al. [56] Non-randomised COM 71.1 ± 5.1 20 (0/20) 17 (0/17) VO2peak

CON 73.3 ± 6.7 11 (0/11) 10 (0/10)
Cress et al. [59] Randomised COM 75.6 ± 3.6 23 (?) 23 (?) VO2peak

CON 76.0 ± 5.1 26 (?) 26 (?)
Delecluse et al. [40] Randomised COM 63.8 ± 4.8 22 (22/0) 20 (20/0) VO2peak

COM 63.7 ± 6.0 22 (22/0) 21 (21/0)
END 64.5 ± 5.3 21 (22/0) 21 (21/0)
CON 61.5 ± 5.0 13 (13/0) 13 (13/0)

Desjardins-Crépeau et al. [68] Randomised COM 70.9 ± 7.4 ? 16 (8/8) 6MWT, 30-s chair stand
CON 72.5 ± 7.0 ? 18 (15/3)

Douda et al. [36] Non-randomised COM 65.6 ± 4.9 15 (0/15) 10 (0/10) 30-s chair stand
END 63.8 ± 5.6 15 (0/15) 12 (0/12)
STR 62.1 ± 4.1 15 (0/15) 10 (0/10)
CON 66.2 ± 5.1 18 (0/18) 10 (0/10)

Engels et al. [47] Randomised COM 68.6 ± 5.6a 12 (?) 10 (2/8) VO2peak

COM 68.6 ± 5.6 a 11 (?) 10 (0/10)
CON 68.6 ± 5.6 a 11 (2/9) 11 (2/9)

Ferketich et al. [39] Randomised COM 67.2 ± 1.5 8 (0/8) 7 (0/7) VO2peak

END 69.2 ± 1.7 8 (0/8) 8 (0/8)
CON 69.8 ± 2.0 8 (0/8) 6 (0/6)

García-Pinillos et al. [70] Randomised COM 73.5 ± 5.6 47 (13/34) 47 (13/34) 30-s chair stand
CON 72.1 ± 5.8 47 (?) 43 (13/30)

Kim et al. [41] Randomised COM 73.2 ± 4.9 16 (?) 13 (?) 6MWT, TUG, 30-s chair stand
STR 73.2 ± 4.9 16 (?) 12 (?)
CON 73.2 ± 4.9 15 (?) 10 (?)

King et al. [43] Randomised COM 77.0 ± 4.6 80 (18/62) 67 (?) 6MWT
CON 77.9 ± 4.4 75 (15/60) 57 (?)

Kwon et al. [62] Non-randomised COM 77.4 ± 2.6 20 (0/20) 20 (0/20) VO2peak

CON 77.0 ± 3.3 20 (0/20) 20 (0/20)
Marques et al. [67] Randomised COM 68.6 ± 3.4 38 (0/38) 36 (0/38) 6MWT

STR 68.1 ± 4.3 39 (0/39) 38 (0/38)
Marques et al. [65] Randomised COM 70.1 ± 5.4 30 (0/30) 27 (0/27) 6MWT, TUG, 30-s chair stand

CON 68.2 ± 5.7 30 (0/30) 22 (0/22)
Park et al. [60] Randomised COM 68.3 ± 3.6 25 (0/25) 25 (0/25) VO2peak

CON 68.4 ± 3.4 25 (0/25) 25 (0/25)
Park et al. [61] Randomised COM 66.1 ± 3.1 10 (0/10) 10 (0/10) VO2peak

CON 67.7 ± 5.2 10 (0/10) 10 (0/10)
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(Fig. 10), there was a possibly small beneficial effect for 
combined training (1.1; ± 0.5 repetitions). For combined 

training versus strength training only, there were only 
two data sets, so assessment of publication bias was not 

Table 1  (continued)

Study Study design Participants Outcome measures

Randomised or 
non-randomised

Experimen-
tal groups

Age (years) n allocated 
(male/female)

n analysed 
(male/female)

Park et al. [63] Randomised COM 57.2 ± 2.6 10 (0/10) 10 (0/10) VO2peak

CON 57.2 ± 1.7 10 (0/10) 10 (0/10)
Puggaard [57] Randomised COM 65.0 (?) 12 (0/12) 12 (0/12) VO2peak

COM 75.0 (?) 12 (0/12) 12 (0/12)
COM 85.0 (?) 17 (0/17) 17 (0/17)
CON 65.0 (?) 2 (0/2) 2 (0/2)
CON 75.0 (?) 23 (0/23) 23 (0/23)
CON 85.0 (?) 16 (0/16) 16 (0/16)

Rubenstein et al. [66] Randomised COM 76.4 ± 4.9 31 (31/0) 28 (28/0) 6MWT
CON 74.4 ± 4.4 28 (28/0) 27 (27/0)

Schaun et al. [64] Randomised COM 54.0 ± 4a 10 (10/0) 10 (10/0) VO2peak

END 54.0 ± 4 a 10 (10/0) 10 (10/0)
Stewart et al. [21] Randomised COM 63.0 ± 5.5 57 (?) 51 (25/26) VO2peak

CON 64.1 ± 3.1 58 (?) 53 (26/27)
Timmons et al. [69] Randomised COM 69.2 ± 2.7 21 (16/5) 21 (16/5) TUG 

CON 69.0 ± 3.3 21(8/13) 21(8/13)
END 69.2 ± 3.1 21 (11/10) 21 (11/10)
STR 69.6 ± 4.9 23 (?) 21 (10/11)

Villareal et al. [58] Randomised COM 70.0 ± 4 26 (10/16) 26 (10/16) VO2peak

CON 69.0 ± 4 27 (9/18) 27 (9/18)
Wang et al. [44] Non-randomised COM 70.3 ± 4.6 18 (?) 17 (4/13) 6MWT

CON 70.5 ± 5.5 15 (?) 12 (4/8)
Wilhelm et al. [46] Non-randomised COM 67.1 ± 6.1 15 (15/0) 12 (12/0) VO2peak, 30-s chair stand

COM 63.2 ± 3.3 15 (15/0) 11 (11/0)
CON 65.8 ± 5.3 15 (15/0) 13 (13/0)

Data are presented as mean ± standard deviation unless otherwise stated
COM combined training, END endurance training only, STR strength training only, CON no-exercise control group, VO2peak peak oxygen uptake, 
6MWT 6-min walk test, TUG  timed up-and-go, ? data unknown/not presented by authors
a Age not reported per group

Fig. 2  Risk of bias summary
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Fig. 3  Individual study data and meta-analysed effect of combined training versus no-exercise control on peak oxygen uptake (VO2peak)

Fig. 4  Individual study data and meta-analysed effect of combined training versus endurance training on peak oxygen uptake (VO2peak)

Fig. 5  Individual study data and meta-analysed effect of combined training versus no-exercise control on 6MWT performance
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Fig. 6  Individual study data and meta-analysed effect of combined training versus strength training on 6MWT performance

Fig. 7  Individual study data and meta-analysed effect of combined training versus no-exercise control on TUG performance

Fig. 8  Individual study data and meta-analysed effect of combined training versus strength training on TUG performance

Fig. 9  Individual study data and meta-analysed effect of combined training versus no-exercise control on 30-s chair stand performance
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possible. Between-study heterogeneity (τ) was trivial (± 0 
repetitions).

Discussion

Given the proposed benefit of training programmes involv-
ing a combination of endurance and strength training on 
physical performance in older adults, we sought to system-
atically review and quantify the effects of same-session com-
bined training on measures of fitness in adults aged over 
50 years. Our results demonstrate clear and functionally 
relevant beneficial effects for combined training on VO2peak, 
6MWT, TUG, and 30-s chair stand when compared with no-
exercise controls. In addition, there was a small beneficial 
effect for combined training when compared to endurance 
training only for VO2peak.

The data reported in this investigation confirm the find-
ings of previous experimental studies [21, 38, 39], demon-
strating that combined training—advocated as a method for 
simultaneously improving cardiorespiratory and muscular 
fitness [12]—is an effective training strategy for improving 
VO2peak. The meta-analysed effect reported here is compara-
ble to previous meta-analyses reporting mean improvements 
of 3.78 mL kg−1 min−1 [71] and 3.5 mL kg−1 min−1 [72] 
following endurance training in older adults, suggesting that 
combined training may be as effective for cardiorespiratory 
fitness improvement as traditional endurance training alone. 
Moreover, when compared with endurance training alone, 
combined training had a possibly small beneficial effect on 
VO2peak, thereby suggesting that combined training may be 
a more efficacious training strategy for improving VO2peak in 
this population. Although the present investigation has not 
sought to understand the mechanisms of adaptation underly-
ing training-induced changes, central and peripheral adap-
tations to endurance training—such as improved delivery, 
utilisation and extraction of oxygen—may explain increased 
VO2peak [73]. In the context of combined training, it may be 
that the inclusion of strength training provides an additive 
benefit as previous investigations have reported improve-
ments in cardiorespiratory fitness following strength training 

[74]—potentially mediated by increases in capillary density 
and mitochondrial enzyme activity [75, 76]. Furthermore, 
improvements in lower body strength may lead to increased 
time to exhaustion on an incremental exercise test, thereby 
increasing observed VO2peak [77].

The effect of combined training on VO2peak was greater 
for female participants, a finding in contrast to previous 
work, indicating that the observed response following 
endurance training in older adults is not moderated by sex 
[78]. Our findings may be related to lower cardiorespira-
tory fitness typically observed in females compared to males 
[18] as fitness improvements are typically greater for those 
with lower baseline fitness. For example, previous work has 
reported possibly small and likely moderate greater benefi-
cial effects for participants with lower baseline fitness fol-
lowing endurance training and high-intensity interval train-
ing (HIT), respectively [79]. However, we observed no clear 
modifying effect for baseline fitness, a finding which may 
have been influenced by the small number and heterogene-
ity of studies included in our meta-regression. The complex 
interplay of participant (e.g., age, sex, and baseline fitness) 
and intervention characteristics (e.g., exercise prescription 
and adherence), which may influence training response, as 
well as between-study differences in these characteristics, 
also likely contributes to the observed findings. The small 
number of included studies means that considerable uncer-
tainty remains, with more work needed to understand sex-
specific responses to combined exercise training.

Meta-regression also demonstrated a likely small influ-
ence for shorter training programmes; a potentially meaning-
ful finding with important practical implications as training 
programmes requiring a reduced time commitment may be 
more appealing to potential exercisers [80]. Previous work 
has shown that shorter duration training programmes can 
induce improvements in cardiorespiratory fitness that are 
comparable, or even greater than those following longer 
duration programmes [81] with gains in VO2max similar 
following 8–12 or 50 weeks of training [71]. Exercise pro-
gramming variables (e.g., exercise intensity, volume, and 
progression) represent key mediators of training response 
and likely play a more meaningful role than exercise 

Fig. 10  Individual study data and meta-analysed effect of combined training versus strength training on 30-s chair stand performance
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programme duration in determining training adaptation [82, 
83]. Between-study differences in these variables contribute 
to the findings reported in this meta-analysis and make it dif-
ficult to draw conclusive inference. There remains a need for 
future work to explore the modifying effects of programming 
variables on training response following combined training 
in older adults.

As well as cardiorespiratory fitness, maintaining muscu-
lar fitness is a primary aim of exercise training interventions 
in older adults because of the role which it plays in determin-
ing functional capacity with ageing [7]. Multiple methods 
of assessment should be used to evaluate training-induced 
changes in muscular fitness [84] with functional fitness tests 
recommended to evaluate performance in the context of the 
activities of daily living [85]. Typically, these measures 
provide a composite measure of physical capability as suc-
cessful performance on these tests is determined by several 
components of fitness [29, 34], thereby providing a more 
functionally relevant and ecologically valid assessment of 
physical performance. The present investigation has reported 
small-to-moderate beneficial effects for combined training 
compared with no-exercise controls for 6MWT, TUG, and 
30-s chair stand. These are important and clinically relevant 
findings as low levels of physical capability can limit older 
adults ability to perform the basic activities of daily living 
[86]. Interestingly, data also indicated a possibly small ben-
eficial effect for combined training compared with strength 
training only for 30-s chair stand. However, caution is war-
ranted in interpreting this finding as only two studies were 
included in the analysis.

The observed effects in this meta-analysis are greater than 
those reported in a previous systematic review by Baker and 
colleagues [87] who found that multi-modal exercise (i.e., 
training programmes consisting of aerobic training, strength 
training, and balance training) induces small and inconsist-
ent effects on measures of functional fitness. Previous work 
has also demonstrated that both endurance training [88] and 
resistance training [9] performed in isolation are effective at 
eliciting positive adaptations in these measures of functional 
fitness. For example, Kalapotharakos and colleagues [88] 
evaluated the effect of a 12-week progressive high-intensity 
endurance training programme, performed three times per 
week and reported a 17% increase in 6WMT distance. This 
improvement was greater than the effect reported in this 
meta-analysis; however, the baseline fitness of the partici-
pants in this study was lower than in the present investiga-
tion. It is important to note that comparisons with previous 
studies are confounded by differences in participant char-
acteristics (e.g., baseline fitness) and exercise prescription, 
which likely contribute to discordance between findings. 
More experimental work is needed to evaluate the optimal 
training strategy for inducing improvements in measures of 
functional fitness.

A range of intervention studies have documented that 
strength training is an effective approach for improving 
muscular fitness and functional performance in older adults 
[9, 89]. For example, lower extremity strength gain is asso-
ciated with chair rise performance, gait speed, and mobil-
ity tasks [90], while strength training can improve muscle 
power of the lower body muscle groups relevant for carrying 
out daily functional tasks [91]. Several meta-analyses have 
extended these findings, thereby reinforcing the effectiveness 
of strength training for improving muscular fitness in older 
adults [92–94]. It, therefore, seems likely that performing 
strength training within a combined training programme 
contributes to the observed improvements reported in this 
investigation with these changes mediated by a range of mor-
phological and neurological adaptations [95]. These findings 
have important practical implications in older adults as func-
tional fitness is associated with reduced risk of disability 
and enhanced functional independence in older adults [96, 
97]. In the wider context of exercise training in older adults, 
the observed findings are largely unsurprising based on the 
principle of training specificity [98, 99]. Both endurance 
and strength training are effective approaches for improving 
cardiorespiratory and muscular fitness, respectively, in older 
adults. Theoretically, therefore, it makes sense that the com-
bination of these training modes would elicit improvements 
in both cardiorespiratory and muscular fitness.

The pooled effects presented in this meta-analysis pro-
vide an overall quantification of the effects of same-session 
combined training which can be used for the comparison and 
assessment of superiority with alternative modes of exercise 
training in subsequent investigations. As older adults have 
a clear need to maintain muscular and cardiorespiratory fit-
ness, exercise strategies which are able to induce improve-
ments in both of these physiological systems within the 
same training session may be a more efficient, and thereby, 
attractive proposition for potential exercisers. One potential 
comparator exercise mode is high-intensity interval train-
ing (HIT). Conceptually, this comparison makes sense as 
HIT is also capable of inducing improvements in both cardi-
orespiratory and muscular fitness with an exercise stimulus 
delivered within a single exercise session [8]. While long-
term studies evaluating HIT in older adults are limited, cur-
rent findings are encouraging with previous investigation 
demonstrating that HIT favours older and less fit individuals 
[79] with significant improvements in fitness possible after 
short-duration training programmes [8]. Future experimental 
work should continue to evaluate and compare the short- 
and long-term effects of alternate training strategies in this 
population to allow comprehensive evidence-based exercise 
recommendations to evolve.

The findings presented in the current investigation should 
be interpreted with caution for several reasons. First, the 
inclusion of only healthy community-dwelling adults aged 
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over 50 years limits the generalisability of these results as 
they should not be extrapolated more widely to include 
frail elderly or adults with chronic long-term conditions. 
As considerable interindividual variation exists through-
out the healthy ageing process [100], including participants 
characterised as non-healthy would have added further het-
erogeneity to this work, further limiting the impact of poten-
tial findings. However, those individuals characterised as 
‘at risk’ or who are ‘non-healthy’ have potential to benefit 
most from therapeutic interventions such as exercise training 
and there remains a need for further work in these popula-
tion groups. Although we defined a similar age cut-off to 
previous investigations [91], included studies represented 
a broad age range of participants. A lack of available data 
meant that it was not possible to perform specific analyses of 
typically defined discrete age categories (e.g., 50–64 years 
or 65–80 years), though it should be noted that there was 
no clear effect for age when included within our meta-
regression for  VO2peak. In addition, only one study included 
participants with a mean age over 80 years, an important 
consideration because of the projected future growth of this 
population group [101].

Second, several analyses presented are limited by the 
small numbers of eligible studies, which, combined with the 
between-study heterogeneity, may have affected the magni-
tude of observed effects and the uncertainty of these effects 
(e.g., the width of the reported CLs). One of the primary 
factors explaining the small number of included studies is 
the large variation in outcomes assessed and measurement 
tools used by different authors and research groups to evalu-
ate training interventions. As one of the primary aims of 
this work was to provide practically relevant estimates of 
mean effects, we included only studies which contained our 
pre-determined specific outcome measures. In doing so, 
we acknowledge the exclusion of a considerable body of 
research. Future work is needed to fully appraise the equiva-
lence of different measurement tools which aim to evaluate 
the same physical component by evaluating and comparing 
physical and physiological determinants of performance 
as well as measures of reliability, validity, and sensitivity 
[102]. Although challenging to implement, standardised 
recommendations for a battery of physical capacity tests to 
evaluate training interventions in older adults would also aid 
future attempts at synthesising research findings.

Finally, the practical implications of this work are limited 
by the wide variability of training programmes and incom-
plete reporting within the included studies. Exercise vol-
ume and intensity are both important mediators of training 
adaptation for both endurance and strength training [103, 
104], yet the reporting of these data was inconsistent or 
incomplete across a number of included studies. As such, it 
was not possible to extract and fully evaluate the effects of 
exercise intensity on outcomes following combined training. 

While the authors of systematic reviews and meta-analy-
ses can attempt to find further information about the study 
characteristics, this is a time-consuming and often ineffec-
tive process [105]. As such, the present meta-analysis is in 
agreement with Straight et al. [91] in calling for standardised 
reporting of exercise training protocols to enable research-
ers to fully quantify the effects of training in future meta-
analyses. This should include the presentation of training 
programming variables (e.g., training intensity, volume, 
frequency, and duration) as well as information about the 
fidelity of the intervention [106]. While the present findings 
provide support for the effectiveness of same-session com-
bined exercise training as a strategy to induce functionally 
relevant fitness improvements, a lack of studies including a 
comparator exercise mode limits the potential value of the 
present work and makes it difficult to draw inference about 
the effectiveness of this exercise approach compared with 
the other exercise modes typically utilised in this popula-
tion (e.g., endurance or strength training). The finding that 
combined training improves fitness compared with no exer-
cise is largely unsurprising and further experimental work 
is needed to establish superiority between exercise training 
modes in this population.

Conclusions

The findings of the present meta-analysis provide further 
evidence supporting the application of combined exercise 
training as a strategy for fitness improvement in adults aged 
over 50 years. The quantitative mean effects presented in 
this investigation may help practitioners and clinicians to 
make informed decisions relating to future training prescrip-
tion in this population. However, despite some encouraging 
experimental findings and the data presented in this sys-
tematic review, considerable uncertainty remains regarding 
the effectiveness of same-session combined exercise train-
ing compared with endurance or strength training performed 
alone. Further experimental work is needed to address this 
deficiency of knowledge and to establish superiority between 
these training approaches in this population. Future investi-
gations should also seek to understand the modifying effects 
of exercise programming variables (e.g., volume and inten-
sity) on training outcomes to optimise the prescription of 
combined training interventions.

Data Availability The data sets generated and analysed during the cur-
rent study are available from the corresponding author on reasonable 
request.
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