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Abstract 

The design of planar mechanical systems is a challenging and time-consuming task for 

engineers. Evolutionary computing has been shown to be a successful tool applied to 

design automation in various mechanical engineering fields. This thesis aims to determine 

how evolutionary computing can be applied in the early conceptual stage to support planar 

mechanical design. Building on existing work, it investigates suitable evolutionary 

representations and defines and evaluates a framework for evolving planar mechanical 

systems in a physics environment. It focuses on the design of representations in a multi-

step approach, capable of producing mechanical shapes and mechanisms consisting of 

several components and linkages, adapting to their environment and able to traverse 

different landscapes. 

Based on a review of the literature on evolutionary computing in design, shape 

representations, generative design tools, and evolving mechanisms, a generative system 

was developed, allowing a series of empirical studies to be conducted. Analysis of the 

results demonstrated the importance of breaking down the representation design into 

multiple stages. It showed that the implemented representations, combined with the 

generative tool and evolutionary operators, are capable of evolving solutions for problems 

with different complexity. The results indicate the representation’s large impact on the 

solution quality, and therefore, careful design is necessary. This work provides insight 

into design decisions and compatibility with evolutionary computing techniques, offering 

a promising outlook for using this method to support the conceptual stage of mechanical 

design. In future, this work has the potential to be developed into an industry tool for 

assisting engineers in the early stage of planar mechanism design. 
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1 Introduction 

This work focuses on the development of a generative design method for the early phases 

of planar mechanism design using an evolutionary computing approach. A mechanism is 

a system of components working together to transfer a given input motion into the desired 

output motion. Experienced engineering designers require a good understanding of 

mechanics and mechanical problems to construct them (Pahl, Beitz, Feldhusen, & Grote, 

2007). Most commercially produced mechanisms are planar (Myszka, 2012). Meaning, 

that all the relative motions of the components are in one plane or parallel planes (x, y). 

In contrast, spatial mechanisms operate in 3-dimensions (x, y, z) (Y. Zhang, 2003).  

A typical design process of planar mechanisms includes several stages. It starts with the 

conceptual stage that focuses on producing ideas followed by simple drawings, to solve 

a problem. Promising solutions are taken further into the preliminary design stage, where 

the overall system configuration is defined, and more accurate evaluations can be made 

(Ertas & Jones, 1996). The aim is to produce a set of prototypes which can be analysed 

and selected by engineers for further development. Well-performing concepts are handed 

over to the detailed design stage, where more comprehensive drawings and models of the 

solution are carried out and tested. A generative design method turns the computer into a 

design generator capable of producing, visualising, and analysing prototypes to increase 

the efficiency of this process (Shea, Aish, & Gourtovaia, 2005).  

This work investigates a generative design approach concerned specifically with planar 

mechanisms. Generative design tools include a variety of methods which will be 

discussed. One of these is evolutionary computing, which provides a range of problem-

solving techniques based on the principles of biological evolution, such as natural 

selection and genetic inheritance (Eiben & Smith, 2015b). Evolutionary techniques have 

been implemented in a variety of generative design applications, such as aerodynamic 

shape optimisation (Arias-Montaño, Coello Coello, & Mezura-Montes, 2011; Olhofer, 

Jin, & Sendhoff, 2001; Vicini & Quagliarella, 1999), or topology optimisation used to 

improve the material usage of components with a focus on their inner structure (Baron, 

Fisher, Tuson, Mill, & Sherlock, 1999; Pandey, Datta, & Bhattacharya, 2017). 

However, in this work, one faces new challenges, as opposed to other problems which 

have already been tackled within the generative design domain. The dynamic nature of a 

mechanical system, including collisions of the outline shapes, is rarely considered and is 
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lacking an adequate framework to address it. The outline shapes of mechanical 

components are challenging to parameterise as they can be complex, and the relationship 

between the position and shape of different components defines how these interact with 

each other and the environment which results in the performance of the mechanism. 

In previous work relating to planar mechanisms (Chen & Chou, 2016; Ghassaei & Ming, 

2015; Tsuge, Plecnik, & McCarthy, 2016), the focus was on kinematics and curve tracing 

to generate mechanisms, but did not consider mass; friction; component shapes; and 

collisions between components and the environment. Considering these may lead to a 

new type of generative design tools, able to evolve more detailed mechanisms or even 

fully-functional mechanical devices. 

This work proposes a method for computationally evolving planar mechanisms by 

breaking down the problem into four stages. The first stage concentrates on evolutionary 

representations of free shapes. It is important to identify a suitable shape representation 

which covers the problem domain and works well in combination with an evolutionary 

algorithm.  The second stage concentrates on a physics-based evaluation of potential 

solutions. For that purpose, the focus was on the design, implementation and subsequently 

testing of a simulator. The third stage concerns the definition and evaluation of a 

framework that specifies the assembly of planar mechanisms. The fourth stage builds on 

the findings of the previous stages and expands the design framework and focuses on 

evolving potential design solutions for linkages to validate it. 

1.1 Motivation and Problem Statement 

Mechanisms are an important part of our daily life and are often hidden in many devices 

such as cars, planes, robots, manufacturing production lines, and more. The design of 

these mechanisms requires much time and resources. The manufacturing industries are 

seeking to find ways to make their processes more efficient. For example, the 

implementation of the Internet of Things and Services, also known under the term “Smart 

Factory”,  received a large focus to lower costs and increase productivity in 

manufacturing(Wang, Wan, Li, & Zhang, 2016). 75% of manufacturing costs are 

typically already committed at the end of the conceptual design stage (the initial stage of 

the design process) (Ullman, 2009). It means that the decisions to optimise the processes 

at a later stage only influence 25% of the manufacturing costs.  More attention to the early 

design stages is required to address this. For instance, the automation of design can 

become an important step towards reaching industrial efficiency goals in the future by 

enabling the creation of outputs at a faster pace. Design automation could shorten the 
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development time and provide more resources to focus on lowering future manufacturing 

costs. According to the literature, there are not enough tailored tools to support the early 

design stages (Zboinska, 2015), and those utilised are more suitable for later stages 

(Colombo, Mosca, & Sartori, 2007; Robertson & Radcliffe, 2009; Zboinska, 2015). The 

creative thought process of designers may be influenced negatively by using these tools, 

which may result in not noticing better suited and more efficient design solutions 

(Robertson & Radcliffe, 2009). 

In summary, using generative tools at early design stages has a high potential to save 

development time and manufacturing costs; however, there is a lack of support tools 

tailored for the early design stages. There is no framework for planar mechanisms 

available that considers mass; friction; component shapes; collisions between 

components and environment; and to conduct experiments to identify a method to evolve 

mechanisms for the conceptual or preliminary design stage. A framework such as this 

might lead to more advanced types of automated design tools.  

1.2 Research Questions and Contribution 

This work presents an approach for evolving conceptual planar mechanism design 

prototypes for problems defined by engineers using the computer. It intends to extend the 

previous work in evolving mechanical designs by considering additional parameters. In 

this work, a potential design solution consists of multiple interacting components with 

the freedom to evolve the placement and shape of components. The performance of a 

solution can be determined from the interactions between these components as a system 

and with the environment. 

The following research questions were defined: 

RQ1: Which evolutionary representation can be used to efficiently represent and evolve 

the shape of planar mechanical components? 

RQ2: Which evolutionary representation and evolutionary operators can be efficiently 

used to represent and evolve mechanical components in a physics environment? 

RQ3: To what extent is the evolutionary representation and evolutionary operators able 

to evolve mechanisms consisting of multiple components with the aim of traversing 

different landscapes? 

RQ4: To what extent are the evolutionary representation and evolutionary operators able 

to evolve four-bar mechanisms with the aim of traversing different landscapes? 
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The main contribution of this work is the development, and investigation of a relevant 

framework, including bespoke software provides a way to specify design problems, 

including planar mechanical systems. Solutions are created using an approach which has 

not been done before in this specific domain of planar mechanism conceptual design.  

The relationships between Research Questions and thesis contribution are as follows:  

RQ 1: 

1. A comparison of different genetic representations for shapes including an in-depth 

investigation of the best performing representation 

2. A method to compare, and evaluate different shape representations used in an 

evolutionary computing context 

3. A software tool to run experiments, visualise, and record the process of evolving 

shapes for mechanical components 

4. A set of problems and an analysis of the experimental results  

RQ 2: 

5. A comparison of different genetic representations for the shape of components 

used in a physics environment 

6. Implementation of bespoke software to run experiments; including visualising, 

simulating and evolving design solutions 

7. A set of problems and an analysis of the experimental results  

RQ 3: 

8. A detailed description of the problem, including its variables and parameters 

9. A scripting language to define design problems 

10. A set of problems and an analysis of the experimental results, focusing on 

evolving planar mechanisms 

11. The validation of the framework through the evolution of mechanisms consisting 

of multiple components 

RQ 4: 

12. The validation of the framework through the evolution of four-bar mechanisms 

13. A set of problems and an analysis of the experimental results, focusing on 

evolving planar mechanisms 
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1.3 Thesis Overview 

This work consists of seven chapters. Following the introduction in Chapter 1, the second 

chapter provides a literature review, including a set of relevant definitions. It focuses on 

shape representations, simulators, generative design tools, and evolving mechanisms. 

Chapter 3 addresses RQ1; it provides an investigation into different shape representations 

suitable for planar mechanism design and usable in an evolutionary computing context. 

Chapter 4 is concerned with RQ2; it presents a simulator capable of resolving physical 

scenarios, constituting an important part of the design evaluation process. Chapter 5 

addresses RQ3, by providing a relevant framework, including the computable model for 

defining the real-world problem, as well as a simulation tool allowing evaluation of the 

performance of the mechanism in its’ ability to traverse a 2-dimensional landscape. 

Chapter 6 relates to RQ4; it is based on the previous findings and focuses on a generative 

system with the capability to evolve four-bar mechanism designs. Finally, Chapter 7 

provides the conclusion and future work. 

1.4 Summary 

This chapter gave an introduction to the early stages of planar mechanism design. It 

emphasised the complexity of the design process and has highlights that producing well-

performing mechanisms takes expertise, time, and resources. This work investigates the 

possibility of forming solutions computationally by creating a generative design system 

for planar mechanism design. Evolutionary computing techniques are employed to 

address the problem. Partial automation of the conceptual design stage can have a large 

impact on industry design processes, output quality, and costs. However, there is no 

framework available for evolving planar mechanisms using evolutionary computing. 

This thesis addresses the problem in four stages. In the first stage, evolutionary 

representations were evaluated to find a representation capable of reproducing 

mechanical shapes. In the second stage, a physics simulator will be implemented and 

tested with multiple representations. The third stage focused on the specification of a 

framework for evolving planar mechanisms, evaluated by evolving mechanisms 

consisting of several components. The fourth stage included validation of the framework 

through the evolution of four-bar mechanisms. 

The research questions and contributions were defined, focusing on the representation of 

mechanical components and mechanisms in the context of evolutionary computing. The 

work emphasises the design and implementation of a tool capable of evolving target 

shapes to compare different shape representations; the implementation of a simulator 
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including a scripting language to define design problems for experiments; a method to 

define and analyse experiments around mechanism design; and a validation of the 

framework. The next chapter provides further background and relevant literature.  
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2 Literature Review 

2.1 Introduction 

This chapter provides the background of the research, followed by a literature review and 

critical evaluation regarding shape representations, generative design tools, and evolving 

mechanisms. 

The background information includes an introduction to early design stages; planar 

mechanisms; evolutionary computing; and evolutionary representations. Section 2.3 

discusses shape representations covering different engineering design fields, as well as 

methods of representation evaluation. Section 2.4 investigates a method for representation 

evaluation. Section 2.5 provides insight into generative design tools and discusses their 

benefits and drawbacks. Section 2.6 concerns evolving mechanisms; it summarises the 

work done in the field and emphasises the differences between them.  

2.2 Background 

This section focuses on early design stages, planar mechanisms, evolutionary computing, 

and evolutionary representations. 

2.2.1 Early Design Stages 

Engineering design is a broad field of which one area is the design of mechanical systems. 

The engineering design process consists of phases that differ in the fidelity of a potential 

design solution at the end of each phase. However, no clear boundaries can be drawn 

between the phases because solutions are evaluated and re-designed in an iterative manner 

(Pham & Yang, 1993). 

The process starts with the conceptual design stage, which works on an abstract level. 

Traditionally, during the conceptual stage, a relatively small team of engineers develop 

ideas and make design sketches. Conceptual design requires creative work utilising novel 

components, or a combination of known components in a novel way. There is no fixed 

methodology to follow for conceptual design, and there could be many ways which lead 

to well-performing conceptual design solutions  (Renner & Ekárt, 2003a). However, 

conceptual design plays a central role in ensuring design quality and innovation (Colombo 

et al., 2007). 
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The next phase is the preliminary design stage, where the overall system configuration is 

defined. Designs at this stage are more accurate and provide a basis for first evaluations 

(Ertas & Jones, 1996). However, in the conceptual and preliminary design phase, 

accuracy is not as important as the ability to search for a variety of different designs 

simultaneously (Cvetkovi & Parmee, 1999). Promising designs are then taken further into 

the detailed design stage, where technical drawings are made and used to produce the 

required product. At this point, the design is set and is subject to only minor optimisation 

efforts (Pahl et al., 2007). 

2.2.2 Planar Mechanisms 

Planar mechanism design is a specific field in mechanical engineering, undergoing the 

previously mentioned design stages. A mechanical system typically consists of 

mechanisms assembled from moving components such as driving components, levers, 

gears, chains, springs, and others. Most commercially produced mechanisms are planar 

(Myszka, 2012). This means that all relative motions of the components are in one plane 

or parallel planes (Y. Zhang, 2003). Components transform input forces and movements 

to achieve specified forces and movements at the output (Uicker, Pennock, & Shigley, 

2003). The challenge of the mechanism design process is to shape components and to 

assemble them into a system which moves in such a way as to meet the output 

requirements in response to the given input specifications. The capabilities of the driving 

component, with the occurring forces in the system, need to be taken into account to make 

the mechanism fulfil the desired task. 

Once a concept which meets the relevant requirements is established (e.g. addressing the 

design problem with a specific planar mechanism), preliminary drawings are produced 

and evaluated to identify if those satisfy the requirements. Promising concepts are handed 

over to the detailed design stage, including technical sketches which are necessary to 

build prototypes for physical testing. The entire process is iterative and ends with a 

mechanism which fulfils the required task (Pahl et al., 2007). 

Planar mechanisms can be assemblies of individual mechanical components but also 

assemblies of interconnected components such as Four-bar mechanisms.  
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Figure 1: Four-bar Linkage 

A four-bar mechanism consists of four parts, such as shown in Figure 1. These are three 

links and one frame. The bars b – d plus frame a are connected with four rotation joints 

to each other. The frame a is not movable in space. It keeps two rotation joints on a 

constant distance from each other. Bar b is the driving component and introduces a rotary 

motion into the system. It connects the frame to bar c. Bar c is connected to bar d, linked 

to the frame. The tracing point P moves relative to bar c. It draws a coupler curve in space 

when the mechanism gets into motion. The same mechanism can produce different 

coupler curves if P has a different position. 

2.2.3 Evolutionary Computing and other Approaches in Mechanism Design 

Real-world design problems include a large number of design parameters which can be 

addressed with a variety of approaches. Classical methods, such as gradient methods are 

often not suitable (Renner & Ekárt, 2003a). For those methods, the optimisation problem 

would need to be defined by a function to describe the search direction towards the 

greatest increase, as the design problems may have many local maxima. However, in 

some specific cases, numerical methods were used (Mariappan & Krishnamurty, 1996), 

which indeed utilise a gradient method for optimal synthesis of mechanisms. Others 

applied case-based reasoning (Bose, Gini, & Riley, 1997), a method to store and retrieve 

design artefacts of functional features to create four-bar mechanisms, was used with the 

objective to follow defined planar coupler curves. The same problem was tackled with 

neural networks (Hoeltzel & Chieng, 1990), utilising a system called pattern matching 

synthesis. A neural network was trained with patterns obtained from parametrically 

generated coupler curves and retrieved these which best matched the desired curve. 

Furthermore, path synthesis was also used to generate planar four-bar mechanisms with 

genetic algorithms (Cabrera, Simon, & Prado, 2002; Roston & Sturges, 1996). However, 

these methods focused mainly on the kinematic behaviour of linkages without 

considering interactions with other components via the outline shape. 
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Metaheuristics, such as Ant Colony Optimization, Evolutionary Computation, Simulated 

Annealing, Tabu Search and others, are algorithmic frameworks designed to solve 

complex problems (Bianchi, Dorigo, Gambardella, & Gutjahr, 2009). They are often 

applied to the class of Stochastic Combinatorial Optimization Problems. Engineers are 

usually interested in finding the global maximum and in avoiding getting trapped in a 

local maximum which suggests using stochastic optimisation techniques, such as 

evolutionary algorithms, as being more suitable, and providing promising toolsets for the 

automated design of physical systems (Eiben & Smith, 2015a). This is especially the case 

when considering interactions between shaped components rather than linkages that 

match specified curves because one function cannot describe the problem. Evolutionary 

algorithms are inspired by the biological evolutionary process using operations such as 

reproduction, mutation, recombination, and selection able to traverse a large search space 

(Renner & Ekárt, 2003a). They work in an iterative manner to identify the best suitable 

solution for a problem similar to the conventional engineering design process (Pham & 

Yang, 1993). Renner and Ekárt discussed six categories of applications of mechanical 

engineering which applied genetic algorithms most; these are conceptual design; shape 

optimisation; data fitting; reverse engineering; mechanism design; and robot path design. 

They are especially appropriate for solving complex optimisation problems (Renner & 

Ekárt, 2003a), which are discussed later in section 2.3. 

2.2.4 Evolutionary Representation 

In evolutionary computing, an evolutionary representation is the encoding process of 

transition from genotype to phenotype (meaning from parameter space to solution space). 

The genotype also called the chromosome, includes genes which are the parameters, 

while the phenotype is the solution defined by said parameters going through the encoding 

process. The process can be divided into direct and indirect encoding (Eggenberger-Hotz, 

2004). 

The concept of direct encoding refers to the relationship between parameter and 

phenotype attributes. Each parameter of the genotype represents a value of the phenotype 

directly. Geometric design optimisation, e.g. of lens geometries  (Eggenberger-Hotz, 

2004); generative CAD design (Krish, 2011); and nozzle geometry optimisation (Genge 

& Roosen, 2000) applied this type of encoding. For instance, Eggenberger-Hotz, who 

evolved a lens geometry, utilised an evolutionary strategy employing a direct encoding 

which performed well for geometrical optimisation. However, the author was not able to 

get precise solutions for problems with more than 40 parameters (Eggenberger-Hotz, 

2004). Using a direct mapping to describe complex shapes requires a large number of 



 

25 

 

parameters to define all of the details, leading to a significant increase in the search space 

dimension and processing time to identify well-performing solutions.  

On the contrary, indirect encoding is a process which reduces the number of genes needed 

to represent a phenotype solution. Multiple genes act in combination to evolve phenotypic 

traits with no direct reference to geometric properties. Often rules are used to describe a 

growth process. Each rule may influence several phenotype features. Using a lower 

number of genes and values for each gene reduces the search space and allows applying 

the evolutionary process to more complex problems. (Bentley & Kumar, 1999) 

Indirect representations are often used in Grammatical Evolution (Ryan, Collins, & Neill, 

1998), a form of grammar-based Genetic Programming (GP). GP uses grammar guided 

algorithms which are usually based on decision trees. However, linear representations are 

used in the wider fields of evolutionary computing and better studied which is an 

advantage over tree-based representations, as it provides access to a larger background of 

theory and practice (McKay, Hoai, Whigham, Shan, & O’neill, 2010).  

In many cases, indirect encoding outperforms direct encoding due to the reduction of the 

search space; thus, it reduces the time to find a solution (Bentley & Kumar, 1999; Hotz, 

2004). A low number of genes is important as the performance of evolutionary algorithms 

decreases with an increased number of genes (Eggenberger-Hotz, 2004). Indirect 

encoding procedures are difficult to design and may cause problems, such as bloat, the 

growth of unnecessary large trees when using tree-based representations; pleiotropy, 

which occurs when one gene influences two or more unrelated phenotypic traits; and 

disruption of child solutions if care is not taken (Bentley & Kumar, 1999). Often multiple 

encodings are required because the design space is too large to be covered by a single 

encoding (Krish, 2011).  

2.3 Shape Representation 

This work requires an evaluation of different types of shape representations to identify 

their suitability to evolve mechanical systems. Mechanical systems consist of components 

with various shapes and placements, working together, and contributing towards meeting 

the system’s design task. A representation must describe a solution in a form which is 

suitable for manipulation by an evolutionary algorithm. It enables a computer to create 

and optimise the shape of the design. Enduring that similar designs are always close to 

each other in the design-space (Bentley & Wakefield, 1997). 
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Representing and optimising shapes is an important element in design where the shape 

defines the performance of the product. An inefficient optimisation algorithm requires an 

evaluation of numerous shapes before its convergence, however, a poorly designed shape 

representation limits the evolution of various shapes, which are both not desirable and 

require serious attention (Khan & Ray, 2012). A specific research area is focusing on 

shape matching to address the shape optimisation problem. In shape matching or target 

shape design optimisation, algorithms and representations are used to evolve predefined 

shapes as a benchmark problem which allows evaluating the performance of different 

techniques (Tai, Wang, & Yang, 2008). It shows the importance and difficulty of 

identifying a suitable shape representation. 

This section provides a review of representations used in various engineering fields. In 

particular, on applications which focus on structural optimisation; on aerodynamic 

optimisation; and on mechanical optimisation, as these are often utilising evolutionary 

algorithms to generate solutions. It investigates the benefits and drawbacks of the used 

representations in these specific areas. 

Within the structural optimisation domain, a process called topology optimisation 

(Bendsøe & Kikuchi, 1988) is used to evolve optimal designs, initially in structural 

mechanics (Deb & Goel, 2001), then more recently in other engineering domains such as 

thermal optimisation (Alexandersen, Sigmund, & Aage, 2016); or wave optimisation 

(Takahashi, Nakamoto, Matsumoto, Isakari, & Kitabayashi, 2018). Topology 

optimisation focusses mainly on the inner structure, meaning the material distribution of 

mechanical components. A mesh of pixels or voxels can be used to segment the design 

space (or initial component). The optimisation process adds or removes material and 

evaluates the design’s performance.  

In all areas of topology optimisation, the material, and its distribution is of prime 

importance. The distribution stipulates the transfer of temperatures, the emission of 

electromagnetic or acoustic waves, or transmission of forces through the inner material’s 

structure. Often different types of finite element analysis are used to evaluate a design's 

performance. However, topology optimisation usually focuses on single components and 

not on complete mechanical systems. In the case of optimising a structure’s material 

stress, a mechanical system, e.g. a mechanism designed of interconnected levers, is 

broken down into individual components, each analysed individually. Linkages and 

connection points between levers are not changed, and the transmitting forces and torque 

between levers are used as input parameters to specify the problem for each component 

to be able to reduce the material usage. In this way, the kinematic behaviour of the whole 
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mechanical system stays unchanged. Topology optimisation’s main purpose is to generate 

a new component’s structure and not its functionality. 

In the field of aerodynamic optimisation, the focus has been placed on the outline of a 

component, rather than the structure (Arias-Montaño et al., 2011). Designs are evaluated 

using flow simulation based on Computational Fluid Dynamics. Aerodynamic shape 

optimisation often uses a direct parameterisation as an encoding method which means 

that the genotype encodes parameter values directly related to phenotype attributes. E.g. 

a basic aerofoil shape is parameterised, and limits for each parameter are specified. A 

search method adjusts the parameters until identifying the optimum design which fulfils 

the requirements. 

In another example, namely the area of mechanical optimisation concerns different types 

of mechanisms with a focus on mechanical behaviour. Some conventional mechanisms 

consist of rigid components, and the important part is their outline, rather than their inner 

structure. The outline defines the behaviour of the mechanism resulting from the 

interaction between components. A subdomain in mechanical optimisation is compliant 

mechanisms (Pandey et al., 2017). These are flexible mechanisms which transfer input 

forces and movement from input to output, through elastic body deformation. They 

usually consist of one single part where elastic sections act as joints which enable a 

constrained motion of individual rigid sections. In this case, the focus is on the shape and 

the structure, as the latter defines the freedom of movement and the former interacts with 

other individual sections of the mechanism that determines its behaviour. 

Some researchers use pixel-grid representations for compliant mechanisms (Sharma, 

Deb, & Kishore, 2008), others use solid constructive geometries to represent a shape by 

placing and constraining several nodes within the design domain, using Delaunay 

Triangulation to generate a skeleton (Pandey et al., 2017). Afterwards, widths are added 

over the skeleton to produce complex structures. While utilising this method, the outline 

shape is usually less complex because there are a low number of nodes describing the 

outline. 

Artificial life and robotics are two other areas of interest. Each focuses on evolving 

morphologies and the control of virtual creatures or robots that can be interpreted as 

mechanisms as well. For instance, in his work, Sims concentrated upon evolving virtual 

creatures (Sims, 1994). The focus was on evolving biological behaviour, and biological 

morphologies built of interconnected blocks rather than detailed shapes. The 

representation consists of a directed graph where each graph contains the development 
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instructions for growing a creature with the ability to reuse instructions to create similar 

recursive components within it. The approach provided a way to create complex 

structures using a low number of parameters, rather than a direct parameterisation 

approach. Another example comes from the area of soft robots (Cheney, MacCurdy, 

Clune, & Lipson, 2013), where the authors successfully evolved walking robots made of 

soft materials without using a controller. The behaviour resulted from the placement of 

contracting and expanding materials within the robot using a cellular representation. The 

representation used a neural network which defined how to assemble the robot. The 

authors employed a virtual physics environment to study their method. They measured 

the walking distance in a similar way to the previous work in artificial life. 

Reviewing the different representations in these domains makes it possible to identify 

three different categories of representations: 

•    Cellular-based 

•    Direct parameter-based 

•    Indirect parameter-based 

Cellular representations such as pixels or voxels are often used in the engineering design 

domain when the material distribution is of importance. Pixels represent 2-dimensional 

shapes, while voxels represent 3-dimensional shapes. Cellular representations focus on 

inner material distribution and inner structures. The design space is a pixel grid where 

every pixel represents either material or void. The chromosome, usually a bit or integer 

string, encodes the states of the pixels. 

Direct parameter-based shape representations describe design or shape by direct 

parameterisation. This category of representations requires an initial starting point, such 

as a design or shape to be parameterised, such as the profile or an aerofoil with, e.g. width 

and height, and radii within certain limits. Each change of parameter value changes the 

design and its performance. 

Indirect parameter-based shape representations employ a parameterisation approach as 

well, usually applied when the problem domain has no initial design to be parameterised. 

The representation may encode, e.g. building blocks, where a set of shapes is defined, and 

the chromosome includes information about their placement and orientation. When a 

chromosome includes a set of coordinates to describe a design, the process of resolving 

them into a valid solution makes the parameterisation indirect, as even one change in the 

genotype may lead to more than one change of feature in the phenotype. 
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2.4 Representation Evaluation 

The conventional way to evaluate search space coverage and the effectiveness of 

evolutionary algorithms and operators is to conduct experiments and compare the 

performance of different representations. However, evolutionary algorithms require a 

large number of evaluations because, as previously explained, they refine potential 

solutions iteratively.  

In some cases, evaluations may require computationally expensive simulations, which 

result in a long runtime. Without conducting experiments, it is not always possible to tell 

if a representation covers the search space of the domain sufficiently, especially because 

the optimum solution is often unknown. A way to solve these issues is to investigate the 

representation outside of the application area, for instance, by evaluating representations 

in their ability to evolve target shapes instead of conducting experiments in the final 

application domain. Target shapes have often been used as a benchmark problem to 

investigate the performance of shape-related optimisation algorithms and representations 

(Chang et al., 2003; Khan & Ray, 2012; Nashvili et al., 2005; Tai et al., 2008). This 

approach provides a way to identify the search space coverage without computationally 

expensive simulation by employing a simpler comparison method lowering the runtime 

of the evolutionary algorithm and concentrates solely on comparing a candidate shape 

with a target shape, e.g. taken from the problem domain. The method provides a way to 

evaluate to what extent a representation can recreate the optimum solution and how 

effective the genetic operators are in navigating through the search space. It is possible to 

identify when the algorithm gets trapped in a local optimum. The fast evaluation enables 

the running of experiments quickly and testing representations with a much higher 

number of evaluations compared to experiments conducted in the target domain. 

Furthermore, the visual feedback and comparison provide an insight into the 

representation’s functionality.  

2.5 Generative Design Tools 

Various researchers (Colombo et al., 2007; Robertson & Radcliffe, 2009; Zboinska, 

2015) studied the work of designers and found that they were often using the same tools 

for conceptual design, as for the detailed design. This concerned Computer-Aided Design 

(CAD) tools, which are made for the detailed design stage, and are being used to visualise 

and communicate design ideas as well. The authors emphasise that conceptual and 

detailed design consists of very different activities, sometimes with conflicting 

requirements. Krish claimed that CAD is rarely used during the conceptual design stage 
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which is in contrast to the opinion and observations of other authors, such as (Zboinska, 

2015), (Colombo et al., 2007), and (Robertson & Radcliffe, 2009). However, Krish 

(2011) agreed that CAD software, in its current form, is more useful at a later stage of 

design (Krish, 2011). According to  (Colombo et al., 2007), CAD tools should support 

the entire design process. 

Robertson and Radcliffe (2009) investigated the negative influence of CAD tools on the 

creativity of engineers in the conceptual design stage. They produced several findings 

illustrating this problem.  

• First, they found that communicating the CAD model might give an illusion of 

completeness to the design team, which tends to discourage creative thoughts in 

a group. 

• Second, the functionalities of a CAD tool may drive the shape of the outcome 

solution.  

• Third, the time pressure forces designers to generate solutions in the easiest way 

possible, which drives the design decisions away from what best meets the design 

criteria, to what is easier to design with the available tools.  

• Fourth, the higher the proficiency of the CAD designers is, the more it leads to 

complex designs. The design philosophy moves away from simplicity and 

sufficiency to excellence and perfection, which may cause a waste of resources at 

this stage.  

• Fifth, by comparison of two groups, they found that more ideas were generated 

by the group which did not use advanced 3D CAD tools.  

• And sixth, when the design concept became more detailed, there was a strong 

disincentive to make major changes to the design even if the changes would solve 

numerous problems or make improvements such as decrease the project risk. 

These findings show that there is a need for design tools tailored specifically for early 

design stages. Automated design tools are needed which provide potential solutions to 

engineering teams which may eliminate biases appearing while using conventional design 

tools.  

These types of applications, called generative design tools, used in engineering, are often 

based on evolutionary computing techniques. They are employed to evolve specific 

mechanical components rather than systems of components, such as flywheels (Eby, 

Averill, Punch, & Goodman, 1999), rotor shafts (Byung Gun Choi & Bo Suk Yang, 

2000), aerodynamic structures (Arias-Montaño et al., 2011; Gaier, Asteroth, & Mouret, 
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2018), trusses (J. Liu & Ma, 2017), lenses (Li, Zigoneanu, Popa, & Cummer, 2012), and 

many more. 

Some generative tools in engineering design focus on dynamic systems of components, 

such as linkages (Chen & Chou, 2016; Y. Liu & McCarthy, 2017; Tsuge et al., 2016), 

cams (J. Lampinen, 2003; Mundo, Liu, & Yan, 2006), wing folding mechanisms 

(Jitsukawa, Adachi, Abe, Yamakawa, & Umezu, 2017), gears and gear drives 

(Padmanabhan, Chandrasekaran, Ganesan, Patan, & Navakanth, 2017), or other areas of 

mechanism synthesis (Cabrera et al., 2002; Kyung & Sacks, 2006). Usually, key 

geometries of these components or systems are parameterised, mutated for a reasonable 

time, and evaluated until finding a well-performing design. These applications simplify 

the real-world problem by focusing on the kinematic behaviour of mechanisms which 

supports the design process. However, these tools are not looking at collisions between 

shaped components, their masses, and are not considering friction. Including these 

physical attributes adds a new layer of complexity which moves generative design one 

step closer towards physical mechanisms and will be covered in this work. 

2.6 Evolving Mechanisms 

The manufacturing industry provides toolboxes of drives, gears, joints, and other machine 

elements to build a variety of robots such as those recently presented by the company 

Boston Dynamics. The bio-inspired quadruped robots, such as Boston Dynamics 

machines (Raibert, 2008), were created by human designers, however, in future, they 

could be automatically generated by a machine, as evolutionary computing is starting to 

make a transition towards automated creation of physical artefacts (Eiben & Smith, 

2015a). 

Robots are mechanical systems constructed with connected mechanisms and evolving 

such mechanisms is a step towards reaching the goal of design automation of complex 

machines. Recent work focused on walking robots, such as on bipedal robots (Ambrose, 

Ma, Hubicki, & Ames, 2017; Ames et al., 2017; Lawati & Yousef, 2016), quadruped 

robots (Digumarti, Gehring, Coros, Hwangbo, & Siegwart, 2014; Ruan, Wu, Zhou, & 

Yao, 2015; Vishal & Manivannan, 2016), and hexapod robots (Belter & Walas, 2014; 

Cully & Mouret, 2016; Roennau, Heppner, Nowicki, & Dillmann, 2014). Others focused 

on modular robots (Kamimura et al., 2005), and snake-like robots (Kohl, Kelasidi, 

Mohammadi, Maggiore, & Pettersen, 2016; Reyes & Ma, 2014). Most of these work in 

robotics used evolutionary computing techniques to evolve the machine controllers but 

not to evolve the physical design of the robots. The physical design is usually predefined, 
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and the focus is on evolving the robot’s control pattern. Evolving robot designs is still not 

well researched as there is little literature regarding generative mechanical design 

focusing explicitly on evolving robots’ mechanics. However, the relationship between 

design topology and control patterns influences the performance of a mechanical system. 

In an ideal scenario, these should evolve together.  

A mechanism is a system of interconnected components which produces complex 

behaviour when movement is introduced. They are versatile and can be assembled with 

connected and not connected levers, gears, chains, springs, joints, and more. The 

operating principle which determines the mechanical behaviour is the transfer of forces 

and moments through contact or linkage. At early design stages, complex mechanisms 

are often abstracted at a 2-dimensional level by putting their kinematics in the foreground. 

Notably, most commercially produced mechanisms are planar (Myszka, 2012). The 

objective is to design a system which meets the desired behaviour, or at least a behaviour 

which is sufficient (Renner & Ekárt, 2003a). Designing mechanisms, such as linkages 

required to perform desired motions, is a highly unintuitive process. It often involves 

rigorous experimentation in a high dimensional parameter space usually intending to fit 

designer specified curves (Ghassaei & Ming, 2015; Tsuge et al., 2016). However, linkage 

design does not consider shapes of components, collisions between them, and their 

physical attributes, such as mass or gravity. Their inclusion would further complicate the 

design process and thus would require generative design tools.  

A class of important mechanisms are four-bar mechanisms. Their utilisation ranges from 

simple devices, such as windscreen-wiping or door-closing mechanisms, to complicated 

ones, such as rock crushers, sewing machines, round balers, and suspension systems of 

automobiles (Renner & Ekárt, 2003a). Four-bar mechanisms have been evolved using a 

genetic algorithm (Roston & Sturges, 1996), and further through employing a case-based 

reasoning approach (Bose et al., 1997). Ghassaei and Ming focused on evolving four-bar 

linkages for two scenarios, curve fitting, and task fulfilment, in this case, walking 

(Ghassaei & Ming, 2015). They proposed a novel software system that allows users to 

visualise and interact with the various optimisation parameters. The authors considered 

gravity and collisions between the mechanism and the environment when evolving 

walking behaviour. However, the mechanism consists of bars without specifically 

evolving shapes to interact with the environment or other components of the mechanism. 

The authors state that the search space of the problem is very large.  

Within the engineering domain, there are also more complex mechanisms and synthesis 

of mechanisms. Collision-free adjustable six-bar linkages were synthesised using a twin-
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space crowding genetic algorithm (Chen & Chou, 2016). Six-bar linkages were used to 

evolve lower limbs (Tsuge et al., 2016) and also to evolve manufacturing mechanisms 

(Chen & Chou, 2016). Mechanisms were evolved to draw algebraic curves (Y. Liu & 

McCarthy, 2017), also wing fold mechanisms (Jitsukawa et al., 2017), and even eight-bar 

mechanisms (Parrish, McCarthy, & Eppstein, 2015). 

Another category of mechanisms to consider are cam mechanisms. A cam is a rotating or 

sliding piece in a mechanical linkage used, especially in transforming rotary motion into 

linear motion (Uicker et al., 2003). In contrast to evolving linkages, cams transfer forces 

through contact and collision with other components. Cam shapes have been optimised 

using a genetic algorithm (J. Lampinen, 2003); they have also been generated for precise 

path generation (Mundo et al., 2006). However, as previously, this work considers only 

the kinematic properties to evolve an assembly which follows a specified path. The cams 

were modelled to be always in contact with a follower, which simplifies the problem by 

avoiding the necessity to resolve collisions. Furthermore, it does not consider friction 

between components. The focus is on rotating cams and not on shaped components 

moving through the design space. 

Research has also been proposed regarding the evaluation of the behaviour of mechanical 

systems. Jaskowicz suggested a behaviour language for mechanical systems, for 

comparing different systems, such as gears, or systems with a different type or number of 

components, based on their resulting behaviour, which is mainly described by the output 

motion (Joskowicz, 1999). Being able to specify objectives and evaluate mechanical 

systems is a crucial part of creating generative design systems for mechanism design. 

2.7 Summary 

First, this chapter introduced the research background, explaining the conceptual design 

stage, planar mechanisms, evolutionary computing and evolutionary representations.  

This was followed by the critical evaluation of the literature in the area of shape 

representations, generative design tools and evolving mechanisms. 

The generative design tools were reviewed; it was shown that there is a shortage of 

applications targeting the early conceptual design stages. Furthermore, human designers 

tend to be biased by the available applications. It showed that tools suggesting a broader 

range of solutions might be beneficial for engineers to reduce their bias and workload.  

Evolutionary computing provides a promising toolset to evolve mechanisms. Tackling 

this problem with a generative design tool based on evolutionary computing requires an 

https://en.wikipedia.org/wiki/Linkage_(mechanical)
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evolutionary representation capable of creating mechanical shapes. Different types of 

shape representations were reviewed concerning principles such as cellular, direct, and 

indirect representations. Such representations specifically focusing on mechanical 

components, are not available and require to be designed and evaluated. It was found that 

an indirect encoding is most suitable for shape representations in planar mechanism 

design when applied it in an evolutionary computing context. It provides a way to define 

complex shapes with a low number of genes. In section 2.4, a method to evaluate the 

ability of shape representations to create target shapes was found. It is a computationally 

inexpensive process to identify and evaluate representations’ abilities to be applied within 

an evolutionary algorithm to create shapes for a specific problem domain. These findings 

led to RQ1. 

RQ1: Which evolutionary representation can be used to efficiently represent and evolve 

the shape of planar mechanical components? 

The area of engineering optimisation was reviewed with an emphasis placed on structural, 

aerodynamic, and mechanical optimisation, presenting relevant solutions and examples 

of representations employed in these fields. Every area has its own unique way of 

describing the problem domain and evaluating potential solutions. The literature review 

showed that generative tools in mechanisms design mostly focused on evolving the 

kinematics of mechanisms or the control patterns, without including attributes such as 

mass and friction, or collisions between components. Considering these would allow 

generating mechanisms which are closer to physical systems. For that purpose, a 

representation is needed and a simulation environment and a design objective to evaluate 

it. No suitable simulation environment could be identified in the area of planar mechanism 

design which is compatible with evolutionary computing techniques. However, the design 

objective of measuring the walking distance which was used in artificial life and robotics 

appears to be suitable for mechanism design. It is wide-ranging and would provide a 

foundation for experiments to evaluate the representation in combination with an 

evolutionary algorithm. These findings led to RQ2. 

RQ2: Which evolutionary representation and evolutionary operators can be efficiently 

used to represent and evolve mechanical components in a physics environment? 

Section 2.6 investigated the achievements and difficulties in mechanism design. 

Mechanism design mostly focused on linkages, rather than the shape of components, or 

interaction between multiple not linked components. However, planar mechanisms may 

consist of multiple not linked components. The available literature does not provide a 
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framework to describe these. It is required to employ an evolutionary representation and 

investigate its ability to evolve solutions within an evolutionary computing context. These 

led to RQ3 and RQ4, which focus on mechanisms consisting of multiple components and 

linkages. 

RQ3: To what extent is the evolutionary representation and evolutionary operators able 

to evolve mechanisms consisting of multiple components with the aim of traversing 

different landscapes? 

RQ4: To what extent are the evolutionary representation and evolutionary operators able 

to evolve four-bar mechanisms with the aim of traversing different landscapes? 

The next chapter focuses on the evaluation of several shape representations to identify a 

suitable representation capable of reproducing shapes for mechanical components.  
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3 Evolutionary Shape Representations for 

Mechanical Design 

3.1 Introduction 

This chapter presents four different genetic representations for describing two-

dimensional outline shapes and an investigation of their suitability to be used in a 

generative design system. The evaluation focuses on their ability to evolve a set of defined 

target shapes. These shapes consist of simple symmetric and asymmetric shapes with 

edges and curves, as well as more complex mechanical component shapes derived from 

the problem domain, namely from an automotive device. The representations are used to 

approximate target shapes using an evolutionary algorithm with crossover and mutation 

operators. 

As explained in Chapter 2, planar mechanisms consist of mechanical components which 

transfer movement and forces via their outline shape. In other words, the function and 

performance of a mechanism rely on the shapes of its components and their interactions. 

As shapes play a significant role in mechanism design, it is important to find 

representations that work well within an evolutionary computing context. 

A shape representation method should cover a reasonably sized search space of the 

problem domain; produce only valid solutions, and allow an evolutionary algorithm to 

navigate through the search space. The research will investigate the following criteria: 

• Search space dimension 

• Search space coverage 

• Search space validity 

• Search space navigation 

The following section provides the background to this chapter. 

3.2 Background 

The performance of many engineering applications is highly dependent on functional 

shapes. A generative design system uses optimisation algorithms which require a 

representation of the design problem and its prospective solutions. The latter requires a 

definition of the components’ shapes, which can be especially problematic within an 

evolutionary computing context. As shown in the literature review section 2.3, 
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mechanical engineering design is using many different shape representations, such as 

cellular representations, used in topology optimisation; direct parameter-based 

representations, used in aerodynamic shape optimisation; and indirect parameter-based 

representations, used in robot design. However, these representations often do not 

describe the outline of a shape. Instead, the outline is a fixed constraint defined in the 

problem domain. A common approach is to parameterise certain features of a basic shape 

which was done, for instance, in design optimisation, e.g. of aerofoils. Changing the 

parameter values within defined boundaries adjusts the shape until reaching the optimum. 

However, such basic shapes might not exist for many areas of mechanism design where 

components are customised to create mechanisms that meet specific path and force 

characteristics. The shape of a mechanical component is entirely a result of its function.  

It is tempting to think that the best approach would be to encode the coordinates of such 

free shape directly into a chromosome, as it can result in any shapes. Although, this 

approach would require a large number of parameters as a certain degree of complexity 

is needed, which in turn, would increase the dimension of the search space (Chang et al., 

2003). Furthermore, most solutions in the search space would be invalid due to 

intersecting outlines. A component with an invalid shape cannot be evaluated and does 

not return any fitness value. The evolutionary algorithm is not able to navigate through 

the search space without a fitness value. Therefore, there are several things to consider 

when designing a shape representation. This research emphasises search space 

dimension; coverage; validity; and navigation. 

The size of the search space is determined by the number of genes in the chromosome 

and the value range of each gene, which means, the total number of possible value 

combinations.  A low number of possible combinations results in a small search space, as 

opposed to a large number of potential combinations, resulting in a large search space. 

The coverage of the search space is determined by the representation’s capabilities and 

limitations to reassemble shapes of the problem domain. The evolved shapes need to be 

valid, which means they should not contain intersections, as only valid solutions return a 

fitness value. Evolutionary operators need to be able to navigate through the search space, 

able to reach all areas of the search space, in a way that similar size changes on the 

genotype lead to equal size changes on the phenotype. The following section explains the 

principles in more depth. 

Bespoke software is developed and utilised to conduct a series of relevant experiments. 

It was employed for target shape matching and investigating algorithms, operators, and 

representations.  
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3.2.1 Search Space Dimension 

The evolutionary computing context requires a consideration of the dimension of the 

search space, determined by the number of possible combinations between the number of 

genes used and the number of possible gene values. A larger search space has a serious 

impact on the performance of evolutionary computation (Chang et al., 2003). A small as 

possible search space is prefered; hence, the number of genes, and also the number of 

gene values should be kept as low as possible. An indirect parameter-based approach can 

be used to reduce the number of genes. In this case, one gene describes multiple features 

of a solution. 

3.2.2 Search Space Coverage 

The search space dimension defines the number of potential solutions and solution types 

that the representation can produce. Designing a representation requires investigating 

whether the search space covers the problem domain, meaning, the representation’s 

capability of producing solutions of certain types. The investigation of the coverage is an 

important step, as it is often not visible if the problem domain is sufficiently covered.  

The following two simplified thought experiments should illustrate the problem: 

Imagining the search space of the problem domain being a canvas which would allow all 

possible shapes to be drawn on. A representation consists of a chromosome with a limited 

number of parameters, and a routine to translate these into a drawing. It results in the 

number of potential drawings being limited. However, the canvas allows drawing an 

infinite number of shapes, depending on resolution and complexity. It means one shape 

representation alone is never able to represent all of the possible shapes; thus can often 

not cover the whole problem domain. A representation describes a subset or specific type 

of solutions, and its limitations need to be determined. 

A more practical example comparing two representations to each other: The problem is 

to design the shape of a wheel for a car, (imagining not knowing the shape of a wheel). 

One representation consists of two descriptive parameters, each describing a side length 

of a rectangle — another representation consisting of just one parameter describing the 

radius of a circle. In this case, just one of the representations is capable of sufficiently 

covering the search space of the problem domain and producing accurate solutions. 

However, both representations will return a solution. The representation using one 

parameter will evolve a wheel and achieve high performance. The rectangle 

representation will evolve a square-shaped wheel which will also achieve some 

performance, yet, not the optimum, even though it uses a larger number of parameters to 
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describe a solution. The problem is that the optimum is unknown, that means one may 

assume a square-shaped wheel is a good idea when using the wrong representation. 

Moreover, extending this thought experiment to more complex problems with complex 

representations; it gets more difficult to identify if a representation covers the problem 

sufficiently. A systematic investigation of the coverage can lead to designing better 

performing representations. An approach may be to test representations with a benchmark 

problem for which the optimum is known. 

3.2.3 Search Space Validity 

A representation should always produce valid solutions and avoid infeasible shapes when 

mapping from genotype to phenotype. Figure 2 shows a valid shape on the left-hand side 

and an invalid shape due to a crossover of lines on the right-hand side.   

 

Figure 2: Shape Validity 

There are theoretically more invalid shapes which cannot be evaluated than valid ones if 

taking the simple approach of simply connecting a string of coordinates into a shape. The 

existence of invalid solutions in the search space indicates that it is unnecessarily large 

and contains invalid areas. It is not possible to evaluate invalid solutions, and without 

providing the evolutionary algorithm with a fitness value, the navigation through the 

search space is impossible or at least ineffective. However, if an unnecessarily large 

search space is acceptable, the approach to avoid invalid solutions would be either to filter 

them or to repair them, which requires additional computational time and resources. For 

this reason, genotypes should produce solutions that can be evaluated by the generative 

system. 
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3.2.4 Compatibility with Evolutionary Operators 

An evolutionary algorithm should be able to efficiently navigate the search space using 

evolutionary operators such as mutation and recombination. Furthermore, the operators 

should not introduce too large disruption and should be able to pass features from parent 

solutions to child solutions. Regarding mutation, a small change in the genotype should 

lead to a small change in the phenotype. Recombination operators should keep some 

characteristics of the parents, such as shown in Figure 3. 

 

Figure 3: Recombination Operation 

A recombination operation produces a swap of features between two-parent phenotypes 

which results in child solutions. If these operators are not working properly together with 

the representation, the algorithm will not be able to evolve the solution. 
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3.2.5 Applications for Experiments 

Two software applications were implemented, providing the ability to conduct 

experiments. Figure 4 shows the first application. It is used to define the target shapes. 

 

Figure 4: Target Shape Definition 

The application has a graphical user interface and enables loading images, e.g. of levers, 

into the view. The image is used to extract the outline of the lever and obtain its 

coordinates used to define a target shape for the next application by copying them into a 

text file. The second application for target shape matching provides the capability to 

conduct experiments and is shown in Figure 5.  
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Figure 5: Target Shape Matching Application 
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This software also provides a graphical user interface and embeds the evolutionary 

algorithm. It uses the text file with the target shape coordinates and loads it into the view 

(middle section). Algorithm related parameters can set on the left-hand side. The interface 

offers a way of setting the number of genes (length of the chromosome) to be used for a 

solution and the number of individual shapes to be evolved. It provides a way to choose 

different genetic operators which were implemented for testing and to set different 

thresholds related to the operators and the solution. Examples may include minimum and 

maximum size. 

Different evolutionary algorithms and representations can be chosen, including the 

maximum number of generations, population size, and the number of children per 

generation. Filters can be activated or deactivated, as detailed later in this section 3.3.2. 

After starting the algorithm with the specific configuration, it updates the view each time 

finding a better performing solution. Moreover, it provides information such as the 

chromosome values of the best-performing individual and the fitness of the ten best 

individuals. It also shows the run time and the number of produced solutions. 

Additionally, buttons are offered to pause the search and save the results. 

The right-hand side of the interface provides a visualisation of the population of the 

evolutionary algorithm. Every row stands for one individuum of the population with 

every column representing a gene. The algorithm uses a real value chromosome, and each 

gene is colour coded in greyscale from white to black with similar values having a similar 

colour. 

The software is the basis for experiments to test algorithms, evolutionary operators, and 

representations. The user interface enables spotting problems with the algorithm and to 

identify a well-performing setup. 

3.3 Method 

Rather than testing each representation in the final application domain, they were tested 

for their capability to evolve target shapes using an evolutionary algorithm. This method 

has often been employed as a benchmark problem to investigate shape-related 

optimisation algorithm’s performance (Chang et al., 2003; Khan & Ray, 2012; Nashvili 

et al., 2005; P. Zhang, Yao, Jia, Sendhoff, & Schnier, 2007). It supports the development 

of representations by giving an insight into their underlying principles and the 

evolutionary process. Testing the representations directly in the final application domain 

does not allow this level of depth and would require a significantly higher computational 
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processing effort that is caused by the necessary physics simulation. It would make it 

difficult to understand certain behaviour of the evolutionary computation regarding 

evolving the shape, due to lack of visibility of prospective solutions.  

For this research, four representations were developed and tested with 24 different target 

shapes, 12 being free invented shapes and 12 based on the outline of mechanical levers 

taken from an automotive closure system. The next section presents the target shapes.  

Subsequently, the description of the representations is shown, followed by the 

evolutionary algorithm and the fitness evaluation method. Last shows a presentation of 

the experiments to compare the representations’ performance. 

3.3.1 Target Shapes 

Evolving target shapes allows developing a representation systematically; it provides a 

way to justify design decisions; allows to compare different representations to each other; 

supports the choice of a representation for a specific problem, and it is a useful tool to 

identify a representation’s drawbacks. The representations are evaluated based on their 

ability to evolve different shapes within a mechanical engineering context, with 

characteristics such as corners; curves; symmetries; a-symmetries; and other problem 

domain-specific features. A set of target shapes was defined for evaluation of the 

representations abilities to cover the shape characteristics.  

 

Figure 6: Target Shapes 

The illustrations in Figure 6 were used to test the capability of the representations to 

reproduce these shapes and to identify to what extent the produced solutions are valid. 

This approach has given an insight into the compatibility of the representation with the 

evolutionary operators. 

3.3.2 Evolutionary Representation 

Selecting a shape representation is one of the most important decisions in evolutionary 

computing based shape optimization (Jouni Lampinen, 1997). In this work, the 
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representation’s purpose is to define the outline shape of mechanical components subject 

to four requirements. 

Firstly, a shape representation should have a small number of variables representing a 

solution to be used within an evolutionary computation efficiently. Secondly, it should 

cover a large search space of the problem domain. It is necessary to remember that one 

representation may be able to produce solutions which another representation is not 

capable of producing. Thirdly, the representation should return only valid, non-

intersecting shapes. Connecting random coordinates to generate a closed shape results in 

a search space with a large number of invalid solutions should be avoided. It increases 

the size of the search space; makes navigation difficult due to not evaluable solutions; or 

requires additional processing to resolve intersections. Lastly, the representation needs to 

be compatible with the evolutionary mutation and recombination operators to enable the 

evolutionary algorithm to navigate through the search space efficiently. 

Four representations were developed each based on interconnected vertices produced by 

a spline function which makes the solution shape curvier. The spline function uses control 

points encoded in a chromosome, which is a common approach in shape optimisation 

(Khan, Ayob, Isaacs, & Ray, 2011; J. Lampinen, 2003; Sandgren & West, 1989; P. Zhang 

et al., 2007).  The algorithm for the spline function is shown in Figure 7 and Figure 8. 
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// Convert control points to spline 
public static List<Point> BSpline(List<Point> coordinates) 
{ 

List<Point> shapeCoordinates = new List<Point>(); 
if (coordinates.Count >= 4) 
{ 

// Loop through all control points and close circle 
for (int i = 0; i < coordinates.Count; i++) 
{ 

int a = i; 
int b = i + 1; 
int c = i + 2; 
int d = i + 3; 
 
if (d >= coordinates.Count) d = d - coordinates.Count; 
if (c >= coordinates.Count) c = c - coordinates.Count; 
if (b >= coordinates.Count) b = b - coordinates.Count; 

 
List<Point> spline = bSplineAlgorithm(coordinates[a], 
coordinates[b], coordinates[c], coordinates[d], 3); 
shapeCoordinates.AddRange(spline); 

} 
} 
else shapeCoordinates = coordinates; 
 
return shapeCoordinates; 

}  

Figure 7: C# Code Spline Function A 

// Convert contrlpoints to spline 
private static List<Point> bSplineAlgorithm(Point p1, Point p2, 
Point p3, Point p4, int divisions) 
{ 

List<Point> spline = new List<Point>(); 
double[] a = new double[5]; 
double[] b = new double[5]; 
a[0] = (-p1.X + 3 * p2.X - 3 * p3.X + p4.X) / 6.0; 
a[1] = (3 * p1.X - 6 * p2.X + 3 * p3.X) / 6.0; 

   a[2] = (-3 * p1.X + 3 * p3.X) / 6.0; 
   a[3] = (p1.X + 4 * p2.X + p3.X) / 6.0; 
   b[0] = (-p1.Y + 3 * p2.Y - 3 * p3.Y + p4.Y) / 6.0; 
   b[1] = (3 * p1.Y - 6 * p2.Y + 3 * p3.Y) / 6.0; 
   b[2] = (-3 * p1.Y + 3 * p3.Y) / 6.0; 
   b[3] = (p1.Y + 4 * p2.Y + p3.Y) / 6.0; 
   Point startPoint = new Point(); 
   startPoint.X = a[3]; 
   startPoint.Y = b[3]; 
   spline.Add(startPoint); 
 
   int i; 
   for (i = 1; i <= divisions - 1; i++) 
   { 

float t = System.Convert.ToSingle(i) / 
System.Convert.ToSingle(divisions); 
 
Point sPoint = new Point(); 
sPoint.X = (a[2] + t * (a[1] + t * a[0])) * t + a[3]; 
sPoint.Y = (b[2] + t * (b[1] + t * b[0])) * t + b[3]; 
spline.Add(sPoint); 

} 
return spline; 

} 
 

Figure 8: C# Code Spline Function B 
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A potential shape has a centre point and the vertices reassemble a closed outline shape 

around the centre. The centre point defines the location of the shape on a 2-dimensional 

plane. The representations differ in the way of placing the control points. A function for 

removing vertices that are too close to each other was added, with a distance smaller than 

90% of the minimum boundary parameter. It removes unnecessary aggregation of vertices 

in one location and to enable the shape to afford sharp edges. The chromosome used for 

all representations consists of an array of real values (genes) in a range from 0.0 to 1.0, 

with seven digits of precision, interpreted into coordinate values between a minimum and 

maximum boundary parameter of 10 and 240 pixels. A parameter defines the length of 

the chromosome used within the representation that allows increasing or decreasing the 

detail of the solution. Using a longer chromosome creates more control points. The 

following sections explain the representations’ differences. 

 

Figure 9: Representations 

Representation R1 - Cartesian Coordinate-based. This representation shows a direct 

mapping of the chromosome’s real values to coordinates of control points on a cartesian 

coordinate system. A minimum and maximum defined shape size constrain the solution. 
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A closed shape is formed by connecting the control points in an order they appear in the 

chromosome. Figure 9 (top, left) shows the representation. 

The first two genes represent the coordinate of the centre point of the shape. Additional 

gene pairs represent the coordinates relative to the centre point. However, connecting 

each coordinate in an order in which they appear in the chromosome leads to a very high 

number of intersections between lines. Self-intersecting shapes are not evaluable, so a 

post-processing step was added to resolve the intersections. Intersecting lines are removed 

by not using the related control point and closing the shape with the next one. If this leads 

to new intersections, this control point is also not included, and the shape is closed using 

the control point after. This process continues until no further intersections appear. The 

post-processing step avoids producing invalid phenotypes. 

The representation was chosen to investigate the simplest mapping method between 

chromosome and solution and the influence of using a post-processing procedure to 

resolve intersections. 

Representation R2 - Polar Vector-based. This representation maps real values to 

vectors with a common centre. The representation is shown in Figure 9 (top, right). The 

chromosome’s genes correspond to directions and lengths of vectors on a polar coordinate 

system. Genes related to directions correlate to angles between 0 and 360 degrees, and 

those related to lengths correlate to a range between a defined minimum and maximum 

shape size value. The first two genes define the centre position of the shape. Further gene 

pairs represent the vector coordinates which are sorted by angle and connected in a 

clockwise direction to avoid intersections in the outline. The representation was inspired 

by BoxCar2D (Weber, 2015) where the shape of an abstraction of a car body was 

described similarly. 

Representation R3 - Hub and Spoke-based (Lapok, Lawson, & Paechter, 2017). This 

representation is also based on a polar coordinate system, similar to the previous method. 

It is shown in Figure 9 (bottom, left). As previously, real values correlate to vectors with 

direction and length. The first two genes define the centre of the shape. However, there 

are some differences. One is that an additional gene defines the tilt angle of the polar 

coordinate system. 

Furthermore, each vector has its angle segment in which it operates. E.g. when using six 

vectors, each vector has its fixed range between 0 and 60 degrees in which it can operate. 

Invalid shapes are avoided by connecting the vectors in a clockwise direction. 
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Representation R4 - Rectangle-based (Lapok, Lawson, & Paechter, 2019). This 

representation uses multiple rectangles as basic shapes. It is shown in Figure 9 (bottom, 

right). The first two genes define the centre of the shape. Subsequently, every group of 

five genes translates to a position coordinate, tilt-angle, width and height of a rectangle. 

Multiple rectangles are positioned relative to the centre. The rectangles may overlap with 

each other, so the overall outline is extracted. The edges of the outline are the control 

points for the spline function. 

Lee and Nagao developed a similar representation that uses rectangles as basis shapes 

(Lee & Nagao, 1995). However, there are some differences. First, their representation 

does not extract the outline of the intersecting rectangles. Instead, they encourage the 

evolutionary algorithm to avoid overlapping by giving an additional penalty for it. 

Second, the representation is not used with additional functions such as the spline function 

or a procedure to remove close vertices.  

R4 can produce multiple not connected shapes on one plane, which is interesting from the 

perspective of mechanical design. In this way, a component consists of multiple not 

connected shapes which are moving as one component on one or also on multiple planes. 

Shapes on the same plane can interact with each other. In theory, this provides a way to 

model a 3-dimensional system. Section 5.2.1 explains this concept in more depth. 

3.3.3 Evolutionary Algorithm  

The algorithm initially creates a population of random individuals. Each contains a 

chromosome. The chromosome used in this work consists of an array of real values 

(genes) in a range from 0.0 to 1.0. The chromosomes are mapped to shapes using the 

different representations. The algorithm improves the quality of the population’s fitness 

iteratively. Individuals are selected from the population, copied, and mutated in a 

systematic manner that leads to new individuals (children) of which the fitness is 

evaluated. Children replace weaker individuals of the population. One individual 

represents the best solution. The iterative process continues until reaching a stop criterion; 

in this case, a set number of generations. Figure 10 shows the pseudo-code for the 

evolutionary algorithm. 



 

50 

 

set POPULATION SIZE 
set NUMBER OF CHILDREN per generation 
set STOP CRITERION to a number of evaluations 
set RECOMBINATION PROPABILITY between 0.0 and 1.0 
 
initialize random population of POPULATION SIZE 
identify individual with best fitness in population 
 
run generation loop  
 repeat for NUMBER OF CHILDREN   

set PROBABILITY to random number between 0.0 and 1.0 
if PROBABILITY < RECOMBINATION PROPABILITY 

   select two parents from population using binary tournament selection 
create CHILD from both parents using two-point crossover 
apply simple mutation to CHILD  

else 
   select one individual from population using binary tournament selection 

make CHILD by copying individual 
   apply simple mutation to CHILD  

end if 
 end loop 
 
 for each CHILD 
  select weaker individual using binary tournament selection 
  replace weaker individual in population with CHILD 
  if CHILD fitness is better than best individual 
   mark CHILD as best individual 
  end if 

next child 
 

until STOP CRITERION is reached  

Figure 10: Pseudo Code Evolutionary Algorithm 

The algorithm was set up to create a population of 100 individuals and to produce 20 

children in every generation. Children are created by copying selected individuals from 

the population using binary tournament selection and through gene mutation. The 

selection operator picks two random individuals and selects the one with better fitness. 

There are two evolutionary operators, applied with a probability of 50%. First of them is 

a mutation with a variable mutation rate. Variable means that the rate changes in each 

iteration randomly and applies changes to between one to four random selected genes of 

a selected individual; altering the gene values to random new ones which are determined 

by a Gaussian Distribution based on the previous value. The Box-Muller transform 

equation was used (Muller, 1958). The pseudo-code is shown in Figure 11. It returns a 

new gene value which has a higher probability to be closer to the previous one based on 

a normal distribution.  
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set SIGMA = 0.2 
set MEAN = OLD_GENE_VALUE 
 
# Create two random floating-point numbers U1 and U2 that are greater than or 
equal to 0.0, and less than 1.0. However, the first number cannot be 0. 
 
set U1 = 0 
while(U1 ==0) 
 U1 = Round(1.0 – Random_Double) 

U2 = Round(1.0 – Random_Double) 
 
# Calculate new gene value based on Gaussian distribution (Box-Muller transform) 
 
set Z0 = Round(Sqrt(-2.0 * Log(U1)) * Sin(2.0 * Pi * U2)) 
set NEW_GENE_VALUE = Z0 * SIGMA + MEAN 
 
*Random_Double return a number between 0.00 and 1.00 
*Round is rounding to two decimal places 
 
  

Figure 11: Pseudo Code Box-Muller transform equation 

The second operator is a two-point crossover recombination followed by a mutation using 

the same principle as explained in the previous section. The recombination takes two 

individuals from the population using the same selection method and exchanges a 

chromosome segment between them; determining the segment by two random points 

defining the start and end position. The child contains the segment of the first parent and 

up to two segments, at the beginning and the end, of the second parent. Children are being 

added to the population in each generation by replacing selected individuals of the 

population using a tournament selection. In this case, it picks the weaker of two randomly 

chosen individuals. This procedure repeats until the maximum number of generations is 

reached, or the user terminates the process. The algorithm was carefully designed in an 

iterative manner supported by the visual interface. The interface allowed to evaluate the 

performance visually and guide the development process of the algorithm and operators. 

3.3.4 Fitness Evaluation 

The candidate solution’s fitness relates to the similarity between a candidate shape and a 

target shape. In literature, often the symmetrised Hausdorff distance or Euclidean distance 

is used to calculate the fitness (Chang et al., 2003; Khan & Ray, 2012; Nashvili et al., 

2005; P. Zhang et al., 2007). However, this research uses a different approach, not directly 

dependent on the comparison of coordinates between the solution and target shape. 

Instead, the fitness function uses the sum of two penalties, based on a comparison of target 

and solution surface areas. The penalty value decreases when the candidate shape is more 

similar compared to the target shape. A total penalty value of zero means that the solution 

and the target shape are identical in form and position. Figure 12 shows the target shape 

area, the solution shape area, and the intersection between both. 
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Figure 12: Fitness Evaluation 

The following equations show the calculation of the penalties: 

 | At - As| = Ps (1) 

 |At - Ai| = Pi (2) 

 Ps + 2 Pi = Pt (3) 

The first penalty Ps results from the difference between the total area size of the target 

and the area of the solution, shown in Eq.1. Pi is the second penalty which results from 

the difference between the total size of the target and the intersection area with the 

solution, shown in Eq.2. Eq.3 shows the total penalty Pt in which Pi has a double weight 

to avoid a direct competition of the penalties as the size penalty Ps and intersection 

penalties Pi may work against each other. The double weight is important to avoid a 

similar penalty value change when an applied mutation increases the size of the area and 

at the same time, changes the intersection area. In this case, the penalty values would 

eliminate each other, and the total penalty would not change. The algorithm would not be 

able to navigate to a better solution. By doubling the intersection penalty, it receives 

greater attention, and the algorithm avoids getting trapped in a local optimum. 

The areas were extracted using the open-source Clipper C# library (angusj, 2010). The 

areas for the shapes were calculated using the following C# method shown in Figure 13. 
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/// <summary> 
/// Calculate the area of the shape 
/// </summary> 
/// <param name="shapes">List of shapes where ech shape is a 
/// list of coordiantes</param> 
/// <returns>Area of all shapes</returns> 
private float AreaOfShape(List<List<IntPoint>> shapes) 
{ 
    double result = 0f; 
    if (shapes.Count == 0) 
        return (float)result; 
 
    foreach (List<IntPoint> shape in shapes) 
    { 
        shape.Add(shape[0]); 
        float area = Math.Abs(shape.Take(shape.Count - 1) 
            .Select((p, i) => (shape[i + 1].X - p.X) 
            * (shape[i + 1].Y + p.Y)).Sum() / 2); 
        result += area; 
    } 
 
    return (float)result; 
} 

  

Figure 13: C# code to calculate the area of a shape 

3.3.5 Experiments 

Experiments were run 25 times on each of the 24 target shapes for 500,000 evaluations 

with each representation method. Experiments were conducted using an Intel Core i5-

2500 3.3Ghz with 4GB RAM. The target shapes used are shown in Figure 6. Shape p01 

to p12 are lever shapes extracted from an automotive closure system and shape p13 to 

p24 are general basic shapes. 

The algorithm configuration looked as follows: The population was set to 100, and the 

number of children generated per generation to 20. These values resulted from testing and 

observations. The number of generations was 25,000, which results in a total number of 

500,000 evaluations after which the experiment stopped. The chromosome length for 

each representation was set to 77 genes to represent one solution to make the comparison 

fair. In general, a higher number of genes leads to a higher representation quality for all 

representations as the representations can generate a higher number of control 

coordinates. Representations which use more genes to create a coordinate may have a 

disadvantage, e.g. R1 uses two genes for one x-y coordinate, whereas R4 uses 5 genes to 

place four x-y coordinates (rectangle). 

3.4 Results and Evaluation 

The results include a comparison of the four representations’ performances in producing 

each target shape. Figure 14 shows an example of evolving p04 with the representations 

R1 – R4. 
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Figure 14: Evolved solutions with R1 - R4 

Each row shows a representation and each column a different stage at the evolutionary 

process. A smaller fitness value means that the evolved shape is more similar to the target 

shape. The last column shows the final shape after 500,000 evaluations. The solution 

number increased each time a better solution was found. A higher solution number 

indicates that the shape evolved in more incremental steps. It is noticeable that in this 

example, R1 was not able to represent the target shape efficiently. The other 

representations performed well. R2 and R3 seem to evolve similarly, however, R3 seems 

to improve in smaller steps. R4 starts the evolutionary process with multiple shapes 

scattered over the canvas but can approximate the target shape in a similar way such as 

R2 and R3. 

The Mann-Whitney U-Test was used for statistical analysis since normality of the 

distributions cannot be assumed. A p-value of p≤0.05 indicates high confidence that 

distributions significantly differ. The p-value refers to the median distribution of best-

performing solutions at the end of each run. 
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Table 1: Comparison of Methods p-values 

 

 

 

Table 1 shows the p-values of comparing two representations to each other for each 

problem. All comparisons where no significance could be determined are highlighted in 

grey. It can be seen that the performance of R1 differs significantly. The other 

representations show significant differences in performance for some problems, however, 

for seven cases, no significant differences could be detected. 

 Figure 15 shows the comparison of the representations R1 – R4 next to each other for 

every target shape, with the mean penalty of all 25 runs and the confidence interval. The 

supplementing tables for the boxplots can be found in Appendix 1.  

method 1 method 2 p01 p02 p03 p04 p05 p06 p07 p08

R1 R2 3.18E-07 9.02E-08 7.42E-03 1.24E-07 5.85E-07 1.50E-09 6.97E-09 3.39E-08

R1 R3 3.03E-08 1.53E-07 4.76E-03 5.86E-08 4.10E-07 1.50E-09 6.97E-09 2.43E-08

R1 R4 2.71E-08 2.87E-07 5.52E-09 5.25E-08 7.06E-06 4.37E-09 1.89E-07 6.53E-08

R2 R3 1.18E-01 1.38E-01 8.69E-01 2.90E-01 3.99E-01 3.32E-01 5.41E-01 2.05E-05

R2 R4 6.77E-01 7.49E-01 7.82E-09 1.09E-01 3.18E-07 4.85E-01 1.58E-05 1.01E-02

R3 R4 2.99E-01 4.32E-01 1.38E-08 6.00E-01 1.38E-07 1.23E-01 3.74E-05 6.89E-08

comparison problems (p-values)

method 1 method 2 p09 p10 p11 p12 p13 p14 p15 p16

R1 R2 1.55E-08 2.43E-08 1.33E-09 4.07E-05 1.12E-07 3.18E-07 4.78E-07 2.24E-05

R1 R3 1.17E-06 4.22E-08 1.33E-09 4.81E-05 6.97E-09 1.00E-07 1.29E-06 7.06E-06

R1 R4 1.91E-09 2.87E-07 2.73E-09 1.70E-07 1.01E-05 2.55E-04 1.58E-05 2.75E-04

R2 R3 1.37E-04 1.66E-02 8.84E-01 8.92E-01 5.87E-03 1.15E-03 3.88E-02 1.18E-01

R2 R4 1.90E-06 6.16E-04 7.49E-01 1.24E-03 1.37E-04 2.32E-03 1.41E-03 3.88E-06

R3 R4 1.12E-07 1.57E-01 4.91E-01 8.17E-04 2.71E-08 1.18E-07 1.01E-01 1.38E-08

comparison problems (p-values)

method 1 method 2 p17 p18 p19 p20 p21 p22 p23 p24

R1 R2 1.91E-09 2.58E-07 2.58E-07 1.57E-06 3.21E-08 2.17E-08 2.73E-09 5.54E-01

R1 R3 4.37E-09 1.24E-07 5.85E-07 1.12E-07 3.39E-08 2.57E-09 1.70E-09 5.09E-01

R1 R4 1.89E-07 2.54E-06 4.46E-06 3.07E-06 4.78E-07 5.22E-05 4.92E-09 1.38E-08

R2 R3 2.33E-01 4.38E-01 9.85E-01 4.46E-06 9.15E-01 3.19E-04 4.26E-01 9.77E-01

R2 R4 1.24E-03 3.32E-01 6.97E-02 5.12E-02 2.17E-08 1.75E-02 5.48E-01 1.50E-09

R3 R4 2.63E-02 1.18E-01 1.38E-01 4.46E-02 1.74E-08 1.80E-05 1.97E-01 1.50E-09

comparison problems (p-values)
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Figure 15: Method Comparison 
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Vargha-Delaney A-measure (VDA) (Vargha & Delaney, 2017) is used to identify which 

Representation outperforms another. VDA is a statistical test to evaluate differences 

(effect size) between two non-normally distributed populations. It provides a value (A-

measure) between 0 and 1 which indicates if there is a small, medium, large or no 

difference between populations. A value of 0.5 refers to no difference. A value under 0.44 

or above 0.56 indicates a small difference. A value under 0.36 or above 0.64 states a 

medium difference and a value under 0.29 or above 0.71 indicates a large difference.  

Table 2 provides the A-measure for the comparison of all representations on every 

problem. The comparison focuses on medium and large differences between the 

representations. The arrows show if the first method was better (arrow up), or worse 

(arrow down), than the second method. The diagonal arrows indicate a medium 

difference, and the horizontal arrows indicate no difference between the compared 

methods. The last row shows which representation performed best on the particular 

problem. 

Table 2. Comparison of Methods using VDA. 

 

 

 

method 1 method 2 p01 p02 p03 p04 p05 p06 p07 p08

R1 R2 0.922 0.941 0.7208 0.936 0.912 0.998 0.978 0.955

R1 R3 0.957 0.933 0.7328 0.947 0.918 0.998 0.978 0.96

R1 R4 0.958 0.923 0.981 0.949 0.8704 0.984 0.93 0.946

R2 R3 0.6288 0.3776 0.4864 0.5872 0.5696 0.58 0.4496 0.8512

R2 R4 0.5344 0.4736 0.976 0.632 0.078 0.4424 0.144 0.288

R3 R4 0.4144 0.5648 0.968 0.5432 0.066 0.3728 0.16 0.055

R2,R3,R4 R2 R4 R2,R3,R4 R2,R3 R3 R2,R3 R3

problems (A-measure)comparison

best performance

method 1 method 2 p09 p10 p11 p12 p13 p14 p15 p16

R1 R2 0.966 0.96 1 0.8384 0.938 0.922 0.915 0.8496

R1 R3 0.9008 0.952 1 0.8352 0.978 0.939 0.8992 0.8704

R1 R4 0.995 0.923 0.99 0.931 0.864 0.8016 0.856 0.8

R2 R3 0.1856 0.3024 0.488 0.5112 0.7272 0.768 0.3296 0.6288

R2 R4 0.8928 0.2176 0.5264 0.7664 0.1856 0.2488 0.2368 0.1192

R3 R4 0.938 0.3832 0.5568 0.776 0.042 0.063 0.3648 0.032

R4 R2 R2,R3,R4 R4 R3 R3 R2 R3

problems (A-measure)comparison

best performance

method 1 method 2 p17 p18 p19 p20 p21 p22 p23 p24

R1 R2 0.995 0.925 0.925 0.896 0.956 0.962 0.99 0.5488

R1 R3 0.984 0.936 0.912 0.938 0.955 0.991 0.997 0.5544

R1 R4 0.93 0.888 0.8784 0.8848 0.915 0.8336 0.982 0.968

R2 R3 0.4016 0.564 0.4984 0.8784 0.4912 0.7968 0.5656 0.5024

R2 R4 0.2336 0.42 0.3504 0.6608 0.038 0.304 0.4504 0.998

R3 R4 0.3168 0.3712 0.3776 0.3344 0.035 0.1464 0.3936 0.998

R2,R3 R3 R2,R3 R3 R2,R3 R3 R2,R3,R4 R4

problems (A-measure)comparison

best performance
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Results show that R1 has the worst performance on every problem compared to the other 

representations. The findings show that using a post-processing procedure which disables 

coordinates to resolve intersections consequently disables parts of the chromosome. It 

makes the shape optimisation inefficient due to applying mutations to segments of the 

chromosome that do not influence the solution. Furthermore, disabling coordinates also 

lowers the method’s ability to represent complex shapes as fewer coordinates are left to 

represent it. 

Another finding is that R2 and R3 perform mostly equally, with R3 being the best 

performing solution more often. Both methods are having a similar basis and similar 

range of operation, which may cause the outcome. R2 has larger flexibility in terms of 

shapes it can produce. R3 distributes its coordinates in specific sectors whereas R2 can 

concentrate all its coordinates in one sector. However, R3 has the benefit of large changes 

in the chromosome, leading to smaller changes in the solution compared to R2. The 

optimisation algorithm is better guided by incremental improvements, making R3 obtain 

a better solution quality. Both methods seem to be slightly better than R4, which eight 

times performed better than other methods; however, the difference is very small. 

Furthermore, R4 produces better solutions to problem p03, p09, p12, and p24. The shapes 

in these cases have an undercut characteristic which cannot be produced by the other 

methods. Nevertheless, R4’s performance on p05 and p21 is still good, although worse 

when compared to R2 and R3, due to R4’s rectangle base that makes it difficult to 

represent spikes and fine details. 

Figure 16 shows the solution quality increase over time. Each smoothed line shows the 

found solutions over each iteration of 25 experiment runs and all 24 problems for one 

representation method. 
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Figure 16: Improvement Over Time 

If taking a penalty value of 5,000 as a baseline for the solution quality, R3 needs 5,000 

iterations, R2 needs 10,000 iterations, and R4 needs around 12,000 iterations to reach the 

threshold. R1 never reaches the threshold. It shows that R3 is faster in improving the 

solution quality compared to all other methods. Figure 16 also shows the time needed to 

perform 500,000 iterations with each method. R1, R2, and R3 need between 0.63 and 0.92 

minutes, whereas R4 needs around 3.1 minutes. R4 is requiring more processing for 

calculating the outline of the intersecting rectangles. However, the time for one iteration 

was far below one millisecond with all representations. Taking into account that the 

representation’s purpose at a later stage is to generate mechanical systems, where the 

evaluation of a solution requires a physics simulation which is taking a longer time than 

the calculations of the mapping procedure from genotype to phenotype. 

3.5 Summary 

This chapter focused on the evaluation of shape representations for mechanical 

components used in combination with an evolutionary algorithm. It is an initial step 

towards a generative design system for mechanism design. Representations were 

developed iteratively by using the method of evolving target shapes, instead of direct 

evaluation in a physics simulator. It allowed investigating the representation’s capabilities 

and limitations in-depth, employing a helpful tool to identify flaws, improve, and 

compare representations performance. The requirements for a shape representation were 

defined, and the method used for development, testing, and evaluation of shape 
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representations was presented. Furthermore, explaining that the potential shape 

representation needs to fulfil criteria to be well-performing, including keeping the number 

of descriptive parameters as low as possible; covering the entire relevant search space; 

avoid producing invalid solutions, and be compatible with genetic operators. 

Four representations were developed and evaluated. Their performance was investigated 

to evolve a specified set of target shapes. These consist of mechanical lever shapes taken 

from an automotive closure system and a set of basic shapes. The first representation (R1) 

used direct mapping of genes to coordinates and a post-processing procedure to resolve 

shape intersections. The second representation (R2) mapped the chromosome to vectors 

which were connected in a clockwise direction to avoid intersections. The third 

representation (R3) mapped the chromosome to vectors as well; however, it allowed each 

vector to operate in a specified area. In the fourth representation (R4), the chromosome 

was mapped to multiple overlapping rectangles of which the overall outline was extracted. 

Two functions were applied to the resulting shape of the four methods. The first function 

applied a spline function to the shape, introducing curves and the second removed vertices 

too close to each other, avoiding aggregation of vertices. 

Several experiments were undertaken to evaluate the performance of each method to 

produce the target shapes. The performance was compared and statistically evaluated 

using the Vagha-Delaney A-measure. Results show that the direct mapping of R1 and 

resolving intersections in a post-processing procedure leads to low-quality solutions. The 

R1 representation was not able to evolve complex shapes. R2 and R3 performed almost 

equally in terms of solution quality, with R3 performing slightly better and needing fewer 

iterations to reach a superior result. R4 was slower than the other representations; 

however, it could produce similar results to R2 and R3 in many cases. R4 was the only 

representation capable of producing shapes with undercut features, an example is shown 

in Figure 17, to a high quality which can be considered as being more complex shapes. 



 

61 

 

 

Figure 17: Undercut feature 

Findings showed that R4 covers a large search space using only 77 descriptive parameters. 

All representations were designed to produce exclusively valid solutions, and the 

evolutionary algorithm was able to navigate the search space with all representations. 

Therefore, R4 was chosen to be extended and used for evolving mechanisms. In the 

following chapter, the representation is developed further and embed it in a physics 

simulator evolving shaped components. 
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4 Evaluation Method for Evolutionary Design 

using a Physics Simulator 

4.1 Introduction 

In the previous chapter, different shape representations were evaluated in their ability to 

create mechanical component shapes guided by an evolutionary algorithm. After showing 

that the representations are capable of evolving mechanical shapes, the next step is to 

embed them into a physics environment, which will allow investigating their ability to 

create shapes capable of adapting to surrounding obstacles and satisfying functional 

objectives.  

The previously employed fitness function focused on target shapes. This chapter presents 

a method to evaluate the performance of potential solutions within a physics scenario. For 

that purpose, a simulator and visualisation tool was developed, allowing to specify design 

aims, design problems, and visualise the movement of components. The simulator 

resolves the movement of physics components according to a scenario.  

Box2D, a two-dimensional game physics engine (Catto, n.d.), was chosen as the 

backbone for the simulator. Box2D can resolve movements and collisions between rigid 

bodies in a virtual world, including forces, torque, friction, restitution, mass, and gravity. 

It provides a way to define a virtual world of rigid bodies and is capable of defining 

parameters around material properties and masses. The physics engine returns position 

and orientation of all components in the virtual world on a frame by frame basis. It 

simulates seconds-long scenarios, within a few milliseconds, depending on its 

complexity, in contrast to conventional simulations used in mechanical design, as they 

tend to focus on precision, rather than speed. Conventional methods often compute details 

such as elastic deformation which is not necessary at early design stages. Although the 

implemented simulator is less accurate than others employed within the industry, it is 

accurate enough to be used for resolving the motion in the less detailed, early conceptual 

design phase, when focusing on shape and placement of components. It is well suited to 

evaluate a large set of potential solutions at a very fast pace.  

For this research, the simulator is embedded in a generative system, using the 

evolutionary algorithm of the previous chapter to evolve the shape of a component. The 

approach allows producing candidate solutions, and evaluate them, as well as adapting a 

component to its environment with the objective to traverse a set of landscapes. Different 
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scenarios can be defined with the same design objective, enabling a performance 

evaluation of the evolutionary algorithm. 

The simulation environment and its capabilities are detailed below, together with a 

validation of the simulator and the generative abilities of the method.  

4.2 Background 

This section gives insight into the simulation capabilities required for planar mechanical 

systems. It discusses different simulation approaches, explains the physics parameters, 

and provides the details of the generative application.  

4.2.1 Requirements for Physics Simulator 

A physics simulator employed for this research is concerned with qualities of mechanical 

systems; in particular, it allows resolving movements and collisions between components 

of these systems. Other approaches which use simulation in similar context focus on 

kinematic properties, as explained in the literature review. Kinematic simulation resolves 

motion; however, it omits mass, friction, gravity or collisions between components. 

Often larger mechanical systems are broken down into subsystems such as cam and 

follower mechanisms, to reduce the problem complexity (J. Lampinen, 2003; Mundo et 

al., 2006; Ruan et al., 2015). The optimisation within kinematic simulators is limited to 

subsystems with components that do not lose contact with each other, which makes the 

calculation of the behaviour easier. In real-life mechanisms, some sections of components 

are only occasionally in contact with other components or the environment.  

There is currently no known simulator available tailored for planar mechanism prototypes 

that can be used in combination with an evolutionary algorithm to conduct experiments. 

Evolutionary computation requires hundreds or thousands of evaluations to be performed, 

which necessitates a physics simulator to be fast in resolving the kinematic behaviour of 

candidate solutions. The simulator should be able to compute multiple components 

simultaneously without the requirement of breaking systems down into smaller 

subsystems. 

The simulator should also have the ability to resolve scenarios in which components are 

not constantly in contact. The length of the simulation should be specifiable. The output 

format should contain the locomotion, components movement, of the scenario for each 

simulation frame, as each of them embeds the position and orientation of the involved 

components at a specific time. The selected frames can be used to replay a visualisation 

of the scenario to review solutions; this, in turn, may be used to evaluate the performance 
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of a solution. Furthermore, the simulator needs to include parameters, such mass; friction; 

and restitution, to be able to reassemble a real-world mechanism, as well as drive 

implementation and gravity which introduce input forces and movement to the scenario. 

4.2.2 Physics Parameters 

Relevant physics parameters considered in this research include gravity, as well as 

material parameters such as mass, friction, and restitution that influence a mechanical 

system’s kinematic behaviour. 

Every component in the system has a mass, influencing the inertia, and the force needed 

to move it. Mass can be specified for each component directly by definition, or results of 

the specification of the material density. In the latter case, the mass increases with the 

growth of the surface area of the component.  

Friction specifies the amount of resistance force between the contact surfaces of two 

components when sliding against each other, while restitution represents the energy loss 

in a collision between two components. The latter is a material attribute which simulates 

the bouncing behaviour of colliding components.  

Gravity influences all dynamic components. It is a constant force and influences the 

overall behaviour of a mechanical system specified by one parameter. Components on a 

2-dimensional layer accelerate in the direction of the defined gravitational direction. 

However, in cases when looking at the mechanical system from a birds-eye perspective, 

the gravity can be turned off by setting it to zero.  

Also, all listed parameters can be part of the optimisation. In this work, though, the aim 

is to optimise the shape and configuration rather than the material choice, which is why 

these parameters are constant values in the problem description. 

Throughout experiments, the material density was set to 1.0 grams per cubic centimetre, 

the restitution coefficient to 0.6, and the friction coefficient to 0.5 which should represent 

a hard plastic. 

4.2.3 Application for Experiments 

Research to the date shown that there is no known suitable application with the 

functionality required to conduct relevant experiments. For that reason, a generative tool 

was designed and implemented, uniting the evolutionary algorithm and physics engine, 

and providing a graphical user interface to conduct experiments and visualise them. 

Figure 18 shows the application. 
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Figure 18: Generative Tool - Load Menu 

The interface consists of three sections. The user controls are on the left-hand side, the 

simulation view on the top-right, and a feedback console on the bottom-right. 

The user controls provide three tabs, namely load; simulation; and generative menu. The 

load tab has two buttons, one for importing files containing a design scene, and the second 

for saving the session, e.g. with a design solution. After loading a file, the view shows 

attributes of the file and the problem, e.g. several components within the scene. The file 

contains the framework to define mechanism design, explained in detail in Chapter 5. 

The simulation tab opens a menu connected to the physics simulator, shown in Figure 19. 
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Figure 19: Generative Tool - Simulation Menu 

The simulation menu enables setting the length of the simulation according to the number 

of frames and the frame rate. Dividing the total frames by the frames per second results 

in the total simulation time in seconds. The gravity in meter per square second is settable 

in x and y-direction. 

A checkbox provides the option specifying whether connected components should collide 

with each other or not; another changes the colour setting of the simulation. The 

“Generate Frames” button starts the simulation of the current scene, which can be 

subsequently visualised, paused, or skipped frame by frame using the related buttons. 

Furthermore, a button allows resetting the simulation to the first frame. The visualisation 

speed is adjustable be defining it in frames per second. 

Figure 20 shows the generative menu. 
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Figure 20: Generative Tool - Generative Menu 
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The menu is connected to the generative system and contains the control elements for 

configuration. The evolutionary algorithm can be started and stopped, and the current 

progress can be manually requested. The number of evaluations defines the stop criterion. 

The design objective is to let a solution traverse a physics landscape, explained in detail 

throughout this chapter. The walking objective can be set in x and y-direction, in which 

the solution should move. 

A checkbox can be enabled to produce output data. It creates a folder on the desktop and 

a solution file each time the algorithm finds a result with better fitness. The data is the 

basis for the analysis of the performance of the algorithm.  

The “Algorithm Setup” section contains the configuration of the algorithm. Different 

implemented evolutionary operators, such as mutation and recombination, can be selected 

from a drop-down menu. The population size and number of children per generation can 

be defined. Furthermore, a drop-down menu provides a way of choosing a representation. 

This part of the menu allows testing representations of similar or different mechanisms, 

e.g. to produce single or multiple components, or linkages, further explained throughout 

this and the following chapters. Representation related thresholds can be defined, such as 

minimum and maximum size of a solution and number of shape elements utilised.  

Additionally, the generative menu has a section with a list box containing all found 

solutions. These can be selected and visualised. 

An “Optimisation Info” section provides feedback on the generative process. A “Solution 

Score” section includes the option to set a weight for several fitness values given to 

different properties of the solution, such as the rotation of the actuator, walking distance, 

shape area, and a jump penalty. In this work, the focus is mainly on walking distance 

fitness. 

The simulation view on the right-hand side shows the physics environment as previously 

explained. The user can scroll through the scene and zoom in and out. The console at the 

bottom gives feedback on the simulation, the generative process, and occurring errors. 

The simulator was implemented in C# using the WPF framework. The code architecture 

separates the view from the logic. The software can be extended to accommodate new 

algorithms, operators, representations, and design objectives. 
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4.3 Method 

A simulator was implemented, providing a visualisation of the locomotion and behaviour 

of a physics scenario. It delivers the data for the fitness function of the evolutionary 

algorithm, which evaluates the change of the configuration of the scenario throughout a 

specified timespan. 

The evolutionary algorithm used here is similar to the one in the previous chapter, except 

applied in a new context including the physics simulator as well as extended forms of 

representations. The evolutionary algorithm’s capability is investigated to evolve shape 

components able to traverse physics environments. A set of scenarios was designed 

containing descendant landscapes with different profiles (which will be introduced in 

Figure 26) to test the evolutionary algorithm’s performance. 

For the experiments, a shape component is placed on the top of the descendant landscape. 

From there, gravity pulls it to the ground and makes it roll down. The profile of the 

landscape is designed to hinder the component’s ability to roll. The objective function 

evaluates how far and quick the component moves down the landscape, which allows the 

evolutionary algorithm to evolve solutions capable of overcoming this obstacle. In result, 

it changes the shape of the component and tries to evolve the best suitable shape for the 

landscape. 

This chapter focuses on testing the following:  

• Firstly, the function of the simulator using unit and acceptance tests. 

• Secondly, the suitability of the simulator to be employed in an evolutionary 

computing application, by evolving components whose fitness is dependent on 

their shape and interaction with a physics scenario, to fulfil the design goal. 

4.3.1 Functionality Testing 

Throughout the development, the simulator was tested using unit tests. Their purpose is 

to validate whether every unit of the software performs as intended. A unit is the smallest 

testable part of the software, usually called a method. A method takes input variables and 

provides an output. Unit tests are other test methods implemented for each method of the 

software. They include all input scenarios and feed the software with defined values, and 

compares the output to the desired output. If the output is different from the desired 

output, then the test fails. The generative system’s code, including simulator, is covered 

by unit tests where possible. The unit-tests are embedded in the code. 
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Furthermore, acceptance tests are used to validate the correct implementation of the 

simulator. Different scenarios are defined to examine the simulator visually, e.g. whether 

the placement of the components is correct; the computation of collisions is reasonable, 

and the parameters, such as mass, friction, restitution, and gravity, are correctly applied. 

The acceptance tests, including all tested scenarios, can be found in Appendix 2. 

4.3.2 Evolutionary Representation 

The previous chapter provided an evaluation of four representations based on different 

principles. The rectangle-based representation explained in section 3.3.2 (Representation 

R4 - Rectangle-based) performed well and was taken further to be used for evolving 

component shapes within a physics environment, investigating its ability to evolve 

solutions for different landscapes which fulfil a design goal.  

However, throughout initial experiments, it was found that using the representation 

without any changes produced many scattered shapes, which led to extending the 

representation and creating two further versions of it. These included minor adjustments. 

Their performance was compared in experiments. 

The first representation R is similar to the one in section 3.3.2, served as a baseline in this 

chapter. R* is the second representation with a modified distance constraint that defines 

the displacement of rectangles from the centre point of the component. The rectangles 

have a higher probability of overlapping. R** is the third representation, in this case, 

based on R*, broaden with an additional gene per rectangle which enables or disables it. 

R** has a higher probability to solve a problem with a simpler shape assembled with 

fewer rectangles than the other versions. The representation should lower the possibility 

of getting trapped in a local optimum when some undesired rectangles hinder the shape’s 

ability to be evolved to a better solution. 

Figure 21 shows the encoding for R. 
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Figure 21: Encoding 

As previously explained, R employs multiple rectangles to assemble the shape of a 

component. The component has a centre point. A representation constraint defines the 

maximum distance of positioning a rectangle away from the centre. A group of five genes 

describe a rectangle which each gene is describing its x and y offset position, tilt-angle, 

width, and height. Overlapping rectangles construct an overall outline. The edges of the 

outline fulfil the role of control points for a spline function. The representation produces 

multiple shapes if rectangles do not overlap, which still behave as one component and 

stay the same distance appart when moving. 

R* has the same encoding as R; however, the rectangles displacement from the centre 

point is limited to a smaller maximum distance. Figure 22 shows an example of the 

maximum distance in which placing a rectangle away from the centre point is possible. 

 

Figure 22: Maximum Distance from the Origin 
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R has a maximum distance of 80 pixel which is twice the distance of R*. 

Representation R** has an encoding modification, including additional genes such as 

shown in Figure 23. 

 

Figure 23: Turning-off Rectangles 

For R**, one additional gene (v) per rectangle enables the algorithm to blend out 

individual rectangles. It works in a binary way. Due to using real value genes, the 

algorithm enables a rectangle if the number is mutated to an even value and disables it 

when the number is odd. The representation has an advantage in producing simpler 

shapes, e.g. it can produce ellipsis and circles by disabling rectangles. The other 

representations would need to position additional rectangles inside of one rectangle to 

generate an ellipsis or circle which requires specific gene configurations on the genotype. 

4.3.3 Evolutionary Algorithm 

For the experiments, the evolutionary algorithm explained in Chapter 3 is used with minor 

changes, although with a different configuration and including different representations. 

A population size of 40 individuals and eight children per generation was defined, a 

similar ratio as the one used previously. The smaller population size was found to perform 

better throughout initial testing. All other algorithm properties were identical.  

For this chapter, two different mutation operators and two different recombination 

operators were implemented and compared. The first mutation operator M1 changes 

chromosome values to new ones, with a deviation based on a Gaussian Distribution. This 

means that new values are more likely to be closer to the old ones. The second mutation 

operator M2 changes values randomly. The first recombination operator is a one-point 
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crossover operator R1 with a random crossover point. Figure 24 shows an example of a 

one-point crossover operation. 

 

Figure 24: One-point Crossover R1 

The crossover R1 takes one part of the first parent’s chromosome and the second part of 

the second parent’s chromosome to create a child chromosome. The second 

recombination operator, R2, is a two-point crossover operator, which uses a random start 

and random end crossover point, shown in Figure 25. 

 

Figure 25: Two-point Crossover R2 

The crossover operator R2 is similar to the one used in Chapter 3. It exchanges a section 

between the start point and an endpoint of parent one’s chromosome, with parent two’s 

chromosome, to create a child chromosome. Experiments were conducted to evaluate the 

operators. Section 4.4 shows the results. 

The gene sequence is essential to preserve solution features. E.g. a uniform crossover 

which exchanges multiple values instead of a sequence between parents does not conserve 

the solution's features and would introduce too large disruption.  

4.3.4 Fitness Evaluation 

The fitness of a potential solution is determined through measuring the travel distance of 

the shape component on a descending landscape. The objective is to maximise the 

position of the evolved component in the x-direction at the end of a specified timespan. 

The shape component is pulled by gravity and rolls down the landscape while 

encountering obstacles that require the shape to adapt accordingly to the landscape, to not 

get stuck on its path down. 



 

74 

 

4.3.5 Experiments 

The experiments tested the evolutionary algorithm’s ability to adapt a shape component 

in a physics environment to a provided landscape. A candidate shape is mapped into a 

physics component and placed at the top of a descending surface path. The component is 

pulled down by gravity with the objective to roll down the landscape as far and fast as 

possible within a specified timespan. The evolutionary algorithm evolves the shape to the 

topology of the landscape required to fulfil the objective. The idea is that if the 

evolutionary system is capable of adapting a shape to a ground surface, then it is also 

capable of adapting a shape within a mechanical context to its surrounding components 

in the environment, which is important for evolving mechanical components, described 

in the next chapter. Five different landscapes with different topology and difficulty were 

designed to test the algorithm, shown in Figure 26.  

 

Figure 26: Simulation Landscapes 

Landscape a is a simple straight descending path; landscape b is a straight path as well, 

except it includes wall obstacles which are repeating over the length of the path which 

adds complexity by limiting the height of the descending path. Landscape c is a more 

complex digital shaped path; landscape d is a digital shaped path as well, except with a 

repeating height limit. Landscape e is an irregular path with the highest complexity due 
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to introducing multiple obstacles, such as a hole, a height limit, and a small rising section. 

The dimensions of the landscape relate to an evolved shaped as follows: The landscapes 

a-d show a section of an estimated 400 x 400 pixels and landscape e 400 x 800 pixels. 

The maximum size of an evolved component can reach is around 240 x 240 pixel. 

Each of the three representations was tested using these landscapes with two different 

mutations and recombination preferences, and compared to random sampling taken as a 

baseline. Random sampling means that in each iteration new random chromosome values 

were assigned. The experiments were run 24 times on each descending landscape and 

stopped after 20,000 evaluations. It is a lower number of iterations than used in the 

previous chapter, as the evaluation is computationally more expensive. This leads to 30 

to 40 hours runtime for one experiment with 24 repeats on one landscape, using an Intel 

Core i5-2500 3.3Ghz with 4GB RAM. 

4.4 Results and Evaluation 

Experiments were run to investigate the generative system’s capabilities to evolve 

component shapes that efficiently traverse a provided descending path, pulled by gravity. 

• Firstly, the simulator was validated. 

• Secondly, the mutation and recombination operators were evaluated to identify 

their effect on evolving solutions using one version of the rectangle representation 

(R*) on one problem instance (landscape a).  

• Thirdly, the evolutionary algorithm was evaluated in its ability to evolve solutions 

for one problem instance (landscape a) using the three versions of the rectangle 

representation by comparing it to random sampling.     

• Fourthly, two different mutation (M1 and M2) and recombination-settings (R1 and 

R2) were evaluated on four different problem instances (landscape a-d) using the 

three versions of the rectangle representation.   

• Then, the generative system’s performance was evaluated using an environment 

(landscape e) with enhanced complexity, including irregularities utilising the 

three versions of the rectangle representation with the two different mutation and 

recombination settings. 

The Mann-Whitney U-Test was used for statistical analysis since normality of the 

distributions cannot be assumed. A p-value of p≤0.05 indicates high confidence that 

distributions significantly differ. The p-value refers to the median distribution of best-

performing solutions at the end of each run. 
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The key findings can be summarised as follows: 

Evaluation of evolutionary operators: 

• M1, which uses a Gaussian Distribution, performs significantly better than M2 

• R1 and R2 show no significant difference in performance 

Evaluation of a generative system’s ability to evolve solutions: 

• R performs on average similar to random sampling, however with a wider 

confidence interval 

• R* and R** perform better than random sampling 

• R* performing better than R** 

Evaluation of evolutionary settings (including environment (landscape e) with enhanced 

complexity): 

Table 3 summarises the results for each landscape. It shows the best performing 

evolutionary setting for each representation and environment. In some cases, both settings 

perform equally. The best performing representation for each environment is presented 

as well. 

Table 3. Evaluation of evolutionary settings. 

 

• R performs better when bigger changes are applied (S2), however, it has a higher 

potential to get trapped in local optima 

• R* is stable throughout all problem instances and evolutionary settings 

• R** appears to perform well with simple problems and is biased towards 

producing simpler shapes 

The findings are discussed in detail in the following sections. 

4.4.1 Simulator Validation 

The simulator passed all unit-tests related to the code implementation. Acceptance tests 

were conducted, including collision tests of shape components such as circles, polygons, 

and mixed shape types on one and multiple layers (further explained in section 5.2.1). 

Tests of the parameter setting, namely gravity, density, friction, and restitution were 

a b c d e

R S2 S2 S1/S2 S1 S1/S2

R* S1 S1 S1/S2 S1/S2 S1/S2

R** S1/S2 S1/S2 S1/S2 S1/S2 S1

Best performance R R** R, R* R R*

Landscape
Representation
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conducted. The revolution joint was tested as a single joint and within a linkage. Also, 

the actuator function was investigated. The simulator passed all tests. It performed well 

when choosing a frame rate of over 60 frames per second (fps). Lower frame rates 

produced simulation errors in some cases due to clipping, namely penetrating 

components, especially when faster movements were involved. Choosing higher frame 

rates improved the simulation quality; however, it resulted in longer simulation time. 

4.4.2 Evaluation of Evolutionary Operators 

In this section, the different mutation and recombination operators are evaluated to 

identify their effect on evolving solutions using representation R* on landscape a. A 

perfect circle reaches a score value of 3350 in this landscape. Figure 27 shows three sets 

of results with different evolutionary operator settings. 
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Figure 27: Comparison of Evolutionary Operators 
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The plots show the fitness of the best solution after every evaluation. For the first plot 

(red) in the figure above, the evolutionary algorithm uses operators M1 and R1, which 

were explained previously in section 4.3.3. For the second plot (blue), the operators M2 

and R1 are used; and the third plot (green) shows the performance achieved with 

operators M1 and R2. The plots allow comparing the performance of the individual 

operators. 

Analysis of the first and second plot shows a difference in the performance of the mutation 

operator. It demonstrates that M1, which uses a Gaussian Distribution, performs better 

than M2, which assigns random values to a gene. The difference between both 

distributions is significant (𝑝 = 0.00319). In plots one and three, different recombination 

operators are used; however, there is no significant difference between the distributions 

(𝑝 = 0.959), which shows that the recombination operators perform very similarly. 

4.4.3 Evaluation of Generative System’s Ability to Evolve Solutions 

The evolutionary algorithm was evaluated in its ability to evolve solutions for landscape 

a, recording the solution's fitness increase over 20,000 evaluations. The three versions of 

the rectangle representation were compared to random sampling to investigate whether 

the evolution is occurring. Furthermore, the representations were compared to each other. 

Figure 28 shows the performance of the random sampling (red) compared to the 

performance of the representation R, R*, and R** (blue) including the p-value indicating 

the confidence in the difference of the populations. 
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Figure 28: Comparison of Generative System to Random Sampling 
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The results show that R performs on average similar to random sampling. Random 

sampling reaches a fitness value of around 1250 whereas R reaches 1150. However, R has 

a much wider confidence interval than random sampling and may occasionally find 

better-performing solutions. The wider confidence interval may be caused by a too large 

disruption introduced when generating new solutions. R allows placing rectangles in a 

larger area, which may lead to too large changes in the phenotype. 

When looking at the results produced by random sampling, compared to representations 

R* and R**, the solutions reach a fitness value of around 1500 with a very similar trend. 

The evolutionary algorithm produces better results with fitness values of around 2000. 

Both distributions significantly differ from each other, with R* performing better than 

R** (𝑝 = 8.366 × 10−4) on landscape a. The difference between R* and R** could be 

attributed to R** using a larger chromosome length, which increases the search space and 

computational effort to traverse it.  

4.4.4 Evaluation of Evolutionary Settings 

In this section, the three representations are evaluated on their ability to produce solutions 

for landscapes a – d with two different evolutionary operator settings. The focus is not 

on the mutation rate, as a variable rate was used that can mutate up to 25% of the 

chromosome. Instead, the research focused on the actual gene value changes, as using a 

real value chromosome. The aim is to evaluate the performance of each representation to 

produce solutions for different landscapes using two different configuration settings and 

to identify which representation – setting setup performs well.   

In the first setting S1(green), the mutation operator M1 based on Gaussian Distribution 

was employed, applying a smaller gene value change. The operator is used together with 

the recombination operator R2, a two-point crossover that exchanges a sequence of one 

parent with another parent to create a child solution. In the second setting, S2 (blue) 

employs the mutation operator M2 which changes the gene value randomly, together with 

recombination operator R1, a one-point crossover which exchanges one part of one parent 

with another parent to create a child. The difference between S1 and S2 is that S1 applies 

smaller changes compared to S2 while producing a child. S2 applies larger changes to the 

chromosome. The experiment concentrated upon determining how the representations 

cope with these different evolutionary settings. The performance of the representations 

and settings was compared for each problem instance individually.  

Figure 29 shows the results using the three representations in combination with S1 and 

S2 on landscape a. 
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Figure 29: S1 and S2 for R, R* and R** on Landscape a 
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The first plot shows the representation R with the two evolutionary operator settings. R 

does not perform well with setting S1 compared to S2. The populations do not show a 

significant difference (𝑝 = 0.0606). The confidence interval in both plots is wider 

compared to the other results. It is an indicator that evolution gets trapped in a local 

optimum. A larger change using S2 helps the algorithm to escape it. R does not work well 

with smaller mutations based on Gaussian Distribution and two-point crossover.  

The following two plots for R* and R** show a narrow confidence interval. Looking at 

R*, applying smaller changes with setting S1 increases the performance of the solutions 

in contrast to larger changes using S2. Both populations are significantly different (𝑝 =

0.00376). 

For R**, the performance comparison between settings S1 and S2 shows no difference 

(𝑝 = 0.16). There is no difference in applying smaller and larger mutations. 

R performs better than R* (𝑝 = 0.035) and R** (𝑝 = 0.0088) when applying larger 

changes using S2. 

Figure 30 shows the results using the three representations in combination with S1 and 

S2 on landscape b. 
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Figure 30: S1 and S2 for R, R* and R** on Landscape b 
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According to the results above, R does not cope well when applying small changes (S1) 

in landscape b (𝑝 = 0.014969). The evolution gets trapped in a local optimum quickly 

and has a wider confidence interval. R* performs better with setting S1 compared to S2 

(𝑝 = 0.000456). R** performs similarly with both settings with no difference (𝑝 =

0.0854). However, it appears that R** is constantly increasing its performance. R** with 

setting S2 reaches the highest performance value with a difference compared to R (𝑝 =

8.41 × 10−9) and R* (𝑝 = 2.85 × 10−9).  

Figure 31 shows the results using the three representations in combination with S1 and 

S2 on landscape c. 
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Figure 31: S1 and S2 for R, R* and R** on Landscape c 
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The settings S1 and S2 perform similarly on R with no difference (𝑝 = 0.62) and a wider 

confidence interval. There is also no difference comparing S1 and S2 in R* (𝑝 = 0.2277); 

for R** (𝑝 = 0.16). However, R and R* perform similarly well (𝑝 = 0.82) while using 

S2, whereas, R** performs worse compared to R (𝑝 = 0.0006) with a significant 

difference. R** seems to perform in general worse on landscape c. 

Figure 32 shows the results using the three representations in combination with S1 and 

S2 on landscape d. 
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Figure 32: S1 and S2 for R, R* and R** on Landscape d 



 

89 

 

This figure shows that R performs better applying smaller changes with S1 compared to 

S2 (𝑝 = 0.0177). However, S1 produces a wider confidence interval which indicates that 

the algorithm gets trapped in local optimum more often. R* shows no significant 

difference comparing S1 and S2 (𝑝 = 0.0797). R** demonstrates no significant 

difference between S1 and S2 (𝑝 = 0.6876) either. While analysing S2, R is the best 

performing representation compared to R* (𝑝 = 0.0016) and R** (𝑝 = 1.4 × 10−6). 

The performance of the algorithm was investigated with different representations and two 

different evolutionary settings S1 and S2. S1 applied smaller changes to the chromosome 

than S2.  

Findings show that R performs worse when smaller changes are applied, and it has a 

higher potential to get trapped in local optima compared to the other representations. With 

it’s broader rectangle placement constraint, it has a larger bias towards evolving shape 

fragments that disturb the movement of the shape component, such as shown in Figure 

33 

 

Figure 33: Fragments 

The performance of R* is stable throughout all problem instances and evolutionary 

settings. R** appears to perform well with simple problems such as landscape a, and 

worse compared to the other representations on more complex landscapes. The reason 

may be founded in the attributes of R**, as it can produce simpler shapes by removing 

rectangles which gives it a higher bias towards evolving round shapes compared to the 

other representations. These are always using multiple rectangles and are confronted with 

shape fragments that disturb the performance. 
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4.4.5 Evolving Solutions for Environments with Enhanced Complexity 

This section is dedicated to investigating the performance of the representations on a 

problem instance with enhanced complexity by applying irregularities in the landscape. 

Landscape e is irregular; it contains a hole, a height limit, and is unevenly descending. 

Figure 34 shows the results. The performance of the three representations is investigated 

on this landscape with the evolutionary settings S1(green) and S2 (blue).  
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Figure 34: S1 and S2 for R, R* and R** on Landscape e 
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Overall, the plot shows that R does not perform well on landscape d. It gets trapped in a 

local optimum when using S1 and S2 (𝑝 = 0.1147). The wide confidence interval in the 

second plot shows that the algorithm appears to be able to escape from it when applying 

larger changes using S2. R* performs equally well while using S1 or S2 (𝑝 = 0.934). For 

R**, using smaller changes with S1 leads to better performance compared to S2 (𝑝 =

0.038). R does not perform well on the more complex landscape. When analysing the 

setting S2, R* is the best performing representation compared to R (𝑝 = 1.9 × 10−6) and 

R** (𝑝 = 0.000777). 

As previously suggested, the reason may be that R can place rectangles in a wider area 

around the centre, which may produce shape artefacts that disturb the movement of the 

shape component. R** is biased towards simpler shapes because of its ability to remove 

rectangles from the shape. It leads to evolving round shapes first, which move quicker at 

the beginning and get stopped by obstacles very quickly. The solution is not able to escape 

the local optima anymore. R* performs well with both evolutionary settings and can 

evolve well-performing solutions when small or larger changes are applied. 

4.5 Summary 

An evolutionary algorithm was used to evolve the shape of a component and to adapt it 

to different landscapes in a physics environment. The capability to adapt shapes to its 

environment is crucial for an evolutionary system for evolving more complex mechanical 

systems, e.g. ones involving multiple components. The physics environment was 

implemented and functionally verified with unit and acceptance tests. 

An evaluation was conducted of applying an evolutionary algorithm to evolve a shape 

component which can traverse a descending landscape pulled by gravity. The rectangle 

shape representation was taken from Chapter 3. It did not appear to function as expected, 

which led to the design of two modified versions of the representation. The first 

modification was a change of the maximum distance at which rectangles can be placed 

relative from the centre of the shape component. The second modification enabled the 

algorithm to remove rectangles when creating a shape. 

• Firstly, the simulator was validated. 

• Secondly, two different mutation operators and two different recombination 

operators were evaluated by comparison. 

• Thirdly, the generative systems ability to evolve solutions by comparison to 

random sampling was evaluated. 
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• Fourthly, an investigation was conducted into three different representations, with 

two different evolutionary settings, using four problem instances with different 

complexity. The evolutionary setting S1 applied smaller changes to the 

chromosome than setting S2.  

• Finally, the representations and evolutionary settings were applied to a more 

complex irregular problem instance. 

The findings show that the simulator performed well in the evolutionary computing 

context. The representation R* with the modified placement constraint performed well 

through all problem instances and with both evolutionary settings. The initial 

representation R did not cope well with simpler problem instances as it evolved shape 

fragments that disturb the movement of the shape component. R** did perform well in 

simpler problems and worse in more complex ones. The reason for this may be that the 

representation is biased towards producing simpler (round) shapes as it is capable of 

removing rectangles. Simpler shapes were performing well on, e.g. a descending path 

without obstacles, and then, when obstacles were introduced, the representation was not 

able to evolve further and got stuck in its initially well-performing design.  

The following chapter will extend the work by moving from evolving shape components 

into defining a framework for evolving conceptual designs of planar mechanisms. 

 

  



 

94 

 

5 The Conception of a Framework for Evolving 

Designs of Planar Mechanisms 

5.1 Introduction 

The following chapter is dedicated to a framework specifying boundaries, constraints, 

and limitations for evolving planar mechanical designs. The framework allows the 

definition of scenarios, using the simulator discussed in Chapter 4. 

As previously discussed, an evolutionary representation, able to evolve single 

components to meet a design goal, was evaluated. In this chapter, it is taken forward, with 

a focus on evolving mechanisms. In this scenario, the algorithm evolves multiple shape 

components in a dynamic environment rather than a static landscape. Joints are used to 

attach the shape components to the bearing plate while introducing a rotatory movement 

and torque. The aim is to evolve a mechanism capable of moving as far as possible 

through a set of defined landscapes, within a given time. The solution’s behaviour and 

its’ performance are the effect of input movement, as well as shapes of components 

interacting with each other, and with the landscape.  

This solution employs the same fitness evaluation as previously used, with the difference 

to evolve actuator driven mechanisms, rather than a single shape component. 

Furthermore, these mechanisms consist of multiple components acting as levers; 

revolution joints; mounted on a bearing plate. 

The new set of different landscapes, even instead of descending, is provided. The forward 

movement results from the driving components rather than from gravity, which is acting 

on the complete system and pushing the mechanism onto the landscape. A scripting 

language is introduced that enables specifying design problems and solutions, and storing 

them in a file. The evolutionary algorithm is evaluated through a set of problem instances, 

designed specifically for experiments which include evolving the placement and shape of 

multiple components mounted on a bearing plate simultaneously. 

The following sections will provide extensive background regarding the employed model, 

the method to evolve design solutions, and the results of the experiments.  
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5.2 Background 

In order to gather the requirements, and develop a computational representation (i.e. a 

model) for planar mechanisms, it is important to understand the way these works. A large 

number of mechanical systems were summarised and classified by Artobolevsky 

(Artobolevsky, 1975). These are mostly planar and can be divided into gear, and lever 

systems. Gears can be represented in a simple way, e.g. by pairs of circles. A gear 

system’s behaviour can be obtained by calculating the transmission ratio, which does not 

require simulation or resolving collisions and motion. Lever-type components transmit 

forces and movements in a similar way to gears; the main difference is that these can have 

an infinite variation in placement and shape, which makes it more complex to resolve the 

locomotion and transmission ratio between them. For instance, two levers may not always 

be in contact with each other while interacting on different sections of their outline. 

Obtaining the locomotion and behaviour requires a dynamic simulation. 

Planar mechanical systems interact through collisions of interconnected components on 

a single axis plane. These can be either linked together in the form of lever chains or as 

individual components positioned in a relative distance from each other, occasionally 

getting into contact. Both types transfer motion and torque through the outline shape and 

the linkage. Each component has a mass, produces friction between itself and other 

components when in contact, and has restitution, which influences the behaviour of the 

overall mechanical system as well. Components can be mounted on a bearing plate, which 

keeps them in relative distance to each other. A mechanical system can be imagined as a 

clockwork mechanism where multiple components need to be positioned, constraint, and 

shaped in a specific way, to perform the desired design task. Assembling a mechanism 

made out of random lever combinations often does not generate movement as it is likely 

that they hinder each other. In addition to levers, a mechanical system consists of joints, 

which constrain the motion of a lever.  

Mechanism design is a broad area that can include a variety of parts. This work focuses 

on a limited set of them and their virtual representations. It excludes components such as 

specific joints, e.g. translational joints; springs; and dumpers, as the implementation of 

those would be beyond the scope of this work. However, the simulator allows such 

extensions to be implemented in future. 

The proposed model is a 2-dimensional representation of planar mechanisms at a lower 

level of detail, which decreases the number of parameters needed to describe it (Pahl et 

al., 2007). The model focuses on the shapes of components and their interactions between 
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each other. The attention is placed upon early-stage design prototypes and does not 

consider a more detailed evaluation of their elastic behaviour.  

5.2.1 2-Dimensional Environment 

The 2-dimensional environment is the space in which virtual physics objects can be 

placed. It consists of multiple layers. Each layer may contain the shape and position of 

components and their joints. Collisions between components can only take place if their 

shapes are on the same layer. Figure 35 shows a multi-layer environment. 

 

Figure 35: 2-Dimensional Multilayer Virtual Environment 

A mechanism may consist of multiple components, and each component may be made of 

multiple shapes. It may also have shapes on different layers which enables the 

representation of 3-dimensional components in 2-dimensions as long as the collisions 

take place in one axis plane on the same layer. As an example, Figure 36 shows the 

representation of a 3-dimensional component with an undercut, as one component 

consisting of three shapes, placed on three layers.  
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Figure 36. Representation of a 3D Model in the 2D Environment 

The 3-Dimensional component is broken down into three rectangle shapes, each placed 

on a different layer. However, all move simultaneously and behave as one. Each rectangle 

can collide with other shapes on the same layer with an influence on the other shapes on 

different layers. 

5.2.2 Lever Representation 

One component of mechanisms is the lever. It interacts with other components via its 

outline shape, which results in the motion of the system. Figure 37 shows a real lever 

component taken from an automotive closure system of a car lock. 

 

Figure 37: Real Lever Component 
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A real lever component has many characteristics, such as areas acting as shock absorbers 

to reduce noise, sections of material reduction, and positioning points used for 

manufacturing purpose. These areas are not relevant for obtaining the locomotion and are 

not considered in the model.  

Instead, this research focusses solely on the virtual representation in the initial prototype 

design state. Once finding a well-performing mechanism, its components can be taken 

further to the production stage that would require choosing the right material according 

to the appearing forces, as well as adding cavities for material reduction and dumpers. 

Figure 38 shows the simplified virtual representation of the real lever. 

 

Figure 38: Lever Representation 

Each lever has an outline, a joint position or, in case of a lever chain, multiple joins 

connecting it to other components. The virtual representation does not take internal 

cavities into account, as they are not relevant in the context of obtaining locomotion. It is 

either a single interconnected structure or when thinking 3-dimensional, it may also 

consist of multiple not connected shapes, connected in another layer, such as previously 

explained in section 5.2.1. Levers may be symmetrical, although often do not show 

symmetries. Some sections of the outline will collide with others, or the environment; 



 

99 

 

other sections will not. Figure 39 shows a component placed on a virtual plain with one 

layer. 

 

Figure 39. Representation of 3-dimensional Lever 

5.2.3 Joints 

Joints are functional components and have a position but no shape. They constrain the 

freedom of movement of lever components which influences their kinematic behaviour. 

Joints connect lever components to the bearing plate, or each other, which constrains the 

component’s freedom of movement. This research considers revolution joint which 

constraints a component only to conduct a rotatory movement around the joint.  

5.2.4 Actuators 

An actuator introduces input forces and movement to the system. It acts upon a 

component which is attached to the environment or a bearing plate with a joint. Attributes 

are assigned to the joint, such as the rotation speed in revolutions per minute, and a 

maximum torque that can be applied. Figure 40 shows an example of the rotation and 

torque specification. 
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Figure 40: Rotation Torque and RPM 

In this figure, a lever component is attached to the environment with a joint. The joint has 

a revolution per minute and maximum torque specification which sets it into motion. It 

represents the input characteristics of, e.g. an electric motor. 

5.2.5 Mechanism Representation 

The mechanism is virtually represented in an abstract way which lowers the level of detail 

and focuses on the essential parts which are necessary to decrease the number of 

parameters describing it (Pahl et al., 2007). In this way, the search space can be scaled 

down, which lowers the processing time to evolve solutions. Figure 41 shows a 

photograph of a locking mechanism taken from an automotive closure system and the 

abstraction into a virtual model. 
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Figure 41: 2-Dimensional Mechanical System 

In the virtual representation, the components are rigid bodies with no elasticity. The 3-

dimensional system is simplified to 2-dimensions on two layers. The first layer contains 

the housing outline and two lever components, which are constraint by two revolution 

joints. The housing is static in this case and does not move, whereas the lever components 

are dynamic and able to move within their boundaries. Both can collide with each other. 

The second layer contains a static wall element in the background of the lever components 

on a different layer. It does not collide with the other components. 
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5.2.6 Mechanism Types 

Two types of planar mechanisms were implemented. The first type of mechanism is a set 

of individual components connected to the environment or a bearing plate using joints, 

although with no connections between each other, as shown in Figure 42. 

 

Figure 42: Individual Components 

The components have a relative distance to each other. If a driving component introduces 

motion, it transfers them to others, over their outlines, through collision. 

The second type is the lever chain or linkage. These consists of a set of lever components, 

interconnected with each other using joints. At least one component in the linkage is 

attached to the environment or a bearing plate. Components, which are directly connected 

do not collide with each other; however, they can collide with other components in the 

environment.  

Figure 43 shows an example of a lever chain with two components connected to the 

environment, and another one connecting the two components with two joints to each 

other. If one component moves, it moves the other components due to their connection.  

Both types of mechanisms can be combined, as shown in Figure 44. The figure shows a 

lever chain on the left-hand side consisting of three components that can collide, with a 

single lever component on the right-hand side. Both are connected to the environment 

using joints. 
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Figure 43: Linkage 

 

Figure 44: Linkage with Collision 
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5.2.7 Bearing Plate 

Mechanical components can be attached to a bearing plate. The bearing plate holds the 

mechanism together and specifies the relative distance between joints. It is a dynamic 

component as it can move freely in a virtual environment.  

5.2.8 Problem Scope 

The problem scope includes a variety of components such as lever components, obstacles, 

and bearing plate; joints, and actuators. These are explained in Section 5.2. Other 

components, such as walls and stoppers, fulfil the role of obstacles in the 2-dimensional 

environment. These can be static or dynamic components. Static obstacles such as ground 

path, and walls, cannot move. However, they collide with other dynamic components on 

the same layer. Dynamic obstacles are components which can move freely. Static and 

dynamic obstacles are elements placed in the environment.  

A bearing plate is a dynamic element in the environment. It represents a surface for 

attaching lever components with joints, or dynamic obstacles, such as walls and stoppers. 

A bearing plate may correspond to mechanism-housing which guarantees that all attached 

lever components with joints and walls have a constant relative position to each other. 

Together they assemble the mechanism. The problem scope provides a configuration of 

physics parameters, such as gravity for the environment, or mass, friction, and restitution 

can be set for every component individually.  

A design scenario needs to be defined beforehand by, e.g. an engineer, in a computer-

readable format, e.g. in a file. A scripting language was developed to enable the definition. 

An interpreter translates the file into a physics scenario, which can be processed by the 

physics simulator. The resulting simulation, a sequence of frames, is written into an 

output file for further analysis. Appendix 3 provides an example of a problem definition 

file. 

The file is based on the eXtensible Markup Language (XML) using the Scalable Vector 

Graphics (SVG) standard with customised tags, compatible with being opened in a 

browser. Figure 45 shows the structure of the file. 
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Figure 45: File Structure 

The file consists of five sections. Four of them are describing the geometric and material 

properties of the environment and its components, and one section contains parameters 

for the evolutionary algorithm, design constraints, and the simulation properties. 

The first section describes the ground. It specifies the static shape of the landscape, path 

and obstacles. The second one defines the environment elements. Movable obstacles can 

be included in the environment. The third section specifies housing, which is movable in 

space. It can contain walls or mechanical stops. The fourth is the mechanism, the solution, 

which consists of lever components, their shapes, and joints. The last section contains the 

parameters for the optimisation algorithm; the geometric constraints of the mechanism, 

such as minimum and maximum size; and parameters for the physics simulator. 

5.2.9 Solution Hierarchy 

The solution can be a single component or multiple components connected with joints to 

a bearing plate. Figure 46 shows the hierarchy of the solution. 
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Figure 46. Planar Mechanism Model 

The bearing plate can move freely on a layer. It contains the components. Each 

component may consist of multiple shapes and can have multiple joints. Polygons 

describe the shapes with an array of coordinates placed on one layer. Shapes can be placed 

on multiple layers simultaneously, as previously explained. Shapes on the same layer can 

collide with each other, whereas these on different layers do not collide. Each component 

may have one or more joints assigned with a position coordinate and a specification which 

components it links together. 

5.2.10 Design Objectives 

Usually, the focus in mechanical design is to move a lever from one to another position 

by working against forces and moments such as shown in Figure 47.  

 

Figure 47: Force and Movement Objective 

The figure shows three positions. The component’s initial position is A and the desired 

position C. The component is pushed anti-clockwise in the direction of A by an incoming 
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force, e.g. initiated by other components. A minimum force F is needed to pull it to 

position C. If F is too small, the component would not move and stay in position A or not 

reach C completely. F needs to be high enough to rotate the lever into the desired position 

C. As larger the applied force is, as faster the component would move to the desired 

position C. 

Another design objective may be to follow a specified path or rotation. Figure 48 shows 

an example of a path specification. 

 

Figure 48: Path-based Objective 

A is the start position of the lever and B the desired end position. The thick dashed line is 

the desired path. An additional objective may be the desired time to complete the 

movement. A component with a specific shape needs to be attached with a joint in the 

exact position to allow a driving component to push it in the right way to enable it to 

follow the path from A to B. The evaluation process, in this case, would be a comparison 

of the desired position and the measured position, and the time needed to reach it. Path-

based objectives are evaluated through comparing of the undertaken path and desired 

path. Techniques such as Procrustes Distance Calculation are used to compare paths, 

especially if desiring more complex paths (Dryden & Mardia, 2016). 
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Procrustes Distance Calculation is a mathematical comparison of the similarity of 

different paths usable for fitness evaluation. Another technique is Dynamic Time 

Warping. It can be used to compare the similarity of time or distance-dependent 

requirements, such as force changing over time or distance. (Ratanamahatana & Keogh, 

2004) 

As explained previously, the design of planar mechanisms can have a variety of different 

objectives related to specific motion and forces at an output which is highly dependent 

on the specific design task. In real-world design scenario, often an output component 

needs to move in a specific way, apply a specific force, or should not extend a specific 

torque. The variation of design objectives allow defining many real-world design 

scenarios; however, these are often not directly comparable and may be very particular 

or focus on one mechanical part. This research does not focus on these because evaluating 

a generative system requires more flexibility. In this work, the overall behaviour of the 

mechanism is evaluated to obtain the overall performance instead of focusing on the 

behaviour of a single component. This approach makes it easier to evaluate the generative 

system instead of focusing on individual design cases. 

The emphasis on a high-level behavioural objective enables comparing the performance 

of different scenarios, whilst keeping the fitness function exchangeable to any design 

problem. It removes the focus from specified target forces and movements, which can 

often be only approximated or not solved at all depending on the problem. Instead, it gives 

attention to the global aim of moving a mechanism forward, which always provides a 

solution. 

The fitness evaluation of a potential solution is based on the output of the simulator, 

therefore on the configuration of the complete scenario throughout a defined timespan. 

This type of output enables making kinematic analysis and can be used to implement 

other objectives, such as producing specific desired component motion, making it 

extendable to other design objectives in future. 

The area of Artificial Evolutionary Life Forms focuses on the evolution of high-level 

behaviours, such as swimming, walking, jumping, or following (Bentley, 1999). In this 

work, the design objective was defined similarly to moving a complete mechanism 

forward as well; it takes place through environments with different terrain and obstacles. 

Input parameters for the driving components such as revolution per minute and maximum 

torque, and an initial design, such as bearing plate to place a solution design, can be 

predefined. Similar distance-based evaluations were done in soft-robotics (Cheney et al., 
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2013), evolving simple car shapes (“BoxCar2D,” 2015), and Genetic Algorithm walkers 

(Matsunaga, 2015). Evolutionary Artificial Life-Forms also used behaviour based fitness 

evaluation (Bentley, 1999). The approach utilised in this work considers the behaviour 

derived from the shapes of components with a constant input patter. In other research, the 

focus was often placed on evolving the input pattern on a predefined design or simpler 

shape manipulation using building blocks. This approach provides the freedom to focus 

on the evaluation of the generative system, rather than on the definition of objectives for 

mechanical design. At this stage, it provides the basis to create a set of design scenarios 

and to investigate the performance of the evolutionary algorithm in solving them. 

5.3 Method 

This section investigates the capabilities of the evolutionary algorithm and the framework 

in evolving design solutions. The previously evaluated shape representation from Chapter 

4 is extended to be used to evolve multiple components mounted on a bearing plate. 

Several landscapes were designed for experiments to evolve mechanisms capable of 

traversing these landscapes within a fixed time.  

5.3.1 Evolutionary Representation 

The representation is capable of placing lever components on a bearing plate with two 

fixed joint positions. Both components are set up as actuators with a speed and torque 

specification which is also optimised by the algorithm. These have an upper and lower 

limit, which were found suitable through initial testing. The speed can vary between 

15rpm to 60rpm, and torque varies in a range from 10 Nm to 80 Nm. The evolutionary 

representation is based on a rectangle shape explained and evaluated in previous chapters. 

It was extended by multiplying the number of genes, enabling the representation of two 

components, and adding additional genes to evolve the speed and torque for each 

component. Figure 49 shows an initial solution created by the representation in a 

landscape with stairs. 
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Figure 49: Mechanism with Two Levers Climbing Stairs 

The scenario shows a mechanism which is climbing stairs. It consists of two lever 

components which are attached with joints to a bearing plate. 

5.3.2 Evolutionary Algorithm 

The evolutionary algorithm is similar to the one used in the previous chapter with the 

following configuration: The population uses 40 individuals and produces ten children in 

every generation. These parameters were chosen after the initial testing. Previously, 

findings showed that the rectangle representation R* worked well with evolutionary 

setting S1, so it was used further during the experiments.  

5.3.3 Fitness Evaluation 

The objective is to evolve a moving mechanism which is capable of traversing different 

landscapes. The evolutionary algorithm evolves a mechanism with two lever components 

mounted on a bearing plate to traverse different landscapes. The objective is to maximise 

the mechanism’s position in the x-direction at the end of a specified timespan. The 

distance is measured from the middle point of the bearing plate in the first frame to the 

middle point of the bearing plate in the last frame. In contrast to the previous chapter, the 

extended representation can produce a mechanism.  
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5.3.4 Experiments 

A bearing plate is positioned on a landscape with gravity applied in the negative y-

direction, set to 9.81 m/s2. All components were given the same material parameters for 

density (1.0), friction (0.5) and restitution (0.6). Five different environments were 

designed to investigate the generative system’s abilities to produce solutions for these 

environments, shown in Figure 50.  

 

Figure 50: Environments 

The figure shows a straight landscape a; a digital shaped landscape b; a second digital 

shaped landscape with different scale c; as well as a landscape containing stairs d. 

Furthermore, a complex landscape e containing different obstacles, such as uneven 

terrain, walls and holes. 

Experiments were run 24 times on each of the environments at 60 frames per second for 

600 frames which equates to 10 seconds of simulation on each landscape. The complex 

environment was simulated for 1,800 frames which equates to 30 seconds of simulation 

- as the environment is changing over a longer path. This configuration was found to be 

an appropriate balance between outcome and simulation time. Each experiment stopped 

after 20,000 evaluations. 
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5.4 Results and Evaluation 

Experiments were run to investigate the generative system’s capabilities to evolve a 

mechanical system consisting of multiple components attached to a bearing plate with 

revolution joints. The objective was to efficiently traverse a set of provided landscapes 

driven by joint actuators. 

• Firstly, the evolutionary algorithm is evaluated in its ability to evolve solutions 

for five problem instance (landscapes) by comparison to random sampling.   

• Secondly, solutions evolved for each landscape are investigated. 

• Thirdly, the simulator limitations are discussed which emerged throughout the 

experiments.   

The Mann-Whitney U-Test was used for statistical analysis since normality of the 

distributions cannot be assumed. A p-value of p≤0.05 indicates high confidence that 

distributions significantly differ. The p-value refers to the median distribution of best 

perfroming solutions at the end of each run. 

5.4.1 Evaluation of the Generative System’s Ability to Evolve Solutions 

In this section, the evolutionary algorithm ability to evolve solutions for five different 

landscapes is evaluated, recording the fitness increase over 20,000 evaluations. The 

evolutionary algorithm is compared to random sampling to investigate if evolution is 

happening.  

Figure 51 shows the performance of random sampling (red) and the performance of the 

evolutionary algorithm (blue) for five landscapes. The p-value shows if distributions are 

significantly different for each comparison. 
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Figure 51: Evaluation of Evolvability 

The results show that the evolutionary algorithm outperforms random sampling. All 

distributions significantly differ from each other. It indicates that the algorithm can evolve 

solutions and overcome local optima which can be observed in the complex landscape. 

Random sampling produces solutions which get stuck in obstacles in the beginning and 

is just occasionally able to overcome them. 
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5.4.2 Evolved Solutions in Different Landscapes 

Figure 52 shows the five landscapes, including one evolved mechanism for each of them. 

The mechanisms consist of a bearing plate with two attached driven levers that may apply 

different speed and torque. 

 

Figure 52: Mechanism Solutions in Different Landscapes 

Plot a shows a solution evolved in the straight landscape. It consists of an approximated 

wheel type lever on the rear, with a joint in its middle point, and an asymmetrically shaped 

lever in the front. The front lever’s outer shape is rounded and might contact with the 

ground surface. The rear wheel drives the assembly forward, whereas the front lever 

moves the bearing plate’s front part periodically up, whereby the front part of the bearing 

plate loses contact with the ground for a short time. The rear lever is not perfectly round, 
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which would be expected from an optimal solution; while, it is capable of moving the 

mechanism forward, and the middle point is centred. The uneven characteristic may 

produce more friction between ground and lever, which would lead to less slipping. The 

front lever does not block the rear lever, and also does not hinder the mechanisms in its 

forward movement. The bearing plate is not steady throughout the forward movement; 

however, it was not the objective. The periodical uplift of the front lever and contact loss 

with the ground surface may reduce friction, which benefits the rear lever in pushing the 

mechanism forward. This may be the reason why the front shape just partially evolved 

round characteristics. 

Plot b shows a mechanism evolved in a landscape containing stairs. It has a lever 

consisting of circle shapes, arranged in approximately 120 degrees angle between each 

other around its middle point, which is close to the joint. In each lever rotation, one circle 

lands on top of one stair and pushes the mechanism up. At the same time, the front lever, 

with a decentred asymmetric shape, acts as a mechanical stop by pushing itself against 

the front side of a stair, each time the rear lever reaches a new step. Furthermore, each 

time the front lever pushes against the front of a stair, a segment of shape lands on the top 

of it, and while rotating, lifts the front of the bearing plate. In this case, the front of the 

bearing plate does not get caught in the stairs.  

Plot c shows a mechanism evolved in a landscape with periodic holes. The rear lever 

consists of two shapes, which are decentred from their rotation point. The shapes have 

segments with hook characteristics. One hook is pushing the mechanism forward by 

catching the edge of the hole, which makes the rear part of the mechanism slip into the 

hole. The other hook lifts it out of a hole again. The front lever has round characteristics 

and is also out of the centre. It fulfils a forward pull by using the inner hole walls. At the 

same time, it guides the bearing plate front and avoids getting blocked in a hole. 

Plot d shows a mechanism evolved in a landscape with a tooth-shaped surface. The rear 

lever’s middle-point is positioned close to the joint. It has round characteristics with 

notches. The notches avoid the contact with the tooth edges, only the round parts of the 

shaping role over the straight tooth bottom and the top. The front lever is asymmetrical 

and has segments which hook into a tooth and pull the mechanism forward. Other 

segments are straight and slide over the top of a tooth and lift the front of the bearing plate 

up to avoid getting blocked in it.  

Plot e shows an evolved mechanism in different positions while traversing the complex 

landscape. Both levers are asymmetrical and out of the centre. It is difficult to assign 
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specific functions to the shapes’ segments because the interactions with the ground are 

versatile. The mechanism is able to pass all obstacles by having the right timing, shape, 

and weight distribution, which is not the case for randomly created solutions. Most of 

them tend to get stuck in obstacles. 

In all solutions, both levers do not interfere with each other or slide against each other 

without getting stuck. The mass of the levers needs to be considered. Sometimes parts of 

the lever may seem unnecessary; however, because of their mass these may be important 

to balance the mechanism. Yet, this may lead to unreasonable looking shapes. 

The discussed solutions were selected due to their interesting shapes and interactions 

while still being describable or explainable. The variety of solutions is wide if considering 

all conducted experiments. Shape segments contribute in different ways to a more or less 

steady forward movement. The shapes are very complex and difficult to describe. 

Sometimes the same shape sections have more than one function, especially when 

evolved in the complex environment e. The landscapes a-d have a repeating ground path, 

so shape segments seem to fulfil specific repeating functions. 

Random sampled solutions tend to look more complex; however, they get stuck on the 

path in obstacles, or the lever motion is not synchronised, which leads to levers blocking 

each other. 

5.4.3 Simulator Limitations 

The simulator in combination with the generative system encountered several issues 

which needed to be addressed, namely: 

• Intersections with the ground surface. 

• Overlapping shape components. 

Initially, the bearing plate was positioned closer to the ground surface. The generative 

system produced lever components which occasionally overlapped with it, such as shown 

in Figure 53 a. The physics engine usually resolved the overlap, however, in some cases, 

the overlap was too large, and one or multiple components got stuck in the ground surface 

which led to unreasonable behaviours, such as an unstable simulation, jumping of the 

component, sometimes even catapulting the mechanism out of the scene. This problem 

was addressed by placing the mechanism higher and dropping it on the ground surface, 

which resolved the problem, shown in Figure 53 b.  
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Figure 53: Overlapping with Ground 

In some cases, the evolutionary algorithm created initial solutions which may overlap 

with other components in the first frame, such as shown in Figure 54. Again, the physics 

engine was able to resolve most of them and rearrange the components. However, 

components were occasionally jammed together in a way that the physics engine was not 

able to resolve the overlap. An example is shown in Figure 54 b. Either it was too large, 

or there was no mechanism configuration available without overlapping components.  

 

Figure 54: Overlapping with Components 

These solutions tend to vibrate or move in an uncontrolled manner, or even jump, which 

may produce a false positive fitness value and inhibit evolution which is shown in Figure 

55. A filter was implemented to solve this problem. Before evaluating the fitness of a 

solution, it goes through a filter which recognises false behaviour. The filter measures the 

rotation of the driving components and compares it with the mechanism’s distance 

travelled. A solution is tagged as invalid if the driving component did not rotate; however, 
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the mechanism still moved forward at the same time. In this case, the solution was 

discarded by returning a fitness value of zero.  

 

Figure 55: False Movement 

These limitations need to be considered when simulating physics scenes with the current 

implementation of the simulator or addressed by improving the code. 

5.5 Summary 

This chapter described the framework for planar mechanism design to evolve 

mechanisms using an evolutionary computing approach. The framework enables the 

definition of components attached to a bearing plate with rotation joints. Furthermore, 

drive specifications can be set to introduce forces and movement into the system. 

An evolutionary algorithm was used to evolve a mechanism consisting of two lever 

components with the objective of traversing different landscapes in a physics 

environment. The rectangle shape representation used in the previous chapters was 

extended to evolve mechanisms. Experiments were conducted to evaluate the 

evolutionary algorithm’s capability to evolve solutions by comparing it to random 

sampling. Solutions were shown, and the limitations of the simulator investigated. 

Two problems were encountered when using the simulator in combination with the 

generative system. Firstly, overlapping of initial solutions with the ground surface, and 

secondly, overlapping of lever components with each other. In some cases, the physics 

engine was not able to resolve the overlap, which led to undesired behaviours, such as 

vibration, jumping, and unstable simulation. The first problem was addressed by 

positioning the bearing plate further away from the ground and dropping it on the surface. 

The second problem was resolved by introducing a filter which discarded solutions with 
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undesired behaviour by assigning a fitness value of zero. The filter investigated each 

solution before evaluating its fitness. It measured the rotation of the driving components 

and compared them to the forward movement of the mechanism. When a forward 

movement was detected without rotation of the driving component, the solution was 

flagged as invalid. 

The generative system was used to evolve mechanisms for five landscapes with different 

complexity. The results were compared to a random sampling. It was found that the 

performance of the evolutionary algorithm and random sampling significantly differ in 

favour of the evolutionary method. This indicates that the algorithm is capable of evolving 

solutions which overcome obstacles in the landscape, whereas random sampling gets 

stuck in obstacles.  

The following chapter will extend the work by focusing on mechanisms with linkages.  
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6 Evolving Four-Bar Mechanisms 

6.1 Introduction 

In this chapter, the proposed framework is employed to evolve four-bar linkages, which 

involves the locomotion of the mechanisms, collisions and interactions in different 

environments. The focus is on evolving linkages together with an attached shape 

component capable of traversing a set of provided landscapes using an evolutionary 

algorithm. 

Previous research in automated design often focused on mechanical linkages, such as 

four-bar mechanisms, intending to generate mechanisms which follow a specified path in 

space as closely as possible (Bose et al., 1997; Cabrera et al., 2002; Renner & Ekárt, 

2003b; Roston & Sturges, 1996). More complex systems of this category were studied as 

well, for instance, six-bar linkages (Tsuge et al., 2016), or even assemblies of mechanisms 

(Ghassaei & Ming, 2015). Linkages were investigated from the perspective of their build, 

namely bars, and did not consider the shapes of components or collisions between them. 

Furthermore, properties such as torque; gravity; friction; or mass, are not considered. 

The background section introduces the four-bar linkages and design objectives. It is 

followed by the method section, which explains the representation used and the 

experimental setup.  The results discuss the influence of the attached shape component; 

the performance of the algorithm compared to a random sampling method; the influence 

of evolutionary operators; and the performance of the algorithm on problems with 

enhanced complexity. 

6.2 Background 

This section provides the definition of four-bar mechanisms and their use in generative 

design, according to existing literature. This is followed by a discussion regarding design 

objectives. 

6.2.1 Four-Bar Mechanism 

The area of four-bar linkage design was chosen as it focuses on multiple connected 

components and can create interesting locomotion. However, four-bar linkages are 

usually studied from the perspective of being assembled on a non-movable frame and 

designed to follow a specified trajectory, a coupler curve, in space as close as possible, 

with a tracer point. There is no consideration of collisions between components or with 
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other environmental obstacles. Four-bar linkages were explained in chapter 2.2.2. The 

current research considered more parameters, compared to classic four-bar mechanism 

problem. 

In this work, the four-bar linkage design was extended to a rigid body model placed in a 

physics environment with gravity acting toward a ground surface on the components, 

shown in Figure 56. It allows the assembling of mechanisms with the ability to collide 

with their environment and to introduce additional parameters such as mass, friction, and 

restitution. 

 

Figure 56: Four-bar Mechanism with Attached Shape Component 

The mechanism is attached to a frame which is movable in space. It also has a lever 

component attached to the middle bar with an undefined shape that is moving with it. Bar 

b fulfils the role of a driving component with rotation speed and torque range, which 

allows the assembly to move. The Gravity makes it fall towards the ground. The positions 

of all rotation joints, length of the bars b, c and d, the shape and position of the attached 

lever component, and also the rotation speed and maximum torque applied to bar b are 

evolved using an evolutionary algorithm. During the movement, the components’ shapes 

collide with the ground surface in different angles and motion patterns. The patterns result 

in a variety of mechanism behaviours, e.g. a forward or backward movement. 
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 Figure 57 shows a movement pattern of a four-bar mechanism with two attached shape 

components.  

 

Figure 57: Four-Bar Mechanism Movement 

The first bar makes a complete rotation around the joint while the last bar just makes a 

short movement to the right and left. The attached shape components stay in relative 

position to the middle bar. 

6.2.2 Design Objective 

There can be different objectives for four-bar mechanism design. The typical problem 

might be, e.g. to follow a trajectory or to produce a movement or torque characteristic at 

an output. Various approaches exist for defining design objectives and measuring the 

performance of potential design, e.g. as explained previously, in compliant mechanism 

design, the authors compare the generated path of the mechanism with a user-defined path 

(Sharma et al., 2008). The design problem is to transfer an input force and motion to an 

output force and motion, which is also applicable in planar mechanism design. 

However, this research focusses on evolving general behaviour in environments, 

including different obstacles. The aim is to let the mechanism traverse a landscape as 

quickly as possible in a specified time. It provides benefits compared to objectives that 

involve following different trajectories, namely a set of different design problems can be 

defined by changing the obstacles in the environment, whilst being still able to compare 

the results to each other using a fixed simulation timespan. 
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In this scenario, the trajectory that makes a mechanism perform a forward movement is 

unknown, as it is dependent on the shape and configuration of the mechanism’s 

components. Many trajectory-shape combinations can perform well in solving a problem. 

The evaluation of the distance travelled gives the generative system freedom in evolving 

more diverse solutions. Furthermore, it allows studying the evolutionary method in an 

environment, because the adaptation of components to the environment can be inspected 

by observation. In contrast, focusing on the forces and trajectories of interacting 

components may be more difficult, as forces are not visible. Lastly, the emphasis on the 

travel distance makes it easier to understand the problem.  

6.3 Method 

An evolutionary representation for the planar mechanism was developed in order to 

define the mapping procedure between genotype and phenotype. The representation 

defines the search space of the algorithm. There were three requirements defined for the 

evolutionary representation. 

• Firstly, the representation needed to allow coverage of a large part of the search 

space. In the context of mechanism design, this means that the representation 

needs to be able to produce a large variety of solutions with distinctive 

characteristics. 

• Secondly, the evolutionary representation needed to be compatible with 

evolutionary operators, such as mutation and recombination. For mutation, it is 

necessary, that changes in the genotype result in equally sized changes in the 

phenotype (Bentley, 1999). For recombination operators, it is necessary that the 

parent phenotypes are passing some characteristics of each of them to the child 

phenotype – otherwise, the recombination operator is simply providing mutation.  

• The third requirement focused on the genotype to phenotype mapping. To be able 

to evaluate the candidate’s fitness, invalid solutions should be either avoided, 

recognised as invalid and eliminated or resolved.  

As a use-case, the focus was on a four-bar linkage with the attached shape component. 

Figure 58 shows an example of the mechanism in a virtual environment with a height 

limit. Four-bar mechanisms were chosen because they produce a large variety of 

trajectories depending on their bar configuration. In combination with a shaped 

component, which follows the trajectory, it can develop interesting and useful interactions 

with the ground surface or other obstacles. 
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Figure 58: Mechanism in Virtual Environment 

An evolutionary representation was developed to create four-bar mechanism solutions 

based on the findings gathered and described in the previous chapters. An evolutionary 

algorithm was used to evolve solutions with the capability to traverse a set of different 

landscapes. 

6.3.1 Evolutionary Representation 

The evolutionary representation for the mechanism consists of three parts, shown in 

Figure 59. 

 

Figure 59: Chromosome Representation 

The chromosome is an array of real values between 0 and 1 rounded to seven digits of 

precision. The first part of the chromosome defines the speed and torque of bar b, the 

driving component, which rotates around the first joint. The second part defined the 

position of the four joints that subsequently defines the length of the connecting bars b, 

c, and d. The third part is the shape of the attached lever component using the 
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representation employed in previous chapters, with the centre point placed in the middle 

of bar c. 

The first two chromosome values define the speed and torque of the driving component 

within a specified range of 15 to 45 rpm and 10 to 70 Nm. The next eight values are 

mapped into the joint position coordinates within the frame a. The remaining values 

define the shape and position of the attached lever component within the maximum and 

minimum boundaries set to 10 and 80 size units (pixels) in the problem file. A 

chromosome containing 60 parameters in total describes the mechanism. 

6.3.2 Evolutionary Algorithm 

The evolutionary algorithm is similar to the one used in the previous chapters with the 

following configuration: The population size was 40, and 4 children were produced in 

each generation. These parameters performed well through initial experimentation. 

Similar to chapter 5, the rectangle representation R* was used with evolutionary setting 

S1. 

6.3.3 Fitness Evaluation 

The objective is to evolve a moving mechanism which is capable of traversing different 

landscapes. The algorithm evolves a four-bar linkage with a shape component attached to 

one bar. It is mounted on a bearing plate with the aim to traverse different landscapes and 

maximise the mechanism’s position in the x-direction at the end of a specified timespan. 

The distance is measured from the middle point of the bearing plate in the first frame to 

the middle point of the bearing plate in the last frame. The extended representation can 

produce four-bar linkages, as opposed to the representation described in previous 

chapters.  Furthermore, a new set of landscapes is employed.  

6.3.4 Experiments 

The mechanism was evolved within an environment, including a ground surface. Gravity 

was applied in the negative y-direction and set to 9.81 m/s2. All components were given 

the same material parameters for density (1.0), friction (0.5) and restitution (0.6). Seven 

different environments were defined to investigate the generative system’s abilities to 

produce solutions, as shown in Figure 60.   



 

126 

 

 

Figure 60: Environments 

The figure shows a straight, a sinusoid shaped, and a digital shaped ground surface. 

Furthermore, three landscapes containing a height limitation; a hole; and a wall. The last 

landscape is complex; it includes many combined characteristics of the other 

environments. 

Experiments were run 24 times on each of the environments for 1,200 frames, which 

equates to 10 seconds of simulation using a frame rate of 120 per second. 

The complex environment was simulated for 3,600 frames which equates to 30 seconds 

of simulation - as the environment is changing over a longer path. The configuration was 

found to be an appropriate balance between outcome and simulation time. The driving 

component was allowed to have a rotation speed between 15 rpm to 60 rpm, and torque 

in a range from 10 Nm to 80 Nm. The algorithm stopped after 20,000 evaluations. The 

fitness of a candidate solution was evaluated by measuring the distance travelled by the 

mechanism through the environment at the end of the simulation period. 

6.4 Results and Evaluation 

Experiments were run to investigate the generative system’s capabilities to evolve design 

solutions which efficiently traverse an environment. 
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• Firstly, the influence on the quality of the solution of evolving the attached shape 

component was analysed, by comparing the results of evolved four-bar linkages 

with an attached shape, to evolved linkages without attached a shape.     

• Secondly, the generative system was compared to random sampling.  

• Thirdly, the mutation and recombination operators were evaluated to identify their 

effect on a solution.   

• Fourthly, the generative system’s performance was evaluated on an environment 

with enhanced complexity. 

• Finally, the simulator limitations which emerged throughout the experiments were 

discussed. 

The Mann-Whitney U-Test was used for statistical analysis. A p-value of p≤0.05 indicates 

high confidence that distributions between two populations significantly differ. The p-

value refers to the median distribution of best-performing solutions at the end of each run. 

6.4.1 Performance Validation whilst using the Attached Shape 

The impact of evolving an additional shape component attached to the four-bar linkage 

compared to evolving just the linkage alone was investigated. Figure 61 shows the results 

of six different environments.  
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Figure 61: Median Fitness 

All plots show the median fitness of 24 runs with ±95% bootstrapped confidence 

intervals: Evolutionary algorithm with shape (blue) vs without shape (green) vs random 

sampling with shape (red). They also present the best solution of all runs (gold). The 

mechanism’s distance travelled determines its fitness. 

The results show that evolving an additional shape component (blue), which is attached 

to the four-bar linkage, leads to better results compared to evolving just the four-bar 
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linkage (green). The mechanism with attached shape moves faster and further through 

the environments because the attached shape components provide an additional 

advantage. The results for the height limit environment are the only ones showing no 

significant difference. Figure 62 shows several well-performing solutions evolved in each 

environment. 

 

Figure 62: Evolved Solutions 
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Each image contains a few frames of a mechanism at different stages moving through a 

landscape. The mechanism in a evolved a movement pattern similar to a foot touching 

the ground rolling from the heel over the toe which makes the mechanism leap. A similar 

movement pattern can be seen in d and e. In d, due to the hight constraint, the movement 

pattern is slightly different and keeps the mechanism closer to the ground. In e, the pattern 

and leaping are similar to a, however, it evolved a shape with a spike helping it to 

overcome the hole. In c, the mechanism evolved a hook shape and a patter which digs the 

hook between the niches in the landscape to pull it forward. The mechanism shown in f 

evolved a movement pattern and shape which lifts the front part of the mechanism and 

leaps it forward to overcome the wall.  

6.4.2 Performance Validation using Random Sampling 

The evolutionary algorithm was compared to random sampling to validate its ability to 

evolve solutions. In Figure 61, comparing random sampling (red) with the evolutionary 

algorithm (blue) shows that the latter significantly outperforms random sampling. It finds 

more solutions and has a sharper increase in their quality. Random sampling ends in a flat 

line and is unable to improve further, whereas the evolutionary algorithm continues to 

find better-performing solutions. The results for the limited height environment show no 

significant difference. 

6.4.3 Investigation of Mutation and Recombination Operators 

The evolutionary algorithm’s genetic operators were investigated to evaluate their 

contribution to finding better performing solutions. Firstly, the algorithm was tested by 

using the mutation operator without recombination. Figure 63 shows the evolution of a 

mechanism by applying only the mutation, starting with a and ending with l. 
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Figure 63: Mutation Operator 

Firstly, the figure shows that the mutation operator applies small changes to the bar length 

and position of the joint, also to the position and shape of the attached component. The 

component can separate into multiple shapes, all moving relative to the middle bar. 

Visually, the operator does not produce too a large disruption, which is important for the 

mutation operator to improve a solution efficiently. 

Secondly, the recombination operator was investigated by evolving a solution using 

recombination and further, one Gaussian based mutation operation. The mutation was 

applied to avoid premature convergence, which was found to appear when using 

recombination only. Figure 64 shows two parents, and as an example, four potential 

resulting children.  

 

Figure 64: Recombination Operator 
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The figure shows that all of the potential children contain some features of the parents. 

E.g. child a has the linkage of parent 2 and the shape components of parent 1. Child b 

has the shape components of parent 2 and partly the linkage of parent 1. Child c is similar 

to child a but includes some new shape fragments. Child d has the linkage of parent 1 

and some shape characteristics of parent 2. However, it seems that the recombination 

operator introduces a disruption which may be too large. It does not take account of the 

grouping of genes sequences that describe single rectangles. The rectangle information is 

divided and partly transferred to the new generation, which leads to large changes and 

new shape fragments. 

Figure 65 shows a comparison between using the recombination operator with one 

mutation operation, and using the mutation operator only, for the hole environment to 

determine the contribution of the recombination operation. 

 

Figure 65: Recombination with Mutation (blue) vs Mutation-only (green) 

The results show that using the recombination with the mutation operator leads to 

significantly better results when compared to using the mutation operator only. This 

means that the recombination operator helps to escape from local optima and navigate 

into different regions of the search space. 
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6.4.4 Performance on Problems with Enhanced Complexity 

The complexity of the problem was increased by providing a more challenging path, 

including multiple obstacles. Figure 66 shows a solution evolved in a complex 

environment which traverses the landscape at different positions. 

 

Figure 66: Moving through a Complex Environment 

The evolutionary algorithm was able to evolve solutions, which succeeded to pass all the 

obstacles. Figure 67 shows the median fitness of 24 runs with ±95% bootstrapped 

confidence intervals (blue) and the best performing solution (green). The environment is 

added on the y-axis, showing the mean position of all mechanism and the position of the 

best mechanism in the environment, as well as their fitness. 

 

Figure 67: Evolution in a Complex Environment 
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The figure shows that the evolutionary algorithm can also evolve mechanisms in a 

complex environment. Comparing the graph to the environment path shows that most of 

the solutions get stuck at some obstacles for some time. However, the evolutionary 

algorithm manages to find solutions which bypass these in the long-run, allowing some 

to travel through the complete environment and even to further improve their fitness after 

passing the obstacles. 

6.4.5 Simulator Limitations 

The simulator was capable of resolving the physics scenarios provided by the generative 

system. Nevertheless, because of the nature of the physics engine, it was found that 

simulation errors may still occur due to overlapping shapes, jittering and clipping, which 

are all potentially exploitable by the evolutionary algorithm. These errors were addressed 

with the previously discussed filter, which detects if a mechanism is moving forward, e.g. 

due to jittering, without rotation of the driving component. Those unrealistic solutions 

were filtered and rated with a fitness value of zero. 

Through experimentation, it was found that using a simulation frame rate of 120 frames 

per second; as well as increasing the position and velocity iterations, which are Box2D 

internal settings, from the default of 8 velocity and 3 position iterations to 16 and 6 

iterations per frame, reduced simulation errors. These would be otherwise exploited by 

the evolutionary algorithm when simulating linkages 

The position and iteration count controls how many times the constraint solver sweeps 

over all the contacts and joints in the virtual environment. Increasing the iteration always 

yields a better simulation (“Box2D: Overview,” n.d.). 

6.5 Summary 

This chapter presented a method which enables the study of evolutionary algorithms for 

evolving planar mechanisms. As a use case, the focus was on the ability to traverse 

different environments by evolving freely movable four-bar linkages with an additional 

attached shape component.  

The generative system, including simulator, was validated by showing its capability to 

produce and evaluate design solutions. The results indicate that evolving an additional 

shape attached to the mechanism led to better solution quality. Furthermore, a comparison 

of the evolutionary algorithm to random sampling showed that the algorithm evolves 

solutions, rather than randomly selecting them. 



 

135 

 

The contributions of the genetic operators were investigated, and it was found that both 

operators work well and that the recombination operator supports finding better 

performing solutions. The operator enables the algorithm to escape from local optima and 

navigate to different regions of the search space. However, it was found through visual 

analysis that the recombination operator introduces, in some cases, a large disruption due 

to breaking valuable gene sequences. This may slow down the evolution, which can be 

addressed in future by considering the chromosome encoding, e.g. not breaking the 

groups of rectangles within it, when using recombination. Moreover, the algorithm 

performs well when increasing the problem complexity using a landscape with multiple 

obstacles and enhanced complexity.  

Overall, the results show that the system is capable of increasing the fitness of candidate 

solutions and producing interesting mechanisms, which perform the desired behaviour. 

The shape and configuration adapted to the environment and its obstacles, able to reach 

different areas of the search space. 
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7 Conclusion and Future Directions 

This chapter provides a summary of the work conducted, followed by a list of 

contributions and a discussion. Lastly, it explains the potential future work. 

7.1 Summary of Work Conducted  

The research was divided into five chapters. In Chapter 2, a literature review was 

conducted, exploring conceptual design, planar mechanisms, evolutionary computing and 

representations, and furthermore, the area of shape representations, generative design 

tools, and evolving mechanisms. The literature showed that there is a shortage of research 

targeting the early conceptual design stages, additionally, that tools suggesting a broader 

range of solutions might be beneficial for engineers to reduce their bias and workload. 

It was found that there is no specific area concentrating upon the generative design of 

planar mechanisms, which considers the shape and interaction of components, including 

attributes such as mass, friction, and restitution. The work in mechanical optimisation to 

date focused on the movement of components and did not investigate linked mechanical 

systems, including collisions in a dynamic environment. Considering upon these allows 

a closer approximation of real-world mechanisms and contribution towards innovative 

generative design system. 

The field of engineering optimisation was reviewed; every area has its unique way to 

describe its problem domain. However, these often focused on the control patterns and 

behaviour of mechanisms. 

Looking at problems solved with evolutionary computing showed that an indirect 

encoding is most suitable for shape representations. This work provides a way to define 

complex shapes with a low number of genes. A method to evaluate shape representations 

able to create target shapes was identified, which is a computationally inexpensive 

process to develop and evaluate representations’ ability to be applied within evolutionary 

algorithms to create shapes for a specific problem domain.  

In Chapter 3, the focus was placed on the design of a shape representation capable of 

generating mechanical shapes, guided by an evolutionary algorithm using the target shape 

matching technique instead of working directly in a physics environment. Several 

representations were developed and evaluated, which gave insight into the underlying 

mechanisms of the evolutionary process and to design and improve the representations in 
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a fast and systematic way, capable of producing relevant shapes. The results showed that 

the implemented rectangle-based representation worked best for reproducing mechanical 

shapes in an evolutionary computing context.  

In Chapter 4, a simulator was employed, capable of simulating a virtual world based on 

a physics engine, which was necessary to create and compute design scenarios 

considering interaction and collisions, including attributes such as mass, friction, and 

restitution. Usually, these types of scenarios are simulated with a computer using multi-

body dynamics solvers, which produce a close approximation of reality. However, they 

are computationally expensive and are often the bottleneck in an evolutionary design 

system, as those systems require a large number of evaluations to be conducted. 

A simulator, based on the game physics engine Box2D, was developed to address this 

issue. It is capable of resolving collisions and of performing at a fast pace, recording every 

simulation frame in an output file, providing visual feedback, and was used as the basis 

for the performance evaluation of potential design solutions. It was validated using unit 

and acceptance tests and tested together with the generative system. 

Experiments were conducted with the focus on developing an evolutionary representation 

for single shaped components. Three representations were designed, based on the initial 

well-performing representation for shape matching. Their performances were compared, 

according to their ability to produce physics components capable of traversing a virtual 

landscape, with two different evolutionary settings. The evolutionary settings applied 

different size changes to the genotype. It was found that one of the three tested 

representations performed well with both evolutionary settings and evolved solutions 

within the physics environment that fulfilled the design aim. 

In Chapter 5, a framework was proposed based on real-world mechanisms focusing on 

lever mechanisms and linkages. A scripting language was designed that allows the 

specification of various design problems. An interpreter translates a problem file into a 

physics scenario for the simulator, which computes the locomotion. The results are used 

for performance evaluation of a potential design. This approach made the real-world 

problem understandable for the computer and enabled applying evolutionary computing 

techniques to evolving design solutions. The ability to evolve mechanisms consisting of 

multiple components, attached to a bearing plate with joints, was evaluated. Through 

comparison to random sampling, the results showed that the algorithm is capable of 

evolving mechanical design solutions, successful in traversing several landscapes with 

different complexity. Furthermore, the limitations of the simulator were discussed. 
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In Chapter 6, the simulator and framework were employed to evolve mechanical linkages. 

They were used to evolve four-bar mechanisms with the same design aim as previously, 

although, traversing different landscapes. In previous research, the area of four-bar 

mechanisms was mostly focusing on evolving the kinematic behaviour of mechanisms to 

follow a specific path without considering further attributes such as mass, friction, 

restitution, and gravity. The contribution of this research was to consider those 

parameters, and further, including collisions between components as well. The results 

have shown that the framework and generative system performed well in finding design 

solutions even for complex problems. 

The overall outcomes of this work showed that evolutionary algorithms can be 

successfully applied to evolve mechanisms and that the chosen approach performed well 

in experiments. The developed representation performs in a satisfactory manner with 

different evolutionary operators and is capable of producing well-performing results 

irrespective to the size of applied mutations. It showed that it could produce mechanical 

shapes, also within a physics environment. Furthermore, it could evolve mechanisms 

consisting of multiple components, including linkages which fulfilled the design 

objective. 

The implemented simulator was validated and tested throughout the experiments and 

performed successfully. Its limitations were investigated, and issues were resolved. 

However, further work is necessary to turn this research into a usable application for the 

industry to support designers in the preliminary stage of mechanisms design. Especially, 

the design objective definition needs to be developed further as this work used a 

simplified objective of traversing different landscapes. It was appropriate for conducting 

experiments and analysing comparable results. However, an industrial application would 

need a more practical way to specify design aims.  

This work provides an entry point for evolutionary computing researchers and a stepping 

stone towards a generative design system for planar mechanism design, capable of 

providing engineers with prototypes for specific design tasks. It contributes towards an 

understanding of generative design systems, focused on industrial applications. 

7.2 Summary of Contribution 

The following research questions were addressed:  

RQ1 (Chapter 3): Which evolutionary representation can be used to efficiently represent 

and evolve the shape of planar mechanical components? 
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The first question was addressed by implementing an experimental tool and method to 

evolve target shapes. Different shape representations were developed and compared in 

order to evaluate their capability to produce defined target shapes of the problem domain. 

Target shapes were taken from an automotive closure system and generated with the 

experimental tool. This approach provided insight into the working principles of the 

representation and evolutionary algorithm, and also into the representation’s search space 

coverage, which helped to design and refine the representation. A rectangle-based 

representation was developed and evaluated, which performed well compared to other 

tested approaches. 

RQ2 (Chapter 4): Which evolutionary representation and evolutionary operators can be 

efficiently used to represent and evolve mechanical components in a physics 

environment? 

The second question was addressed by implementing a simulator capable of computing 

the locomotion of mechanical components and linking it to a generative design system 

capable of evolving design solutions. The initially designed, best-performing shape 

representation was embedded in the application using physics simulation. It was 

compared to two similar representations with minor changes, with the purpose of 

improving the performance. Different evolutionary settings were tested. The experiments 

investigated the capability to evolve the shape of a component that adapts to its 

environment, in order to traverse several landscapes with different complexity. 

Furthermore, the simulator was validated with unit and acceptance tests. One outstanding 

rectangle-based representation performed well with different evolutionary operators, 

applying larger and smaller mutations. 

RQ3 (Chapter 5): To what extent are the evolutionary representation and evolutionary 

operators able to evolve mechanisms consisting of multiple components with the aim of 

traversing different landscapes? 

The third question was answered by providing a description of the problem domain and 

creating a framework for planar mechanism design. A scripting language was developed 

that provides a way to define mechanical problems. The simulator and generative system 

were tested and evaluated with a set of landscapes, which were defined using the scripting 

language. An evolutionary algorithm was employed to evolve mechanisms with multiple 

components, joints, and actuators attached to a bearing plate. The framework was 

validated through experiments. Mechanisms were evolved for different problems, and the 
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experiments showed that the algorithm performed evolution by outperforming random 

sampling. 

RQ4 (Chapter 6): To what extent are the evolutionary representation and evolutionary 

operators able to evolve four-bar mechanisms that are capable of efficiently traversing a 

landscape? 

The last question was addressed by applying the framework and simulator in the domain 

of four-bar linkages. The evolutionary operators were analysed in depth. Furthermore, the 

evolutionary algorithm was investigated, and the framework additionally validated by 

showing its capability to evolve a variation of solutions for a set of problems with 

different complexity. Furthermore, it was found that both evolutionary operators, 

mutation and recombination, contributed towards finding better solutions. 

This research contributes to knowledge by providing a method, including framework, 

evolutionary representation, and evaluation using a simulator, to evolve planar 

mechanisms with evolutionary computing techniques. The generative system was tested 

and validated. In future, the findings may lead to innovative generative design 

applications. They can facilitate further research and initiate new applications in design 

automation in order to increase the efficiency of the early mechanism design stage in the 

industry context. 

7.3 Discussion 

In this section, the research is discussed. It explains challenges encountered during this 

research, summarises the limitations of the simulator and the generative design system, 

and presents other implementations which were tested but not included in this work. 

Furthermore, it discusses the limitations of experiments and provides ideas for other 

potential approaches which could have been employed to address the topic. 

7.3.1 Challenging Issues 

This research encountered several challenges and issues which needed to be addressed. 

The first was the choice of the programming language to implement the necessary 

software. Different languages were tested, such as Python, Java, C++, and JavaScript, 

which all provided implementations of Box2D. However, these had some limitations, 

mostly a time needed to implement software, for instance, creating user interfaces or 

debugging code. Subsequently, C# was identified as an appropriate choice. The 

implementations progressed quicker, due to already existing C# skills. These still needed 

to be widened to produce an extendable piece of software with a modular architecture. 
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C# provided a large toolset that allowed designing the user interface and generative 

system, necessary for conducting the experiments. 

Retrospectively the architecture could have been implemented on a server-side basis. 

Running the software on a server would have allowed conducting experiments on a 

computer cluster that may have shortened the time of development, and could allow a 

web-based interface to be published. However, the work had different priorities, and it 

was found not relevant. With some adjustments, the current architecture could allow 

extending the software to run on server-side in future. 

The experimental results had a size of over 100GB, which could not be analysed by hand. 

Tools and scripts were needed instead. For that reason, several scripts were developed 

using Python, R, and Octave; each took additional time to objective learn.  

A further challenging task was to find a general design in mechanical design. It was found 

difficult to produce experiments using a specific design case. Instead, general cases were 

selected as they provide enough freedom for an evolutionary algorithm to evolve a variety 

of solutions. It took time to realise that measuring the travel distance was a suitable 

objective general enough to be used for validation, especially because it was commonly 

used in other fields but not used in mechanical design. 

Another challenge was the extensive experimental runtime. Although a single 

experimental run did not take long, many iterations of experiments resulted in over 5,000 

hours of computational runtime. Hardware was needed to shorten the time. A setup of 

five computers was configured to solve that issue. These gave feedback on the 

experimental state and progress via Email, which increased productivity. 

7.3.2 Simulator 

In general, the simulator, based on the physics engine Box2D, performed well and was a 

suitable choice. The software was implemented in a way that allows exchanging Box2D 

with other physics engines with a low programming effort, which may be interesting for 

future research. It also provides a way to exchange it with a different type of simulation, 

e.g. particle simulation to optimise designs for aerodynamics. In general, it was found 

that the simulator resolved movements and collisions accurately. However, it needs 

testing and fine-tuning whilst applied to different kinds of problems such as evolving 

multi-component mechanisms, linkages, or problems beyond this research, to reduce 

simulation errors. As shown, different frame rate settings were used for each problem 

type. Setting the frame rate requires performing several simulations and investigation of 
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the results for visible errors. It is not possible to recommend a specific setting as it is 

highly dependent on the design problem and employed representation. 

The simulator works in combination with an evolutionary algorithm which performs a 

large number of evaluations in a short time. It means that it eventually exploits 

implementation errors and instabilities of the physics engine, such as jittering and 

jumping. A filter was implemented to address these. However, it does not fix the 

implementations itself. It is a workaround that spots errors and acts accordingly upon 

them. Otherwise, changes in the physics engine code may require additional effort. 

7.3.3 Generative System 

The generative system was based on an evolutionary algorithm. The algorithm included 

the basic principles of computational evolution and was able to evolve solutions. The 

implemented algorithm can be considered as state of the art and was tested with different 

configurations. However, the focus of this research was not on a comparison of different 

algorithms, but rather, on the representation, as it has a larger impact on the performance 

of the algorithm, instead of changing the algorithm’s routine or investigating its 

parameters, such as mutation or recombination rate. 

The analysis of specific industrial design problems and solving them with the generative 

system was out of the scope of this work. The system was designed specifically with the 

travel distance objective in mind. A specific industrial design case would have required 

additional implementations. 

7.3.4 Experiments 

The software was designed iteratively and went through numerous iterations, in which 

implementation errors were corrected, representations developed, and evolutionary 

configurations tested. In total, there were 17 different representations developed, four 

different mutation operators, and four different recombination operators. Many of these 

did not perform well and were not used in experiments.  

Furthermore, several scripts in Python, R, and Octave were developed that allowed 

analysing results and plotting figures. 

Experiments were conducted on multiple computers for a total computation time of over 

5,000 hours which equals to nearly 210 days of computation on a single computer. A 

setup of five computers was used, which lowered the time to produce results. 
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7.3.5 Locomotion-based fitness function 

This work shows how to use an Evolutionary Computing approach to evolve mechanical 

systems.  A design objective of traversing landscapes was chosen to produce comparable 

results throughout this work. It was found general enough to give the algorithm design 

freedom. However, for industrial application objectives need to be defined in a very 

specific way which requires in-depth research of methods to define design problems in 

different engineering domains in future. Instead of measuring the travel distance, another 

approach to define a design objective could be to define a path instead. The fitness 

function would evaluate how close the centre of the machine follows the path.  

This work showed that design solutions can be evolved using a locomotion-based fitness 

function. This can be further developed into a mechanical design application for evolving 

components during the early design stage, e.g. as a CAD support tool. One would need 

to exchange the objective of traversing a landscape with e.g. rotating a lever component 

in a certain way. It would allow evolving mechanical components able to rotate another 

component within a system without human intervention. 

7.3.6 Different Approaches 

The literature review showed that there are many approaches to implement generative 

design systems. In this work, evolutionary computing was used, which has shown to 

perform well. Evolutionary computing is usually a blind approach; often, it does not 

include knowledge about the design problem or past problems. However, there are other 

methods such as machine learning, and neural networks, which have the ability to identify 

patterns and correlate them to the fitness of the design, which may be an advantage. 

Evolutionary computing was selected due to the priority being given to the representation, 

as there was none available and the working principles are easier to observe than other 

approaches. However, the representation may also be usable in the variety of fields, and 

other researchers and practitioners may try to apply different methods using the finding 

from this work. 

Another interesting approach would be to focus on evolving design and behaviour at the 

same time, such as in artificial life. Using the proposed representation would allow 

evolving far more complex designs compared to those used before, which focused solely 

on the behaviour. 

The implemented software can also be extended by adding another physics simulator such 

as particle simulation to evolve, e.g. for aerodynamics or compliant mechanisms. 
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7.3.7 Potential Improvements 

The way the genotype maps to the phenotype space can be further improved. Currently, 

genes can take values between zero and one with seven digits of precision. However, the 

coordinates in the phenotype space are many orders of magnitude less (240 pixels). The 

disproportion was not spotted until all experiments were conducted. As all experiments 

used the same configuration, it should not have any influence on the results as such. A 

lower precision in the genotype representation may increase the speed of finding better 

solutions. 

7.4 Future Work 

Mechanism design has a large number of different application areas. These range from 

industrial applications, such as production systems, to design conveyor systems, through 

sorting machines, to automotive design, e.g. for wiper mechanisms, or mechanical 

redundant devices such as closure systems. The proposed framework can be further 

developed with a focus on other design problems and types of mechanisms. Different 

mechanical components can be implemented, such as translation joints, springs, and 

mechanical stops. It could lead to mechanisms with more complex behaviour and 

including additional automatisation, such as spring design and optimisation. 

Also, the actuator control pattern could be evolved to produce more complex input 

movement. It would open the door to evolving actuator behaviour, and the shape and 

configuration of components simultaneously, which is closer to biological evolution. 

Another focus could be on the design interface for engineers, to allow them to specify a 

general design problem graphically. In this work, it is done by using input files containing 

the bespoke scripting language. In future, the generative system can be a part of a design 

tool. It may support the conceptual design process for mechanism design, able to propose 

design solutions to engineers for general, or even specific problems related to planar 

mechanisms. It could be run as an addition to traditional CAD. Furthermore, the ability 

to extend the generative system to 3D mechanism design should be investigated which 

would make it even more suitable to be used in a CAD scenario.  

The software is designed in a modular way. It allows to exchange the evolutionary 

algorithm with other search heuristics, to add other representations, and also the physics 

engine can be exchanged with another, e.g. 3D physics engine.  

The representation and evolutionary algorithm could be used in a different context such 

as evolving aerodynamic shapes, such as turbine blades, using particle physics simulation. 
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This work could be used to implement a design system for a specific engineering domain 

and test it with engineering designers. Solutions evolved by the algorithm could be 

compared to human designs to investigate if innovative solutions could be identified or 

at least solutions of which no human thought of. 

7.5 Conclusion 

Generative design aims to produce a set of solutions, which can be analysed and selected 

by engineers for further development, in order to increase the output of the preliminary 

design stage. This work addressed the area of generative design and presented a method 

of evolving planar mechanisms for the preliminary stage of mechanical design, using 

evolutionary computing techniques, which has not been done before in this specific 

domain. The main contributions of this work are: 

• A software tool to run experiments, visualise, and record the process of evolving 

shapes for mechanical components 

• Implementation of bespoke software to run experiments; including visualising, 

simulating and evolving design solutions 

• Development and evaluation of a number of evolutionary representations for 

shapes and mechanisms 

• The validation of a framework through the evolution of mechanisms 

• Empirical data, and analysis of the experimental results focusing on evolving 

planar mechanisms 

In future, this work has the potential to be developed into an industry tool for assisting 

engineers in the early stage of planar mechanism design. 
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Appendices 

Appendix 1 Supplementing Tables for Chapter 3 

Table 4: Shape Experiment Results part 1 

 

Problem Method ymin lower middle upper ymax outliers

R1 3753 6163 13779 17332 27761

R2 1509 2129 2371 3930 5663 12193, 11449, 8415

R3 1311 1780 2259 3481 4926 7690, 6880, 8926

R4 0 2072 2463 3608 4730 8992, 12647

R1 2871 7348 8692 10442 13576 489, 19294

R2 1051 1734 2324 2666 3473 6215, 6175

R3 1612 2051 2602 3313 4831 5958, 6709

R4 360 1606 2310 3585 5846 7350, 6895, 6929

R1 4277 5701 7789 13065 21558

R2 4123 5573 6095 6562 7326

R3 4272 5195 5972 7122 7478

R4 768 2585 3094 3832 5053 5838

R1 1263 7105 9378 11138 14209

R2 761 1389 1889 2426 3438

R3 463 1196 1622 2046 2794 3398, 3440

R4 0 1004 1237 2224 2365 5886, 5205, 7448

R1 5035 7267 8076 9943 11720 1239, 1696, 1869, 14111

R2 1267 1754 1861 2091 2525 1201, 3135, 2957

R3 1490 1665 1804 1963 2399 4137

R4 1806 2768 3398 4215 5656

R1 495 1300 1518 2815 4778 7642, 6795

R2 115 205 286 356 524

R3 78 173 257 318 411 559

R4 142 195 292 436 726 1200

R1 1787 4493 6419 8566 10986

R2 818 1071 1299 1940 2224

R3 968 1194 1503 1813 2402

R4 1126 1800 2241 2566 2793 3718, 4546

R1 134 2990 4053 5423 7600 10060, 10440, 10242

R2 418 627 694 900 1265 1313

R3 239 373 496 576 716

R4 610 814 1024 1155 1576 1836, 90

p07

p08

p01

p02

p03

p04

p05

p06
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Table 5: Shape Experiment Results part 2 

 

Problem Method ymin lower middle upper ymax outliers

R1 2514 5644 6962 12112 16361 22065

R2 1920 2244 2504 2803 3585 6368

R3 2345 2776 3043 3580 3816 7068, 6447, 5682, 6950

R4 1292 1563 1710 1982 2305 4150, 3510, 840

R1 899 5050 6693 8121 12421 17631, 12812

R2 1291 1862 2253 2489 3186

R3 1762 2254 2581 2860 3748 4463, 4514

R4 1747 2639 2796 3578 3887 6085, 7308

R1 7390 10196 12286 12796 16491 16867

R2 3385 3506 3924 4039 4314 5454

R3 3081 3537 3834 4192 5148 6712, 6438

R4 1592 2850 3929 4739 6618 8921, 8033

R1 4439 6884 10877 14428 18244

R2 5016 5797 6059 6408 7324

R3 4878 5646 6133 6541 7771

R4 470 2837 3286 6316 8592

R1 429 1272 1570 1868 2290 3134, 2938

R2 275 352 475 646 841

R3 183 300 384 454 617 689, 704

R4 442 709 771 1003 1284

R1 3 933 1185 1804 2670 7011

R2 195 446 500 619 775 957

R3 228 294 333 391 440 1166, 616, 602

R4 438 527 676 988 1376

R1 499 4402 5458 7963 12474 16752

R2 772 1039 1252 1903 3155 4118

R3 652 1357 2092 2347 3235

R4 976 1695 2240 3189 4838 6614

R1 182 1349 2191 2963 5367

R2 284 422 495 564 704 919, 849, 1006, 835

R3 227 376 462 521 696

R4 512 686 815 1030 1466 1642

p15

p16

p09

p10

p11

p12

p13

p14
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Table 6: Shape Experiment Results part 3 

 

  

Problem Method ymin lower middle upper ymax outliers

R1 1164 2015 2234 2719 3142 6320, 644

R2 60 204 372 582 884

R3 125 327 413 576 888 956, 1716, 1211

R4 67 343 848 1544 1859

R1 16 1595 2072 3287 5434

R2 44 160 254 336 380 820, 799

R3 76 161 213 268 374 460, 545

R4 50 206 249 475 878 1066, 974, 2278

R1 0 2203 3949 5988 11641

R2 495 711 829 1433 2003

R3 337 678 829 1522 2442

R4 574 862 1084 1510 2407 3807, 3747

R1 27 1433 3573 5798 8099

R2 201 490 623 806 1174

R3 184 324 367 420 501 595, 166, 618

R4 192 306 433 748 958 4526, 1584, 2247

R1 3794 4955 6188 7103 8963 670, 538

R2 357 533 618 703 911 203, 1001, 188

R3 179 495 637 717 841

R4 647 1335 1959 2152 3011 4778

R1 112 1149 2419 3771 5706

R2 6 119 201 338 517 674, 671

R3 0 9 54 108 223 336, 313

R4 1 114 627 1210 2276

R1 2092 4798 6028 8253 10818

R2 416 700 1154 1536 2280 3824

R3 262 619 1077 1375 1986 3206

R4 347 730 1173 1810 3282 4055

R1 5542 9854 13786 22673 31440

R2 9270 11304 12950 13904 16429

R3 10064 11056 12574 14071 16961

R4 863 1678 2088 3422 5886 7002, 9250, 10115, 9113

p21

p22

p23

p24

p17

p18

p19

p20
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Appendix 2 Simulator Acceptance Tests 

This section summarises the acceptance tests used to validate the physics part of the 

simulator implementation. 

Appendix 2.1 Collision Tests on One Layer 

This section describes different collision tests on one layer which were used to validate 

the simulator. 

The tests validate the collision between a dynamic body consisting of different shape 

types, such as polygon shapes and circle shapes with environment objects. Each scene 

contains a bearing plate with walls on which a dynamic object is dropped. The bearing 

plate has a static position and has static walls. The gravity is set to 9.81 in the negative y-

direction, and the frame rate is set to 60fps. The material parameters for friction are set to 

0.2, for restitution 0.6, and density 1.0. The setup is shown in Figure 68. 

 

Figure 68: Collision 

Test a validates the circle shape type; b the polygon shape type; c two circle shapes in 

one scene which should act as one component; d two polygon shapes which should act as 
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one component; and e which combines the polygon shape type with a circle shape, both 

should act as one component. 

Expected 

It is expected that the dynamic body falls, without colliding with the bearing plate. 

However, it needs to collide with the walls which are placed on the same layer. The shape 

component should bounce off and either roll or slide down the contour of the walls. 

Outcome 

In all cases, the shaped component falls, collides, and behaves as expected. 

Appendix 2.2 Collision Test with Different Dynamic Components 

The test validates the collision between a dynamic component made of multiple shapes 

and a bearing plate with walls. The plate has a static position and contains static walls 

which work as obstacles. Both shapes should collide with the outer wall. The shapes of 

the dynamic component and the walls get different layers assigned. Both components 

should collide with the outer wall of the bearing plate. Besides, the circle shape should 

collide with the wall 2, 4, and 6. The polygon shape should collide with wall 1, 3, and 5. 

The gravity is set to 9.81 in the negative y-direction, and the frame rate is set to 60fps. 

The material parameters for friction are set to 0.2, for restitution 0.6, and density 1.0. The 

setup is shown in Figure 69. 

 

Figure 69: Collision Multi-layer 

Expected 

It is expected that the shape component falls, without colliding with the bearing plate. 

Then the polygon shape collides with wall 1, and the circle shape should go right through 
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it, still connected to the polygon. The component should slide with both shapes towards 

wall 2, and the circle shape should collide with it. The polygon shape should not collide 

and fall through. Both components should then slide further down. 

Outcome 

The shapes fall, collides, and behaves as expected. 

Appendix 2.3 Collision Test with Different Static Components  

The test is similar to the previous test, however, in this case, the layers of the static 

components are changed, and the dynamic component is placed on one layer. The setup 

is similar to Figure 69.  

Expected 

The dynamic component should only collide with wall 1, 3, 4, and 6. 

Outcome 

The body falls, collides, and behaves as expected. 

Appendix 2.4 Parameter Tests 

In this section, the tests are focusing on the gravity, density, friction, and restitution 

parameter. 

Appendix 2.4.1 Gravity 

The gravity parameter is tested by assigning a low gravity value of 2.0 in one scene, and 

then a high gravity value of 18.0 in another. A similar scenario is used as represented in 

Figure 69. The gravity is set in the negative y-direction, and the frame rate is set to 60fps. 

The material parameters for friction are set to 0.2, for restitution 0.6, and density 1.0. 

Expected 

It is expected that the body in the first scene falls slow, and the one in the second faster. 

Outcome 

Everything behaves as expected when changing the gravity in the simulator. 

Appendix 2.4.2 Density 

The density parameter is tested by assigning a low-density value of 0.1 in one scene, and 

then a high-density value of 2.0 in another. A similar scenario is used as represented in 
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Figure 69. The gravity is set to 9.81 in the negative y-direction, and the frame rate is set 

to 60fps. The material parameters for friction are set to 0.2 and for restitution 0.6. 

Expected 

It is expected that the body in scene one behaves lighter compared to the one in scene 

two. 

Outcome 

Everything behaves as expected. 

Appendix 2.4.3 Friction 

The friction parameter is tested with a polygon shape as it has more surface in contact 

with the wall. The restitution is set to 0 for all bodies to reduce the bouncing behaviour. 

Each wall segment from 1 to 6 has a different friction value assigned, increasing from 0.0 

to 1.0. Each step increases the value by 0.2. The dynamic component has friction set to 

0.1. The gravity is set to 9.81 in the negative y-direction, and the frame rate is set to 60fps. 

Expected 

It is expected that the body slides down the walls and slows down on each step because 

of the increase of the friction between the dynamic component and the wall. 

Outcome 

Friction increases and component slows down as expected. 

Appendix 2.4.4 Restitution 

The restitution parameter is tested with a circle shape as the bouncing behaviour should 

be better visible. The restitution of the dynamic component was set to 0. The walls 1 to 

6, have an increasing restitution parameter from 0.0 to 1.0. Each step increases the value 

by 0.2. All bodies have the friction set to 0.2. The gravity is set to 9.81 in the negative y-

direction, and the frame rate is set to 60fps. 

Expected 

It is expected that the body starts to bounce more on every step-down. 

Outcome 

The bouncing behaviour increases on the way down, which is as expected. 
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Appendix 2.5 Single Joint Test 

This section focuses on testing the revolution joint. It is positioned in the centre of a 

polygon shape and connects the polygon shape with a bearing plate. The setup is shown 

in Figure 70. The gravity is set to 9.81 in the negative y-direction, and the frame rate is 

set to 60fps. 

 

Figure 70: Revolution Joint 

Expected 

It is expected that the joint is placed in the correct position and act as the centre point of 

the rotation. The component should start to seesaw around the revolution joint. 

Outcome 

The joint is placed correctly, and the polygon shape rotates around the revolution joint. 

Appendix 2.6 Linkage Test 

A chain of three components is used to test the correct implementation of the simulator. 

The bodies are connected with revolution joints. The first body is connected to the bearing 

plate. The second body is connected to the first, and the third is connected to the second 

body. The gravity is set to 9.81 in the negative y-direction, and the frame rate is set to 

60fps. The setup is shown in Figure 71. 

 

Figure 71: Revolution Joint Chain 

Expected 

It is expected that the components behave like a chain. Connected components should not 

collide with each other. 
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Outcome 

The components behave as expected. Connected components are not colliding. 

Appendix 2.7 Actuator Tests 

This section focuses on testing the actuator functionality of the simulator. The actuator is 

tested by using the scenario seen in Figure 70 and setting the isMotor variable to true. 

The speed is set to 60rpm. 

 Expected 

It is expected that the body rotates with a speed of one rotation per second. 

Outcome 

The body rotates with one rotation per second as expected. 
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Appendix 3 Problem-file Format 

 

<?xml version="1.0" encoding="UTF-8"?> 
<svg xmlns="http://www.w3.org/2000/svg" version="1.1" baseProfile="full" 
width="1000px" height="500px" viewBox="0 0 1000 500"> 
  
 <style>@import url(style.css);</style> 
 <desc fileID="0">Example Problem</desc> 
  

 
 <!-- Grid Background --> 
 <g id="background_grid"> 
  <defs>  

<pattern id="grid20" width="20" height="20" patternUnits="userSpaceOnUse"> 
    <path d="M 100 0 L 0 0 0 100" /> 

</pattern> 
  </defs> 
  <rect id="bgcolor" height="500" width="1000" y="0"></rect> 
  <rect fill="url(#grid20)" height="500" width="1000" y="0"></rect> 
 </g> 
  
 <!-- Environment Configuration --> 
 
 <!-- Ground --> 
 <g id="ground"> 

<g id="1" predefined="true" transform="translate(0, 300) rotate(0) scale(1)" type="static"> 
<polyline type="polygon" points="-1000,200,-1000,0,10000,0,10000,200" friction="0.5" 
restitution="0.6" density="1.0" plane="0"/> 

  </g> 
 </g> 
  
 <!-- Environment element --> 
 <g id="env_element"></g> 
  
 <!-- Housing --> 

 <g id="housing"> 
<g id="2" predefined="true" transform="translate(250, 170) rotate(0) scale(1)" type="dynamic"> 

   <!-- Housing Background --> 
   <polyline type="polygon" isSolutionSpace="true" points="-150,25, -150, 

-25, 150,-25, 150,25" friction="0.2" restitution="0.6" density="1.0" plane="1"/> 
  </g> 
 </g> 
  
 <!-- Drive --> 
 <g id="mech_config"> 
  <g id="levers"> 
   <!-- potential solution --> 
  </g> 

   
  <!-- transform needs to be similar to transform of bodyB --> 
  <g id="joints"> 
  </g> 
 </g> 
  
 <!-- Parameter definition --> 
 <parameter> 

<optimisationcfg populationSize="40" childrenNumber="10" solutionsToProduce="20000" 
trackDirectionX="1" trackDirectionY="0" mutationMethod="4" crossoverMethod="2" 
mappingVer="15"> 

     <weight name="actuatorrotation" value="0" /> 

     <weight name="walkingdistance" value="1" /> 
     <weight name="areapenalty" value="0" /> 
     <weight name="jumppenalty" value="0" /> 
  </optimisationcfg> 

 
<constraints noOfPlanes="1" shapeSizeMin="10" shapeSizeMax="80" nodesPerShape="6" 
shapesPerLever="1" allowedShapeTypes="0" noOfLevers="1" noOfJointsPerLever="1" 
allowedJointTypes="0" /> 

   
<simulation gravity_x="0" gravity_y="9.81" simulation_frames="600" collideConnected="False" 
frameRate="60" pixelWorldRatio="100" /> 

 </parameter> 
  

 <!-- Results --> 
<results user="empty" machine="empty" date="empty" time="empty" processingTime="empty" 
solutionsProduced="0" totalscore="0" chromosome=""></results> 

 
 <!-- Simulation Data --> 
 <errors></errors> 
  
 <!-- Simulation Data --> 
 <simulation_frames valid="false"></simulation_frames> 
  
</svg> 


