

Evolving Planar Mechanisms for the

Conceptual Stage of Mechanical Design

Paul Lapok

A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier

University, for the award of Doctor of Philosophy

October 2020

ii

Declaration

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institutes of learning.

The thesis is the result of the student’s own independent work.

iii

Abstract

The design of planar mechanical systems is a challenging and time-consuming task for

engineers. Evolutionary computing has been shown to be a successful tool applied to

design automation in various mechanical engineering fields. This thesis aims to determine

how evolutionary computing can be applied in the early conceptual stage to support planar

mechanical design. Building on existing work, it investigates suitable evolutionary

representations and defines and evaluates a framework for evolving planar mechanical

systems in a physics environment. It focuses on the design of representations in a multi-

step approach, capable of producing mechanical shapes and mechanisms consisting of

several components and linkages, adapting to their environment and able to traverse

different landscapes.

Based on a review of the literature on evolutionary computing in design, shape

representations, generative design tools, and evolving mechanisms, a generative system

was developed, allowing a series of empirical studies to be conducted. Analysis of the

results demonstrated the importance of breaking down the representation design into

multiple stages. It showed that the implemented representations, combined with the

generative tool and evolutionary operators, are capable of evolving solutions for problems

with different complexity. The results indicate the representation’s large impact on the

solution quality, and therefore, careful design is necessary. This work provides insight

into design decisions and compatibility with evolutionary computing techniques, offering

a promising outlook for using this method to support the conceptual stage of mechanical

design. In future, this work has the potential to be developed into an industry tool for

assisting engineers in the early stage of planar mechanism design.

iv

Acknowledgements

I want to thank my director of studies Alistair Lawson for introducing me to the

possibility of doing a PhD under his supervision and for endless helpful discussions and

support throughout it.

I would also like to thank my second supervisor Ben Paechter, for contributing his

knowledge, his insightful comments and support in numerous meetings.

-

Also special thanks to my friends,

Emilia Sobolewska, for her valuable criticism, inspiration and companionship;

Sandra Dulisch, for her enormous patience and encouragement;

and finally, Christoph Zmarzlik, for endless nights of fruitful conversations.

Thank you all for always being there for me. Also you, Bex.

-

I would like to dedicate this work to my family, to my beloved parents

Eugen and Bozena Lapok, and my sister Susanne Baumgarten.

Thank you for your love, understanding and support through my whole life.

Furthermore, to my grandparents, especially my grandfather Hubert Łapok†.

You always satisfied my curiosity in knowledge throughout my entire childhood.

v

Table of Contents

Declaration .. ii

Abstract .. iii

Acknowledgements .. iv

List of Publications ... x

List of Figures .. xi

List of Tables.. xiv

1 Introduction .. 15

1.1 Motivation and Problem Statement .. 16

1.2 Research Questions and Contribution .. 17

1.3 Thesis Overview ... 19

1.4 Summary .. 19

2 Literature Review .. 21

2.1 Introduction .. 21

2.2 Background .. 21

2.2.1 Early Design Stages .. 21

2.2.2 Planar Mechanisms ... 22

2.2.3 Evolutionary Computing and other Approaches in Mechanism Design ... 23

2.2.4 Evolutionary Representation ... 24

2.3 Shape Representation ... 25

2.4 Representation Evaluation .. 29

2.5 Generative Design Tools .. 29

2.6 Evolving Mechanisms .. 31

2.7 Summary .. 33

3 Evolutionary Shape Representations for Mechanical Design 36

3.1 Introduction .. 36

3.2 Background .. 36

vi

3.2.1 Search Space Dimension ... 38

3.2.2 Search Space Coverage ... 38

3.2.3 Search Space Validity ... 39

3.2.4 Compatibility with Evolutionary Operators .. 40

3.2.5 Applications for Experiments ... 41

3.3 Method .. 43

3.3.1 Target Shapes .. 44

3.3.2 Evolutionary Representation ... 44

3.3.3 Evolutionary Algorithm .. 49

3.3.4 Fitness Evaluation ... 51

3.3.5 Experiments... 53

3.4 Results and Evaluation ... 53

3.5 Summary .. 59

4 Evaluation Method for Evolutionary Design using a Physics Simulator 62

4.1 Introduction .. 62

4.2 Background .. 63

4.2.1 Requirements for Physics Simulator ... 63

4.2.2 Physics Parameters .. 64

4.2.3 Application for Experiments ... 64

4.3 Method .. 69

4.3.1 Functionality Testing .. 69

4.3.2 Evolutionary Representation ... 70

4.3.3 Evolutionary Algorithm .. 72

4.3.4 Fitness Evaluation ... 73

4.3.5 Experiments... 74

4.4 Results and Evaluation ... 75

4.4.1 Simulator Validation ... 76

4.4.2 Evaluation of Evolutionary Operators .. 77

4.4.3 Evaluation of Generative System’s Ability to Evolve Solutions 79

vii

4.4.4 Evaluation of Evolutionary Settings ... 81

4.4.5 Evolving Solutions for Environments with Enhanced Complexity 90

4.5 Summary .. 92

5 The Conception of a Framework for Evolving Designs of Planar Mechanisms 94

5.1 Introduction .. 94

5.2 Background .. 95

5.2.1 2-Dimensional Environment ... 96

5.2.2 Lever Representation .. 97

5.2.3 Joints ... 99

5.2.4 Actuators ... 99

5.2.5 Mechanism Representation ... 100

5.2.6 Mechanism Types ... 102

5.2.7 Bearing Plate ... 104

5.2.8 Problem Scope .. 104

5.2.9 Solution Hierarchy .. 105

5.2.10 Design Objectives ... 106

5.3 Method .. 109

5.3.1 Evolutionary Representation ... 109

5.3.2 Evolutionary Algorithm .. 110

5.3.3 Fitness Evaluation ... 110

5.3.4 Experiments... 111

5.4 Results and Evaluation ... 112

5.4.1 Evaluation of the Generative System’s Ability to Evolve Solutions 112

5.4.2 Evolved Solutions in Different Landscapes .. 114

5.4.3 Simulator Limitations ... 116

5.5 Summary .. 118

6 Evolving Four-Bar Mechanisms .. 120

6.1 Introduction .. 120

6.2 Background .. 120

viii

6.2.1 Four-Bar Mechanism .. 120

6.2.2 Design Objective ... 122

6.3 Method .. 123

6.3.1 Evolutionary Representation ... 124

6.3.2 Evolutionary Algorithm .. 125

6.3.3 Fitness Evaluation ... 125

6.3.4 Experiments... 125

6.4 Results and Evaluation ... 126

6.4.1 Performance Validation whilst using the Attached Shape 127

6.4.2 Performance Validation using Random Sampling 130

6.4.3 Investigation of Mutation and Recombination Operators 130

6.4.4 Performance on Problems with Enhanced Complexity 133

6.4.5 Simulator Limitations ... 134

6.5 Summary .. 134

7 Conclusion and Future Directions ... 136

7.1 Summary of Work Conducted .. 136

7.2 Summary of Contribution ... 138

7.3 Discussion .. 140

7.3.1 Challenging Issues .. 140

7.3.2 Simulator ... 141

7.3.3 Generative System .. 142

7.3.4 Experiments... 142

7.3.5 Locomotion-based fitness function ... 143

7.3.6 Different Approaches .. 143

7.3.7 Potential Improvements .. 144

7.4 Future Work ... 144

7.5 Conclusion .. 145

Bibliography .. 146

Appendices .. 156

ix

Appendix 1 Supplementing Tables for Chapter 3 ... 156

Appendix 2 Simulator Acceptance Tests .. 159

Appendix 2.1 Collision Tests on One Layer .. 159

Appendix 2.2 Collision Test with Different Dynamic Components 160

Appendix 2.3 Collision Test with Different Static Components 161

Appendix 2.4 Parameter Tests .. 161

Appendix 2.4.1 Gravity ... 161

Appendix 2.4.2 Density .. 161

Appendix 2.4.3 Friction .. 162

Appendix 2.4.4 Restitution ... 162

Appendix 2.5 Single Joint Test... 163

Appendix 2.6 Linkage Test .. 163

Appendix 2.7 Actuator Tests .. 164

Appendix 3 Problem-file Format .. 165

x

List of Publications

The following publications resulted from this work:

Lapok, P., Lawson, A., & Paechter, B. (2017). Evaluation of a genetic representation for

outline shapes. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion on - GECCO ’17 (pp. 1419–1422). New York, New York,

USA: ACM Press. https://doi.org/10.1145/3067695.3082501

Lapok, P., Lawson, A., & Paechter, B. (2019). 2-Dimensional Outline Shape

Representation for Generative Design with Evolutionary Algorithms. In EngOpt

2018 Proceedings of the 6th International Conference on Engineering Optimization

(pp. 926–937). Springer International Publishing. https://doi.org/10.1007/978-3-

319-97773-7

Lapok, P., Lawson, A., & Paechter, B. (2019b). Evolving planar mechanisms for the

conceptual stage of mechanical design. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion on - GECCO ’19 (pp. 383–384).

New York, New York, USA: ACM Press. https://doi.org/10.1145/3319619.3322006

https://doi.org/10.1145/3067695.3082501
https://doi.org/10.1007/978-3-319-97773-7
https://doi.org/10.1007/978-3-319-97773-7
https://doi.org/10.1145/3319619.3322006

xi

List of Figures

Figure 1: Four-bar Linkage ... 23

Figure 2: Shape Validity ... 39

Figure 3: Recombination Operation .. 40

Figure 4: Target Shape Definition... 41

Figure 5: Target Shape Matching Application .. 42

Figure 6: Target Shapes .. 44

Figure 7: C# Code Spline Function A ... 46

Figure 8: C# Code Spline Function B ... 46

Figure 9: Representations .. 47

Figure 10: Pseudo Code Evolutionary Algorithm ... 50

Figure 11: Pseudo Code Box-Muller transform equation ... 51

Figure 12: Fitness Evaluation ... 52

Figure 13: C# code to calculate the area of a shape .. 53

Figure 14: Evolved solutions with R1 - R4 ... 54

Figure 15: Method Comparison .. 56

Figure 16: Improvement Over Time ... 59

Figure 17: Undercut feature .. 61

Figure 18: Generative Tool - Load Menu ... 65

Figure 19: Generative Tool - Simulation Menu .. 66

Figure 20: Generative Tool - Generative Menu .. 67

Figure 21: Encoding .. 71

Figure 22: Maximum Distance from the Origin ... 71

Figure 23: Turning-off Rectangles .. 72

Figure 24: One-point Crossover R1 .. 73

Figure 25: Two-point Crossover R2 ... 73

Figure 26: Simulation Landscapes .. 74

Figure 27: Comparison of Evolutionary Operators ... 78

Figure 28: Comparison of Generative System to Random Sampling 80

Figure 29: S1 and S2 for R, R* and R** on Landscape a ... 82

Figure 30: S1 and S2 for R, R* and R** on Landscape b .. 84

Figure 31: S1 and S2 for R, R* and R** on Landscape c ... 86

Figure 32: S1 and S2 for R, R* and R** on Landscape d .. 88

xii

Figure 33: Fragments .. 89

Figure 34: S1 and S2 for R, R* and R** on Landscape e ... 91

Figure 35: 2-Dimensional Multilayer Virtual Environment ... 96

Figure 36. Representation of a 3D Model in the 2D Environment 97

Figure 37: Real Lever Component .. 97

Figure 38: Lever Representation ... 98

Figure 39. Representation of 3-dimensional Lever ... 99

Figure 40: Rotation Torque and RPM ... 100

Figure 41: 2-Dimensional Mechanical System ... 101

Figure 42: Individual Components ... 102

Figure 43: Linkage .. 103

Figure 44: Linkage with Collision .. 103

Figure 45: File Structure ... 105

Figure 46. Planar Mechanism Model .. 106

Figure 47: Force and Movement Objective .. 106

Figure 48: Path-based Objective ... 107

Figure 49: Mechanism with Two Levers Climbing Stairs .. 110

Figure 50: Environments ... 111

Figure 51: Evaluation of Evolvability ... 113

Figure 52: Mechanism Solutions in Different Landscapes ... 114

Figure 53: Overlapping with Ground .. 117

Figure 54: Overlapping with Components .. 117

Figure 55: False Movement .. 118

Figure 56: Four-bar Mechanism with Attached Shape Component.............................. 121

Figure 57: Four-Bar Mechanism Movement... 122

Figure 58: Mechanism in Virtual Environment .. 124

Figure 59: Chromosome Representation ... 124

Figure 60: Environments ... 126

Figure 61: Median Fitness ... 128

Figure 62: Evolved Solutions .. 129

Figure 63: Mutation Operator ... 131

Figure 64: Recombination Operator.. 131

Figure 65: Recombination with Mutation (blue) vs Mutation-only (green) 132

Figure 66: Moving through a Complex Environment ... 133

Figure 67: Evolution in a Complex Environment ... 133

Figure 68: Collision .. 159

xiii

Figure 69: Collision Multi-layer ... 160

Figure 70: Revolution Joint ... 163

Figure 71: Revolution Joint Chain .. 163

xiv

List of Tables

Table 1: Comparison of Methods p-values ... 55

Table 2. Comparison of Methods using VDA. ... 57

Table 3. Evaluation of evolutionary settings. ... 76

Table 4: Shape Experiment Results part 1 .. 156

Table 5: Shape Experiment Results part 2 .. 157

Table 6: Shape Experiment Results part 3 .. 158

15

1 Introduction

This work focuses on the development of a generative design method for the early phases

of planar mechanism design using an evolutionary computing approach. A mechanism is

a system of components working together to transfer a given input motion into the desired

output motion. Experienced engineering designers require a good understanding of

mechanics and mechanical problems to construct them (Pahl, Beitz, Feldhusen, & Grote,

2007). Most commercially produced mechanisms are planar (Myszka, 2012). Meaning,

that all the relative motions of the components are in one plane or parallel planes (x, y).

In contrast, spatial mechanisms operate in 3-dimensions (x, y, z) (Y. Zhang, 2003).

A typical design process of planar mechanisms includes several stages. It starts with the

conceptual stage that focuses on producing ideas followed by simple drawings, to solve

a problem. Promising solutions are taken further into the preliminary design stage, where

the overall system configuration is defined, and more accurate evaluations can be made

(Ertas & Jones, 1996). The aim is to produce a set of prototypes which can be analysed

and selected by engineers for further development. Well-performing concepts are handed

over to the detailed design stage, where more comprehensive drawings and models of the

solution are carried out and tested. A generative design method turns the computer into a

design generator capable of producing, visualising, and analysing prototypes to increase

the efficiency of this process (Shea, Aish, & Gourtovaia, 2005).

This work investigates a generative design approach concerned specifically with planar

mechanisms. Generative design tools include a variety of methods which will be

discussed. One of these is evolutionary computing, which provides a range of problem-

solving techniques based on the principles of biological evolution, such as natural

selection and genetic inheritance (Eiben & Smith, 2015b). Evolutionary techniques have

been implemented in a variety of generative design applications, such as aerodynamic

shape optimisation (Arias-Montaño, Coello Coello, & Mezura-Montes, 2011; Olhofer,

Jin, & Sendhoff, 2001; Vicini & Quagliarella, 1999), or topology optimisation used to

improve the material usage of components with a focus on their inner structure (Baron,

Fisher, Tuson, Mill, & Sherlock, 1999; Pandey, Datta, & Bhattacharya, 2017).

However, in this work, one faces new challenges, as opposed to other problems which

have already been tackled within the generative design domain. The dynamic nature of a

mechanical system, including collisions of the outline shapes, is rarely considered and is

16

lacking an adequate framework to address it. The outline shapes of mechanical

components are challenging to parameterise as they can be complex, and the relationship

between the position and shape of different components defines how these interact with

each other and the environment which results in the performance of the mechanism.

In previous work relating to planar mechanisms (Chen & Chou, 2016; Ghassaei & Ming,

2015; Tsuge, Plecnik, & McCarthy, 2016), the focus was on kinematics and curve tracing

to generate mechanisms, but did not consider mass; friction; component shapes; and

collisions between components and the environment. Considering these may lead to a

new type of generative design tools, able to evolve more detailed mechanisms or even

fully-functional mechanical devices.

This work proposes a method for computationally evolving planar mechanisms by

breaking down the problem into four stages. The first stage concentrates on evolutionary

representations of free shapes. It is important to identify a suitable shape representation

which covers the problem domain and works well in combination with an evolutionary

algorithm. The second stage concentrates on a physics-based evaluation of potential

solutions. For that purpose, the focus was on the design, implementation and subsequently

testing of a simulator. The third stage concerns the definition and evaluation of a

framework that specifies the assembly of planar mechanisms. The fourth stage builds on

the findings of the previous stages and expands the design framework and focuses on

evolving potential design solutions for linkages to validate it.

1.1 Motivation and Problem Statement

Mechanisms are an important part of our daily life and are often hidden in many devices

such as cars, planes, robots, manufacturing production lines, and more. The design of

these mechanisms requires much time and resources. The manufacturing industries are

seeking to find ways to make their processes more efficient. For example, the

implementation of the Internet of Things and Services, also known under the term “Smart

Factory”, received a large focus to lower costs and increase productivity in

manufacturing(Wang, Wan, Li, & Zhang, 2016). 75% of manufacturing costs are

typically already committed at the end of the conceptual design stage (the initial stage of

the design process) (Ullman, 2009). It means that the decisions to optimise the processes

at a later stage only influence 25% of the manufacturing costs. More attention to the early

design stages is required to address this. For instance, the automation of design can

become an important step towards reaching industrial efficiency goals in the future by

enabling the creation of outputs at a faster pace. Design automation could shorten the

17

development time and provide more resources to focus on lowering future manufacturing

costs. According to the literature, there are not enough tailored tools to support the early

design stages (Zboinska, 2015), and those utilised are more suitable for later stages

(Colombo, Mosca, & Sartori, 2007; Robertson & Radcliffe, 2009; Zboinska, 2015). The

creative thought process of designers may be influenced negatively by using these tools,

which may result in not noticing better suited and more efficient design solutions

(Robertson & Radcliffe, 2009).

In summary, using generative tools at early design stages has a high potential to save

development time and manufacturing costs; however, there is a lack of support tools

tailored for the early design stages. There is no framework for planar mechanisms

available that considers mass; friction; component shapes; collisions between

components and environment; and to conduct experiments to identify a method to evolve

mechanisms for the conceptual or preliminary design stage. A framework such as this

might lead to more advanced types of automated design tools.

1.2 Research Questions and Contribution

This work presents an approach for evolving conceptual planar mechanism design

prototypes for problems defined by engineers using the computer. It intends to extend the

previous work in evolving mechanical designs by considering additional parameters. In

this work, a potential design solution consists of multiple interacting components with

the freedom to evolve the placement and shape of components. The performance of a

solution can be determined from the interactions between these components as a system

and with the environment.

The following research questions were defined:

RQ1: Which evolutionary representation can be used to efficiently represent and evolve

the shape of planar mechanical components?

RQ2: Which evolutionary representation and evolutionary operators can be efficiently

used to represent and evolve mechanical components in a physics environment?

RQ3: To what extent is the evolutionary representation and evolutionary operators able

to evolve mechanisms consisting of multiple components with the aim of traversing

different landscapes?

RQ4: To what extent are the evolutionary representation and evolutionary operators able

to evolve four-bar mechanisms with the aim of traversing different landscapes?

18

The main contribution of this work is the development, and investigation of a relevant

framework, including bespoke software provides a way to specify design problems,

including planar mechanical systems. Solutions are created using an approach which has

not been done before in this specific domain of planar mechanism conceptual design.

The relationships between Research Questions and thesis contribution are as follows:

RQ 1:

1. A comparison of different genetic representations for shapes including an in-depth

investigation of the best performing representation

2. A method to compare, and evaluate different shape representations used in an

evolutionary computing context

3. A software tool to run experiments, visualise, and record the process of evolving

shapes for mechanical components

4. A set of problems and an analysis of the experimental results

RQ 2:

5. A comparison of different genetic representations for the shape of components

used in a physics environment

6. Implementation of bespoke software to run experiments; including visualising,

simulating and evolving design solutions

7. A set of problems and an analysis of the experimental results

RQ 3:

8. A detailed description of the problem, including its variables and parameters

9. A scripting language to define design problems

10. A set of problems and an analysis of the experimental results, focusing on

evolving planar mechanisms

11. The validation of the framework through the evolution of mechanisms consisting

of multiple components

RQ 4:

12. The validation of the framework through the evolution of four-bar mechanisms

13. A set of problems and an analysis of the experimental results, focusing on

evolving planar mechanisms

19

1.3 Thesis Overview

This work consists of seven chapters. Following the introduction in Chapter 1, the second

chapter provides a literature review, including a set of relevant definitions. It focuses on

shape representations, simulators, generative design tools, and evolving mechanisms.

Chapter 3 addresses RQ1; it provides an investigation into different shape representations

suitable for planar mechanism design and usable in an evolutionary computing context.

Chapter 4 is concerned with RQ2; it presents a simulator capable of resolving physical

scenarios, constituting an important part of the design evaluation process. Chapter 5

addresses RQ3, by providing a relevant framework, including the computable model for

defining the real-world problem, as well as a simulation tool allowing evaluation of the

performance of the mechanism in its’ ability to traverse a 2-dimensional landscape.

Chapter 6 relates to RQ4; it is based on the previous findings and focuses on a generative

system with the capability to evolve four-bar mechanism designs. Finally, Chapter 7

provides the conclusion and future work.

1.4 Summary

This chapter gave an introduction to the early stages of planar mechanism design. It

emphasised the complexity of the design process and has highlights that producing well-

performing mechanisms takes expertise, time, and resources. This work investigates the

possibility of forming solutions computationally by creating a generative design system

for planar mechanism design. Evolutionary computing techniques are employed to

address the problem. Partial automation of the conceptual design stage can have a large

impact on industry design processes, output quality, and costs. However, there is no

framework available for evolving planar mechanisms using evolutionary computing.

This thesis addresses the problem in four stages. In the first stage, evolutionary

representations were evaluated to find a representation capable of reproducing

mechanical shapes. In the second stage, a physics simulator will be implemented and

tested with multiple representations. The third stage focused on the specification of a

framework for evolving planar mechanisms, evaluated by evolving mechanisms

consisting of several components. The fourth stage included validation of the framework

through the evolution of four-bar mechanisms.

The research questions and contributions were defined, focusing on the representation of

mechanical components and mechanisms in the context of evolutionary computing. The

work emphasises the design and implementation of a tool capable of evolving target

shapes to compare different shape representations; the implementation of a simulator

20

including a scripting language to define design problems for experiments; a method to

define and analyse experiments around mechanism design; and a validation of the

framework. The next chapter provides further background and relevant literature.

21

2 Literature Review

2.1 Introduction

This chapter provides the background of the research, followed by a literature review and

critical evaluation regarding shape representations, generative design tools, and evolving

mechanisms.

The background information includes an introduction to early design stages; planar

mechanisms; evolutionary computing; and evolutionary representations. Section 2.3

discusses shape representations covering different engineering design fields, as well as

methods of representation evaluation. Section 2.4 investigates a method for representation

evaluation. Section 2.5 provides insight into generative design tools and discusses their

benefits and drawbacks. Section 2.6 concerns evolving mechanisms; it summarises the

work done in the field and emphasises the differences between them.

2.2 Background

This section focuses on early design stages, planar mechanisms, evolutionary computing,

and evolutionary representations.

2.2.1 Early Design Stages

Engineering design is a broad field of which one area is the design of mechanical systems.

The engineering design process consists of phases that differ in the fidelity of a potential

design solution at the end of each phase. However, no clear boundaries can be drawn

between the phases because solutions are evaluated and re-designed in an iterative manner

(Pham & Yang, 1993).

The process starts with the conceptual design stage, which works on an abstract level.

Traditionally, during the conceptual stage, a relatively small team of engineers develop

ideas and make design sketches. Conceptual design requires creative work utilising novel

components, or a combination of known components in a novel way. There is no fixed

methodology to follow for conceptual design, and there could be many ways which lead

to well-performing conceptual design solutions (Renner & Ekárt, 2003a). However,

conceptual design plays a central role in ensuring design quality and innovation (Colombo

et al., 2007).

22

The next phase is the preliminary design stage, where the overall system configuration is

defined. Designs at this stage are more accurate and provide a basis for first evaluations

(Ertas & Jones, 1996). However, in the conceptual and preliminary design phase,

accuracy is not as important as the ability to search for a variety of different designs

simultaneously (Cvetkovi & Parmee, 1999). Promising designs are then taken further into

the detailed design stage, where technical drawings are made and used to produce the

required product. At this point, the design is set and is subject to only minor optimisation

efforts (Pahl et al., 2007).

2.2.2 Planar Mechanisms

Planar mechanism design is a specific field in mechanical engineering, undergoing the

previously mentioned design stages. A mechanical system typically consists of

mechanisms assembled from moving components such as driving components, levers,

gears, chains, springs, and others. Most commercially produced mechanisms are planar

(Myszka, 2012). This means that all relative motions of the components are in one plane

or parallel planes (Y. Zhang, 2003). Components transform input forces and movements

to achieve specified forces and movements at the output (Uicker, Pennock, & Shigley,

2003). The challenge of the mechanism design process is to shape components and to

assemble them into a system which moves in such a way as to meet the output

requirements in response to the given input specifications. The capabilities of the driving

component, with the occurring forces in the system, need to be taken into account to make

the mechanism fulfil the desired task.

Once a concept which meets the relevant requirements is established (e.g. addressing the

design problem with a specific planar mechanism), preliminary drawings are produced

and evaluated to identify if those satisfy the requirements. Promising concepts are handed

over to the detailed design stage, including technical sketches which are necessary to

build prototypes for physical testing. The entire process is iterative and ends with a

mechanism which fulfils the required task (Pahl et al., 2007).

Planar mechanisms can be assemblies of individual mechanical components but also

assemblies of interconnected components such as Four-bar mechanisms.

23

Figure 1: Four-bar Linkage

A four-bar mechanism consists of four parts, such as shown in Figure 1. These are three

links and one frame. The bars b – d plus frame a are connected with four rotation joints

to each other. The frame a is not movable in space. It keeps two rotation joints on a

constant distance from each other. Bar b is the driving component and introduces a rotary

motion into the system. It connects the frame to bar c. Bar c is connected to bar d, linked

to the frame. The tracing point P moves relative to bar c. It draws a coupler curve in space

when the mechanism gets into motion. The same mechanism can produce different

coupler curves if P has a different position.

2.2.3 Evolutionary Computing and other Approaches in Mechanism Design

Real-world design problems include a large number of design parameters which can be

addressed with a variety of approaches. Classical methods, such as gradient methods are

often not suitable (Renner & Ekárt, 2003a). For those methods, the optimisation problem

would need to be defined by a function to describe the search direction towards the

greatest increase, as the design problems may have many local maxima. However, in

some specific cases, numerical methods were used (Mariappan & Krishnamurty, 1996),

which indeed utilise a gradient method for optimal synthesis of mechanisms. Others

applied case-based reasoning (Bose, Gini, & Riley, 1997), a method to store and retrieve

design artefacts of functional features to create four-bar mechanisms, was used with the

objective to follow defined planar coupler curves. The same problem was tackled with

neural networks (Hoeltzel & Chieng, 1990), utilising a system called pattern matching

synthesis. A neural network was trained with patterns obtained from parametrically

generated coupler curves and retrieved these which best matched the desired curve.

Furthermore, path synthesis was also used to generate planar four-bar mechanisms with

genetic algorithms (Cabrera, Simon, & Prado, 2002; Roston & Sturges, 1996). However,

these methods focused mainly on the kinematic behaviour of linkages without

considering interactions with other components via the outline shape.

24

Metaheuristics, such as Ant Colony Optimization, Evolutionary Computation, Simulated

Annealing, Tabu Search and others, are algorithmic frameworks designed to solve

complex problems (Bianchi, Dorigo, Gambardella, & Gutjahr, 2009). They are often

applied to the class of Stochastic Combinatorial Optimization Problems. Engineers are

usually interested in finding the global maximum and in avoiding getting trapped in a

local maximum which suggests using stochastic optimisation techniques, such as

evolutionary algorithms, as being more suitable, and providing promising toolsets for the

automated design of physical systems (Eiben & Smith, 2015a). This is especially the case

when considering interactions between shaped components rather than linkages that

match specified curves because one function cannot describe the problem. Evolutionary

algorithms are inspired by the biological evolutionary process using operations such as

reproduction, mutation, recombination, and selection able to traverse a large search space

(Renner & Ekárt, 2003a). They work in an iterative manner to identify the best suitable

solution for a problem similar to the conventional engineering design process (Pham &

Yang, 1993). Renner and Ekárt discussed six categories of applications of mechanical

engineering which applied genetic algorithms most; these are conceptual design; shape

optimisation; data fitting; reverse engineering; mechanism design; and robot path design.

They are especially appropriate for solving complex optimisation problems (Renner &

Ekárt, 2003a), which are discussed later in section 2.3.

2.2.4 Evolutionary Representation

In evolutionary computing, an evolutionary representation is the encoding process of

transition from genotype to phenotype (meaning from parameter space to solution space).

The genotype also called the chromosome, includes genes which are the parameters,

while the phenotype is the solution defined by said parameters going through the encoding

process. The process can be divided into direct and indirect encoding (Eggenberger-Hotz,

2004).

The concept of direct encoding refers to the relationship between parameter and

phenotype attributes. Each parameter of the genotype represents a value of the phenotype

directly. Geometric design optimisation, e.g. of lens geometries (Eggenberger-Hotz,

2004); generative CAD design (Krish, 2011); and nozzle geometry optimisation (Genge

& Roosen, 2000) applied this type of encoding. For instance, Eggenberger-Hotz, who

evolved a lens geometry, utilised an evolutionary strategy employing a direct encoding

which performed well for geometrical optimisation. However, the author was not able to

get precise solutions for problems with more than 40 parameters (Eggenberger-Hotz,

2004). Using a direct mapping to describe complex shapes requires a large number of

25

parameters to define all of the details, leading to a significant increase in the search space

dimension and processing time to identify well-performing solutions.

On the contrary, indirect encoding is a process which reduces the number of genes needed

to represent a phenotype solution. Multiple genes act in combination to evolve phenotypic

traits with no direct reference to geometric properties. Often rules are used to describe a

growth process. Each rule may influence several phenotype features. Using a lower

number of genes and values for each gene reduces the search space and allows applying

the evolutionary process to more complex problems. (Bentley & Kumar, 1999)

Indirect representations are often used in Grammatical Evolution (Ryan, Collins, & Neill,

1998), a form of grammar-based Genetic Programming (GP). GP uses grammar guided

algorithms which are usually based on decision trees. However, linear representations are

used in the wider fields of evolutionary computing and better studied which is an

advantage over tree-based representations, as it provides access to a larger background of

theory and practice (McKay, Hoai, Whigham, Shan, & O’neill, 2010).

In many cases, indirect encoding outperforms direct encoding due to the reduction of the

search space; thus, it reduces the time to find a solution (Bentley & Kumar, 1999; Hotz,

2004). A low number of genes is important as the performance of evolutionary algorithms

decreases with an increased number of genes (Eggenberger-Hotz, 2004). Indirect

encoding procedures are difficult to design and may cause problems, such as bloat, the

growth of unnecessary large trees when using tree-based representations; pleiotropy,

which occurs when one gene influences two or more unrelated phenotypic traits; and

disruption of child solutions if care is not taken (Bentley & Kumar, 1999). Often multiple

encodings are required because the design space is too large to be covered by a single

encoding (Krish, 2011).

2.3 Shape Representation

This work requires an evaluation of different types of shape representations to identify

their suitability to evolve mechanical systems. Mechanical systems consist of components

with various shapes and placements, working together, and contributing towards meeting

the system’s design task. A representation must describe a solution in a form which is

suitable for manipulation by an evolutionary algorithm. It enables a computer to create

and optimise the shape of the design. Enduring that similar designs are always close to

each other in the design-space (Bentley & Wakefield, 1997).

26

Representing and optimising shapes is an important element in design where the shape

defines the performance of the product. An inefficient optimisation algorithm requires an

evaluation of numerous shapes before its convergence, however, a poorly designed shape

representation limits the evolution of various shapes, which are both not desirable and

require serious attention (Khan & Ray, 2012). A specific research area is focusing on

shape matching to address the shape optimisation problem. In shape matching or target

shape design optimisation, algorithms and representations are used to evolve predefined

shapes as a benchmark problem which allows evaluating the performance of different

techniques (Tai, Wang, & Yang, 2008). It shows the importance and difficulty of

identifying a suitable shape representation.

This section provides a review of representations used in various engineering fields. In

particular, on applications which focus on structural optimisation; on aerodynamic

optimisation; and on mechanical optimisation, as these are often utilising evolutionary

algorithms to generate solutions. It investigates the benefits and drawbacks of the used

representations in these specific areas.

Within the structural optimisation domain, a process called topology optimisation

(Bendsøe & Kikuchi, 1988) is used to evolve optimal designs, initially in structural

mechanics (Deb & Goel, 2001), then more recently in other engineering domains such as

thermal optimisation (Alexandersen, Sigmund, & Aage, 2016); or wave optimisation

(Takahashi, Nakamoto, Matsumoto, Isakari, & Kitabayashi, 2018). Topology

optimisation focusses mainly on the inner structure, meaning the material distribution of

mechanical components. A mesh of pixels or voxels can be used to segment the design

space (or initial component). The optimisation process adds or removes material and

evaluates the design’s performance.

In all areas of topology optimisation, the material, and its distribution is of prime

importance. The distribution stipulates the transfer of temperatures, the emission of

electromagnetic or acoustic waves, or transmission of forces through the inner material’s

structure. Often different types of finite element analysis are used to evaluate a design's

performance. However, topology optimisation usually focuses on single components and

not on complete mechanical systems. In the case of optimising a structure’s material

stress, a mechanical system, e.g. a mechanism designed of interconnected levers, is

broken down into individual components, each analysed individually. Linkages and

connection points between levers are not changed, and the transmitting forces and torque

between levers are used as input parameters to specify the problem for each component

to be able to reduce the material usage. In this way, the kinematic behaviour of the whole

27

mechanical system stays unchanged. Topology optimisation’s main purpose is to generate

a new component’s structure and not its functionality.

In the field of aerodynamic optimisation, the focus has been placed on the outline of a

component, rather than the structure (Arias-Montaño et al., 2011). Designs are evaluated

using flow simulation based on Computational Fluid Dynamics. Aerodynamic shape

optimisation often uses a direct parameterisation as an encoding method which means

that the genotype encodes parameter values directly related to phenotype attributes. E.g.

a basic aerofoil shape is parameterised, and limits for each parameter are specified. A

search method adjusts the parameters until identifying the optimum design which fulfils

the requirements.

In another example, namely the area of mechanical optimisation concerns different types

of mechanisms with a focus on mechanical behaviour. Some conventional mechanisms

consist of rigid components, and the important part is their outline, rather than their inner

structure. The outline defines the behaviour of the mechanism resulting from the

interaction between components. A subdomain in mechanical optimisation is compliant

mechanisms (Pandey et al., 2017). These are flexible mechanisms which transfer input

forces and movement from input to output, through elastic body deformation. They

usually consist of one single part where elastic sections act as joints which enable a

constrained motion of individual rigid sections. In this case, the focus is on the shape and

the structure, as the latter defines the freedom of movement and the former interacts with

other individual sections of the mechanism that determines its behaviour.

Some researchers use pixel-grid representations for compliant mechanisms (Sharma,

Deb, & Kishore, 2008), others use solid constructive geometries to represent a shape by

placing and constraining several nodes within the design domain, using Delaunay

Triangulation to generate a skeleton (Pandey et al., 2017). Afterwards, widths are added

over the skeleton to produce complex structures. While utilising this method, the outline

shape is usually less complex because there are a low number of nodes describing the

outline.

Artificial life and robotics are two other areas of interest. Each focuses on evolving

morphologies and the control of virtual creatures or robots that can be interpreted as

mechanisms as well. For instance, in his work, Sims concentrated upon evolving virtual

creatures (Sims, 1994). The focus was on evolving biological behaviour, and biological

morphologies built of interconnected blocks rather than detailed shapes. The

representation consists of a directed graph where each graph contains the development

28

instructions for growing a creature with the ability to reuse instructions to create similar

recursive components within it. The approach provided a way to create complex

structures using a low number of parameters, rather than a direct parameterisation

approach. Another example comes from the area of soft robots (Cheney, MacCurdy,

Clune, & Lipson, 2013), where the authors successfully evolved walking robots made of

soft materials without using a controller. The behaviour resulted from the placement of

contracting and expanding materials within the robot using a cellular representation. The

representation used a neural network which defined how to assemble the robot. The

authors employed a virtual physics environment to study their method. They measured

the walking distance in a similar way to the previous work in artificial life.

Reviewing the different representations in these domains makes it possible to identify

three different categories of representations:

• Cellular-based

• Direct parameter-based

• Indirect parameter-based

Cellular representations such as pixels or voxels are often used in the engineering design

domain when the material distribution is of importance. Pixels represent 2-dimensional

shapes, while voxels represent 3-dimensional shapes. Cellular representations focus on

inner material distribution and inner structures. The design space is a pixel grid where

every pixel represents either material or void. The chromosome, usually a bit or integer

string, encodes the states of the pixels.

Direct parameter-based shape representations describe design or shape by direct

parameterisation. This category of representations requires an initial starting point, such

as a design or shape to be parameterised, such as the profile or an aerofoil with, e.g. width

and height, and radii within certain limits. Each change of parameter value changes the

design and its performance.

Indirect parameter-based shape representations employ a parameterisation approach as

well, usually applied when the problem domain has no initial design to be parameterised.

The representation may encode, e.g. building blocks, where a set of shapes is defined, and

the chromosome includes information about their placement and orientation. When a

chromosome includes a set of coordinates to describe a design, the process of resolving

them into a valid solution makes the parameterisation indirect, as even one change in the

genotype may lead to more than one change of feature in the phenotype.

29

2.4 Representation Evaluation

The conventional way to evaluate search space coverage and the effectiveness of

evolutionary algorithms and operators is to conduct experiments and compare the

performance of different representations. However, evolutionary algorithms require a

large number of evaluations because, as previously explained, they refine potential

solutions iteratively.

In some cases, evaluations may require computationally expensive simulations, which

result in a long runtime. Without conducting experiments, it is not always possible to tell

if a representation covers the search space of the domain sufficiently, especially because

the optimum solution is often unknown. A way to solve these issues is to investigate the

representation outside of the application area, for instance, by evaluating representations

in their ability to evolve target shapes instead of conducting experiments in the final

application domain. Target shapes have often been used as a benchmark problem to

investigate the performance of shape-related optimisation algorithms and representations

(Chang et al., 2003; Khan & Ray, 2012; Nashvili et al., 2005; Tai et al., 2008). This

approach provides a way to identify the search space coverage without computationally

expensive simulation by employing a simpler comparison method lowering the runtime

of the evolutionary algorithm and concentrates solely on comparing a candidate shape

with a target shape, e.g. taken from the problem domain. The method provides a way to

evaluate to what extent a representation can recreate the optimum solution and how

effective the genetic operators are in navigating through the search space. It is possible to

identify when the algorithm gets trapped in a local optimum. The fast evaluation enables

the running of experiments quickly and testing representations with a much higher

number of evaluations compared to experiments conducted in the target domain.

Furthermore, the visual feedback and comparison provide an insight into the

representation’s functionality.

2.5 Generative Design Tools

Various researchers (Colombo et al., 2007; Robertson & Radcliffe, 2009; Zboinska,

2015) studied the work of designers and found that they were often using the same tools

for conceptual design, as for the detailed design. This concerned Computer-Aided Design

(CAD) tools, which are made for the detailed design stage, and are being used to visualise

and communicate design ideas as well. The authors emphasise that conceptual and

detailed design consists of very different activities, sometimes with conflicting

requirements. Krish claimed that CAD is rarely used during the conceptual design stage

30

which is in contrast to the opinion and observations of other authors, such as (Zboinska,

2015), (Colombo et al., 2007), and (Robertson & Radcliffe, 2009). However, Krish

(2011) agreed that CAD software, in its current form, is more useful at a later stage of

design (Krish, 2011). According to (Colombo et al., 2007), CAD tools should support

the entire design process.

Robertson and Radcliffe (2009) investigated the negative influence of CAD tools on the

creativity of engineers in the conceptual design stage. They produced several findings

illustrating this problem.

• First, they found that communicating the CAD model might give an illusion of

completeness to the design team, which tends to discourage creative thoughts in

a group.

• Second, the functionalities of a CAD tool may drive the shape of the outcome

solution.

• Third, the time pressure forces designers to generate solutions in the easiest way

possible, which drives the design decisions away from what best meets the design

criteria, to what is easier to design with the available tools.

• Fourth, the higher the proficiency of the CAD designers is, the more it leads to

complex designs. The design philosophy moves away from simplicity and

sufficiency to excellence and perfection, which may cause a waste of resources at

this stage.

• Fifth, by comparison of two groups, they found that more ideas were generated

by the group which did not use advanced 3D CAD tools.

• And sixth, when the design concept became more detailed, there was a strong

disincentive to make major changes to the design even if the changes would solve

numerous problems or make improvements such as decrease the project risk.

These findings show that there is a need for design tools tailored specifically for early

design stages. Automated design tools are needed which provide potential solutions to

engineering teams which may eliminate biases appearing while using conventional design

tools.

These types of applications, called generative design tools, used in engineering, are often

based on evolutionary computing techniques. They are employed to evolve specific

mechanical components rather than systems of components, such as flywheels (Eby,

Averill, Punch, & Goodman, 1999), rotor shafts (Byung Gun Choi & Bo Suk Yang,

2000), aerodynamic structures (Arias-Montaño et al., 2011; Gaier, Asteroth, & Mouret,

31

2018), trusses (J. Liu & Ma, 2017), lenses (Li, Zigoneanu, Popa, & Cummer, 2012), and

many more.

Some generative tools in engineering design focus on dynamic systems of components,

such as linkages (Chen & Chou, 2016; Y. Liu & McCarthy, 2017; Tsuge et al., 2016),

cams (J. Lampinen, 2003; Mundo, Liu, & Yan, 2006), wing folding mechanisms

(Jitsukawa, Adachi, Abe, Yamakawa, & Umezu, 2017), gears and gear drives

(Padmanabhan, Chandrasekaran, Ganesan, Patan, & Navakanth, 2017), or other areas of

mechanism synthesis (Cabrera et al., 2002; Kyung & Sacks, 2006). Usually, key

geometries of these components or systems are parameterised, mutated for a reasonable

time, and evaluated until finding a well-performing design. These applications simplify

the real-world problem by focusing on the kinematic behaviour of mechanisms which

supports the design process. However, these tools are not looking at collisions between

shaped components, their masses, and are not considering friction. Including these

physical attributes adds a new layer of complexity which moves generative design one

step closer towards physical mechanisms and will be covered in this work.

2.6 Evolving Mechanisms

The manufacturing industry provides toolboxes of drives, gears, joints, and other machine

elements to build a variety of robots such as those recently presented by the company

Boston Dynamics. The bio-inspired quadruped robots, such as Boston Dynamics

machines (Raibert, 2008), were created by human designers, however, in future, they

could be automatically generated by a machine, as evolutionary computing is starting to

make a transition towards automated creation of physical artefacts (Eiben & Smith,

2015a).

Robots are mechanical systems constructed with connected mechanisms and evolving

such mechanisms is a step towards reaching the goal of design automation of complex

machines. Recent work focused on walking robots, such as on bipedal robots (Ambrose,

Ma, Hubicki, & Ames, 2017; Ames et al., 2017; Lawati & Yousef, 2016), quadruped

robots (Digumarti, Gehring, Coros, Hwangbo, & Siegwart, 2014; Ruan, Wu, Zhou, &

Yao, 2015; Vishal & Manivannan, 2016), and hexapod robots (Belter & Walas, 2014;

Cully & Mouret, 2016; Roennau, Heppner, Nowicki, & Dillmann, 2014). Others focused

on modular robots (Kamimura et al., 2005), and snake-like robots (Kohl, Kelasidi,

Mohammadi, Maggiore, & Pettersen, 2016; Reyes & Ma, 2014). Most of these work in

robotics used evolutionary computing techniques to evolve the machine controllers but

not to evolve the physical design of the robots. The physical design is usually predefined,

32

and the focus is on evolving the robot’s control pattern. Evolving robot designs is still not

well researched as there is little literature regarding generative mechanical design

focusing explicitly on evolving robots’ mechanics. However, the relationship between

design topology and control patterns influences the performance of a mechanical system.

In an ideal scenario, these should evolve together.

A mechanism is a system of interconnected components which produces complex

behaviour when movement is introduced. They are versatile and can be assembled with

connected and not connected levers, gears, chains, springs, joints, and more. The

operating principle which determines the mechanical behaviour is the transfer of forces

and moments through contact or linkage. At early design stages, complex mechanisms

are often abstracted at a 2-dimensional level by putting their kinematics in the foreground.

Notably, most commercially produced mechanisms are planar (Myszka, 2012). The

objective is to design a system which meets the desired behaviour, or at least a behaviour

which is sufficient (Renner & Ekárt, 2003a). Designing mechanisms, such as linkages

required to perform desired motions, is a highly unintuitive process. It often involves

rigorous experimentation in a high dimensional parameter space usually intending to fit

designer specified curves (Ghassaei & Ming, 2015; Tsuge et al., 2016). However, linkage

design does not consider shapes of components, collisions between them, and their

physical attributes, such as mass or gravity. Their inclusion would further complicate the

design process and thus would require generative design tools.

A class of important mechanisms are four-bar mechanisms. Their utilisation ranges from

simple devices, such as windscreen-wiping or door-closing mechanisms, to complicated

ones, such as rock crushers, sewing machines, round balers, and suspension systems of

automobiles (Renner & Ekárt, 2003a). Four-bar mechanisms have been evolved using a

genetic algorithm (Roston & Sturges, 1996), and further through employing a case-based

reasoning approach (Bose et al., 1997). Ghassaei and Ming focused on evolving four-bar

linkages for two scenarios, curve fitting, and task fulfilment, in this case, walking

(Ghassaei & Ming, 2015). They proposed a novel software system that allows users to

visualise and interact with the various optimisation parameters. The authors considered

gravity and collisions between the mechanism and the environment when evolving

walking behaviour. However, the mechanism consists of bars without specifically

evolving shapes to interact with the environment or other components of the mechanism.

The authors state that the search space of the problem is very large.

Within the engineering domain, there are also more complex mechanisms and synthesis

of mechanisms. Collision-free adjustable six-bar linkages were synthesised using a twin-

33

space crowding genetic algorithm (Chen & Chou, 2016). Six-bar linkages were used to

evolve lower limbs (Tsuge et al., 2016) and also to evolve manufacturing mechanisms

(Chen & Chou, 2016). Mechanisms were evolved to draw algebraic curves (Y. Liu &

McCarthy, 2017), also wing fold mechanisms (Jitsukawa et al., 2017), and even eight-bar

mechanisms (Parrish, McCarthy, & Eppstein, 2015).

Another category of mechanisms to consider are cam mechanisms. A cam is a rotating or

sliding piece in a mechanical linkage used, especially in transforming rotary motion into

linear motion (Uicker et al., 2003). In contrast to evolving linkages, cams transfer forces

through contact and collision with other components. Cam shapes have been optimised

using a genetic algorithm (J. Lampinen, 2003); they have also been generated for precise

path generation (Mundo et al., 2006). However, as previously, this work considers only

the kinematic properties to evolve an assembly which follows a specified path. The cams

were modelled to be always in contact with a follower, which simplifies the problem by

avoiding the necessity to resolve collisions. Furthermore, it does not consider friction

between components. The focus is on rotating cams and not on shaped components

moving through the design space.

Research has also been proposed regarding the evaluation of the behaviour of mechanical

systems. Jaskowicz suggested a behaviour language for mechanical systems, for

comparing different systems, such as gears, or systems with a different type or number of

components, based on their resulting behaviour, which is mainly described by the output

motion (Joskowicz, 1999). Being able to specify objectives and evaluate mechanical

systems is a crucial part of creating generative design systems for mechanism design.

2.7 Summary

First, this chapter introduced the research background, explaining the conceptual design

stage, planar mechanisms, evolutionary computing and evolutionary representations.

This was followed by the critical evaluation of the literature in the area of shape

representations, generative design tools and evolving mechanisms.

The generative design tools were reviewed; it was shown that there is a shortage of

applications targeting the early conceptual design stages. Furthermore, human designers

tend to be biased by the available applications. It showed that tools suggesting a broader

range of solutions might be beneficial for engineers to reduce their bias and workload.

Evolutionary computing provides a promising toolset to evolve mechanisms. Tackling

this problem with a generative design tool based on evolutionary computing requires an

https://en.wikipedia.org/wiki/Linkage_(mechanical)

34

evolutionary representation capable of creating mechanical shapes. Different types of

shape representations were reviewed concerning principles such as cellular, direct, and

indirect representations. Such representations specifically focusing on mechanical

components, are not available and require to be designed and evaluated. It was found that

an indirect encoding is most suitable for shape representations in planar mechanism

design when applied it in an evolutionary computing context. It provides a way to define

complex shapes with a low number of genes. In section 2.4, a method to evaluate the

ability of shape representations to create target shapes was found. It is a computationally

inexpensive process to identify and evaluate representations’ abilities to be applied within

an evolutionary algorithm to create shapes for a specific problem domain. These findings

led to RQ1.

RQ1: Which evolutionary representation can be used to efficiently represent and evolve

the shape of planar mechanical components?

The area of engineering optimisation was reviewed with an emphasis placed on structural,

aerodynamic, and mechanical optimisation, presenting relevant solutions and examples

of representations employed in these fields. Every area has its own unique way of

describing the problem domain and evaluating potential solutions. The literature review

showed that generative tools in mechanisms design mostly focused on evolving the

kinematics of mechanisms or the control patterns, without including attributes such as

mass and friction, or collisions between components. Considering these would allow

generating mechanisms which are closer to physical systems. For that purpose, a

representation is needed and a simulation environment and a design objective to evaluate

it. No suitable simulation environment could be identified in the area of planar mechanism

design which is compatible with evolutionary computing techniques. However, the design

objective of measuring the walking distance which was used in artificial life and robotics

appears to be suitable for mechanism design. It is wide-ranging and would provide a

foundation for experiments to evaluate the representation in combination with an

evolutionary algorithm. These findings led to RQ2.

RQ2: Which evolutionary representation and evolutionary operators can be efficiently

used to represent and evolve mechanical components in a physics environment?

Section 2.6 investigated the achievements and difficulties in mechanism design.

Mechanism design mostly focused on linkages, rather than the shape of components, or

interaction between multiple not linked components. However, planar mechanisms may

consist of multiple not linked components. The available literature does not provide a

35

framework to describe these. It is required to employ an evolutionary representation and

investigate its ability to evolve solutions within an evolutionary computing context. These

led to RQ3 and RQ4, which focus on mechanisms consisting of multiple components and

linkages.

RQ3: To what extent is the evolutionary representation and evolutionary operators able

to evolve mechanisms consisting of multiple components with the aim of traversing

different landscapes?

RQ4: To what extent are the evolutionary representation and evolutionary operators able

to evolve four-bar mechanisms with the aim of traversing different landscapes?

The next chapter focuses on the evaluation of several shape representations to identify a

suitable representation capable of reproducing shapes for mechanical components.

36

3 Evolutionary Shape Representations for

Mechanical Design

3.1 Introduction

This chapter presents four different genetic representations for describing two-

dimensional outline shapes and an investigation of their suitability to be used in a

generative design system. The evaluation focuses on their ability to evolve a set of defined

target shapes. These shapes consist of simple symmetric and asymmetric shapes with

edges and curves, as well as more complex mechanical component shapes derived from

the problem domain, namely from an automotive device. The representations are used to

approximate target shapes using an evolutionary algorithm with crossover and mutation

operators.

As explained in Chapter 2, planar mechanisms consist of mechanical components which

transfer movement and forces via their outline shape. In other words, the function and

performance of a mechanism rely on the shapes of its components and their interactions.

As shapes play a significant role in mechanism design, it is important to find

representations that work well within an evolutionary computing context.

A shape representation method should cover a reasonably sized search space of the

problem domain; produce only valid solutions, and allow an evolutionary algorithm to

navigate through the search space. The research will investigate the following criteria:

• Search space dimension

• Search space coverage

• Search space validity

• Search space navigation

The following section provides the background to this chapter.

3.2 Background

The performance of many engineering applications is highly dependent on functional

shapes. A generative design system uses optimisation algorithms which require a

representation of the design problem and its prospective solutions. The latter requires a

definition of the components’ shapes, which can be especially problematic within an

evolutionary computing context. As shown in the literature review section 2.3,

37

mechanical engineering design is using many different shape representations, such as

cellular representations, used in topology optimisation; direct parameter-based

representations, used in aerodynamic shape optimisation; and indirect parameter-based

representations, used in robot design. However, these representations often do not

describe the outline of a shape. Instead, the outline is a fixed constraint defined in the

problem domain. A common approach is to parameterise certain features of a basic shape

which was done, for instance, in design optimisation, e.g. of aerofoils. Changing the

parameter values within defined boundaries adjusts the shape until reaching the optimum.

However, such basic shapes might not exist for many areas of mechanism design where

components are customised to create mechanisms that meet specific path and force

characteristics. The shape of a mechanical component is entirely a result of its function.

It is tempting to think that the best approach would be to encode the coordinates of such

free shape directly into a chromosome, as it can result in any shapes. Although, this

approach would require a large number of parameters as a certain degree of complexity

is needed, which in turn, would increase the dimension of the search space (Chang et al.,

2003). Furthermore, most solutions in the search space would be invalid due to

intersecting outlines. A component with an invalid shape cannot be evaluated and does

not return any fitness value. The evolutionary algorithm is not able to navigate through

the search space without a fitness value. Therefore, there are several things to consider

when designing a shape representation. This research emphasises search space

dimension; coverage; validity; and navigation.

The size of the search space is determined by the number of genes in the chromosome

and the value range of each gene, which means, the total number of possible value

combinations. A low number of possible combinations results in a small search space, as

opposed to a large number of potential combinations, resulting in a large search space.

The coverage of the search space is determined by the representation’s capabilities and

limitations to reassemble shapes of the problem domain. The evolved shapes need to be

valid, which means they should not contain intersections, as only valid solutions return a

fitness value. Evolutionary operators need to be able to navigate through the search space,

able to reach all areas of the search space, in a way that similar size changes on the

genotype lead to equal size changes on the phenotype. The following section explains the

principles in more depth.

Bespoke software is developed and utilised to conduct a series of relevant experiments.

It was employed for target shape matching and investigating algorithms, operators, and

representations.

38

3.2.1 Search Space Dimension

The evolutionary computing context requires a consideration of the dimension of the

search space, determined by the number of possible combinations between the number of

genes used and the number of possible gene values. A larger search space has a serious

impact on the performance of evolutionary computation (Chang et al., 2003). A small as

possible search space is prefered; hence, the number of genes, and also the number of

gene values should be kept as low as possible. An indirect parameter-based approach can

be used to reduce the number of genes. In this case, one gene describes multiple features

of a solution.

3.2.2 Search Space Coverage

The search space dimension defines the number of potential solutions and solution types

that the representation can produce. Designing a representation requires investigating

whether the search space covers the problem domain, meaning, the representation’s

capability of producing solutions of certain types. The investigation of the coverage is an

important step, as it is often not visible if the problem domain is sufficiently covered.

The following two simplified thought experiments should illustrate the problem:

Imagining the search space of the problem domain being a canvas which would allow all

possible shapes to be drawn on. A representation consists of a chromosome with a limited

number of parameters, and a routine to translate these into a drawing. It results in the

number of potential drawings being limited. However, the canvas allows drawing an

infinite number of shapes, depending on resolution and complexity. It means one shape

representation alone is never able to represent all of the possible shapes; thus can often

not cover the whole problem domain. A representation describes a subset or specific type

of solutions, and its limitations need to be determined.

A more practical example comparing two representations to each other: The problem is

to design the shape of a wheel for a car, (imagining not knowing the shape of a wheel).

One representation consists of two descriptive parameters, each describing a side length

of a rectangle — another representation consisting of just one parameter describing the

radius of a circle. In this case, just one of the representations is capable of sufficiently

covering the search space of the problem domain and producing accurate solutions.

However, both representations will return a solution. The representation using one

parameter will evolve a wheel and achieve high performance. The rectangle

representation will evolve a square-shaped wheel which will also achieve some

performance, yet, not the optimum, even though it uses a larger number of parameters to

39

describe a solution. The problem is that the optimum is unknown, that means one may

assume a square-shaped wheel is a good idea when using the wrong representation.

Moreover, extending this thought experiment to more complex problems with complex

representations; it gets more difficult to identify if a representation covers the problem

sufficiently. A systematic investigation of the coverage can lead to designing better

performing representations. An approach may be to test representations with a benchmark

problem for which the optimum is known.

3.2.3 Search Space Validity

A representation should always produce valid solutions and avoid infeasible shapes when

mapping from genotype to phenotype. Figure 2 shows a valid shape on the left-hand side

and an invalid shape due to a crossover of lines on the right-hand side.

Figure 2: Shape Validity

There are theoretically more invalid shapes which cannot be evaluated than valid ones if

taking the simple approach of simply connecting a string of coordinates into a shape. The

existence of invalid solutions in the search space indicates that it is unnecessarily large

and contains invalid areas. It is not possible to evaluate invalid solutions, and without

providing the evolutionary algorithm with a fitness value, the navigation through the

search space is impossible or at least ineffective. However, if an unnecessarily large

search space is acceptable, the approach to avoid invalid solutions would be either to filter

them or to repair them, which requires additional computational time and resources. For

this reason, genotypes should produce solutions that can be evaluated by the generative

system.

40

3.2.4 Compatibility with Evolutionary Operators

An evolutionary algorithm should be able to efficiently navigate the search space using

evolutionary operators such as mutation and recombination. Furthermore, the operators

should not introduce too large disruption and should be able to pass features from parent

solutions to child solutions. Regarding mutation, a small change in the genotype should

lead to a small change in the phenotype. Recombination operators should keep some

characteristics of the parents, such as shown in Figure 3.

Figure 3: Recombination Operation

A recombination operation produces a swap of features between two-parent phenotypes

which results in child solutions. If these operators are not working properly together with

the representation, the algorithm will not be able to evolve the solution.

41

3.2.5 Applications for Experiments

Two software applications were implemented, providing the ability to conduct

experiments. Figure 4 shows the first application. It is used to define the target shapes.

Figure 4: Target Shape Definition

The application has a graphical user interface and enables loading images, e.g. of levers,

into the view. The image is used to extract the outline of the lever and obtain its

coordinates used to define a target shape for the next application by copying them into a

text file. The second application for target shape matching provides the capability to

conduct experiments and is shown in Figure 5.

42

Figure 5: Target Shape Matching Application

43

This software also provides a graphical user interface and embeds the evolutionary

algorithm. It uses the text file with the target shape coordinates and loads it into the view

(middle section). Algorithm related parameters can set on the left-hand side. The interface

offers a way of setting the number of genes (length of the chromosome) to be used for a

solution and the number of individual shapes to be evolved. It provides a way to choose

different genetic operators which were implemented for testing and to set different

thresholds related to the operators and the solution. Examples may include minimum and

maximum size.

Different evolutionary algorithms and representations can be chosen, including the

maximum number of generations, population size, and the number of children per

generation. Filters can be activated or deactivated, as detailed later in this section 3.3.2.

After starting the algorithm with the specific configuration, it updates the view each time

finding a better performing solution. Moreover, it provides information such as the

chromosome values of the best-performing individual and the fitness of the ten best

individuals. It also shows the run time and the number of produced solutions.

Additionally, buttons are offered to pause the search and save the results.

The right-hand side of the interface provides a visualisation of the population of the

evolutionary algorithm. Every row stands for one individuum of the population with

every column representing a gene. The algorithm uses a real value chromosome, and each

gene is colour coded in greyscale from white to black with similar values having a similar

colour.

The software is the basis for experiments to test algorithms, evolutionary operators, and

representations. The user interface enables spotting problems with the algorithm and to

identify a well-performing setup.

3.3 Method

Rather than testing each representation in the final application domain, they were tested

for their capability to evolve target shapes using an evolutionary algorithm. This method

has often been employed as a benchmark problem to investigate shape-related

optimisation algorithm’s performance (Chang et al., 2003; Khan & Ray, 2012; Nashvili

et al., 2005; P. Zhang, Yao, Jia, Sendhoff, & Schnier, 2007). It supports the development

of representations by giving an insight into their underlying principles and the

evolutionary process. Testing the representations directly in the final application domain

does not allow this level of depth and would require a significantly higher computational

44

processing effort that is caused by the necessary physics simulation. It would make it

difficult to understand certain behaviour of the evolutionary computation regarding

evolving the shape, due to lack of visibility of prospective solutions.

For this research, four representations were developed and tested with 24 different target

shapes, 12 being free invented shapes and 12 based on the outline of mechanical levers

taken from an automotive closure system. The next section presents the target shapes.

Subsequently, the description of the representations is shown, followed by the

evolutionary algorithm and the fitness evaluation method. Last shows a presentation of

the experiments to compare the representations’ performance.

3.3.1 Target Shapes

Evolving target shapes allows developing a representation systematically; it provides a

way to justify design decisions; allows to compare different representations to each other;

supports the choice of a representation for a specific problem, and it is a useful tool to

identify a representation’s drawbacks. The representations are evaluated based on their

ability to evolve different shapes within a mechanical engineering context, with

characteristics such as corners; curves; symmetries; a-symmetries; and other problem

domain-specific features. A set of target shapes was defined for evaluation of the

representations abilities to cover the shape characteristics.

Figure 6: Target Shapes

The illustrations in Figure 6 were used to test the capability of the representations to

reproduce these shapes and to identify to what extent the produced solutions are valid.

This approach has given an insight into the compatibility of the representation with the

evolutionary operators.

3.3.2 Evolutionary Representation

Selecting a shape representation is one of the most important decisions in evolutionary

computing based shape optimization (Jouni Lampinen, 1997). In this work, the

45

representation’s purpose is to define the outline shape of mechanical components subject

to four requirements.

Firstly, a shape representation should have a small number of variables representing a

solution to be used within an evolutionary computation efficiently. Secondly, it should

cover a large search space of the problem domain. It is necessary to remember that one

representation may be able to produce solutions which another representation is not

capable of producing. Thirdly, the representation should return only valid, non-

intersecting shapes. Connecting random coordinates to generate a closed shape results in

a search space with a large number of invalid solutions should be avoided. It increases

the size of the search space; makes navigation difficult due to not evaluable solutions; or

requires additional processing to resolve intersections. Lastly, the representation needs to

be compatible with the evolutionary mutation and recombination operators to enable the

evolutionary algorithm to navigate through the search space efficiently.

Four representations were developed each based on interconnected vertices produced by

a spline function which makes the solution shape curvier. The spline function uses control

points encoded in a chromosome, which is a common approach in shape optimisation

(Khan, Ayob, Isaacs, & Ray, 2011; J. Lampinen, 2003; Sandgren & West, 1989; P. Zhang

et al., 2007). The algorithm for the spline function is shown in Figure 7 and Figure 8.

46

// Convert control points to spline
public static List<Point> BSpline(List<Point> coordinates)
{

List<Point> shapeCoordinates = new List<Point>();
if (coordinates.Count >= 4)
{

// Loop through all control points and close circle
for (int i = 0; i < coordinates.Count; i++)
{

int a = i;
int b = i + 1;
int c = i + 2;
int d = i + 3;

if (d >= coordinates.Count) d = d - coordinates.Count;
if (c >= coordinates.Count) c = c - coordinates.Count;
if (b >= coordinates.Count) b = b - coordinates.Count;

List<Point> spline = bSplineAlgorithm(coordinates[a],
coordinates[b], coordinates[c], coordinates[d], 3);
shapeCoordinates.AddRange(spline);

}
}
else shapeCoordinates = coordinates;

return shapeCoordinates;

}

Figure 7: C# Code Spline Function A

// Convert contrlpoints to spline
private static List<Point> bSplineAlgorithm(Point p1, Point p2,
Point p3, Point p4, int divisions)
{

List<Point> spline = new List<Point>();
double[] a = new double[5];
double[] b = new double[5];
a[0] = (-p1.X + 3 * p2.X - 3 * p3.X + p4.X) / 6.0;
a[1] = (3 * p1.X - 6 * p2.X + 3 * p3.X) / 6.0;

 a[2] = (-3 * p1.X + 3 * p3.X) / 6.0;
 a[3] = (p1.X + 4 * p2.X + p3.X) / 6.0;
 b[0] = (-p1.Y + 3 * p2.Y - 3 * p3.Y + p4.Y) / 6.0;
 b[1] = (3 * p1.Y - 6 * p2.Y + 3 * p3.Y) / 6.0;
 b[2] = (-3 * p1.Y + 3 * p3.Y) / 6.0;
 b[3] = (p1.Y + 4 * p2.Y + p3.Y) / 6.0;
 Point startPoint = new Point();
 startPoint.X = a[3];
 startPoint.Y = b[3];
 spline.Add(startPoint);

 int i;
 for (i = 1; i <= divisions - 1; i++)
 {

float t = System.Convert.ToSingle(i) /
System.Convert.ToSingle(divisions);

Point sPoint = new Point();
sPoint.X = (a[2] + t * (a[1] + t * a[0])) * t + a[3];
sPoint.Y = (b[2] + t * (b[1] + t * b[0])) * t + b[3];
spline.Add(sPoint);

}
return spline;

}

Figure 8: C# Code Spline Function B

47

A potential shape has a centre point and the vertices reassemble a closed outline shape

around the centre. The centre point defines the location of the shape on a 2-dimensional

plane. The representations differ in the way of placing the control points. A function for

removing vertices that are too close to each other was added, with a distance smaller than

90% of the minimum boundary parameter. It removes unnecessary aggregation of vertices

in one location and to enable the shape to afford sharp edges. The chromosome used for

all representations consists of an array of real values (genes) in a range from 0.0 to 1.0,

with seven digits of precision, interpreted into coordinate values between a minimum and

maximum boundary parameter of 10 and 240 pixels. A parameter defines the length of

the chromosome used within the representation that allows increasing or decreasing the

detail of the solution. Using a longer chromosome creates more control points. The

following sections explain the representations’ differences.

Figure 9: Representations

Representation R1 - Cartesian Coordinate-based. This representation shows a direct

mapping of the chromosome’s real values to coordinates of control points on a cartesian

coordinate system. A minimum and maximum defined shape size constrain the solution.

48

A closed shape is formed by connecting the control points in an order they appear in the

chromosome. Figure 9 (top, left) shows the representation.

The first two genes represent the coordinate of the centre point of the shape. Additional

gene pairs represent the coordinates relative to the centre point. However, connecting

each coordinate in an order in which they appear in the chromosome leads to a very high

number of intersections between lines. Self-intersecting shapes are not evaluable, so a

post-processing step was added to resolve the intersections. Intersecting lines are removed

by not using the related control point and closing the shape with the next one. If this leads

to new intersections, this control point is also not included, and the shape is closed using

the control point after. This process continues until no further intersections appear. The

post-processing step avoids producing invalid phenotypes.

The representation was chosen to investigate the simplest mapping method between

chromosome and solution and the influence of using a post-processing procedure to

resolve intersections.

Representation R2 - Polar Vector-based. This representation maps real values to

vectors with a common centre. The representation is shown in Figure 9 (top, right). The

chromosome’s genes correspond to directions and lengths of vectors on a polar coordinate

system. Genes related to directions correlate to angles between 0 and 360 degrees, and

those related to lengths correlate to a range between a defined minimum and maximum

shape size value. The first two genes define the centre position of the shape. Further gene

pairs represent the vector coordinates which are sorted by angle and connected in a

clockwise direction to avoid intersections in the outline. The representation was inspired

by BoxCar2D (Weber, 2015) where the shape of an abstraction of a car body was

described similarly.

Representation R3 - Hub and Spoke-based (Lapok, Lawson, & Paechter, 2017). This

representation is also based on a polar coordinate system, similar to the previous method.

It is shown in Figure 9 (bottom, left). As previously, real values correlate to vectors with

direction and length. The first two genes define the centre of the shape. However, there

are some differences. One is that an additional gene defines the tilt angle of the polar

coordinate system.

Furthermore, each vector has its angle segment in which it operates. E.g. when using six

vectors, each vector has its fixed range between 0 and 60 degrees in which it can operate.

Invalid shapes are avoided by connecting the vectors in a clockwise direction.

49

Representation R4 - Rectangle-based (Lapok, Lawson, & Paechter, 2019). This

representation uses multiple rectangles as basic shapes. It is shown in Figure 9 (bottom,

right). The first two genes define the centre of the shape. Subsequently, every group of

five genes translates to a position coordinate, tilt-angle, width and height of a rectangle.

Multiple rectangles are positioned relative to the centre. The rectangles may overlap with

each other, so the overall outline is extracted. The edges of the outline are the control

points for the spline function.

Lee and Nagao developed a similar representation that uses rectangles as basis shapes

(Lee & Nagao, 1995). However, there are some differences. First, their representation

does not extract the outline of the intersecting rectangles. Instead, they encourage the

evolutionary algorithm to avoid overlapping by giving an additional penalty for it.

Second, the representation is not used with additional functions such as the spline function

or a procedure to remove close vertices.

R4 can produce multiple not connected shapes on one plane, which is interesting from the

perspective of mechanical design. In this way, a component consists of multiple not

connected shapes which are moving as one component on one or also on multiple planes.

Shapes on the same plane can interact with each other. In theory, this provides a way to

model a 3-dimensional system. Section 5.2.1 explains this concept in more depth.

3.3.3 Evolutionary Algorithm

The algorithm initially creates a population of random individuals. Each contains a

chromosome. The chromosome used in this work consists of an array of real values

(genes) in a range from 0.0 to 1.0. The chromosomes are mapped to shapes using the

different representations. The algorithm improves the quality of the population’s fitness

iteratively. Individuals are selected from the population, copied, and mutated in a

systematic manner that leads to new individuals (children) of which the fitness is

evaluated. Children replace weaker individuals of the population. One individual

represents the best solution. The iterative process continues until reaching a stop criterion;

in this case, a set number of generations. Figure 10 shows the pseudo-code for the

evolutionary algorithm.

50

set POPULATION SIZE
set NUMBER OF CHILDREN per generation
set STOP CRITERION to a number of evaluations
set RECOMBINATION PROPABILITY between 0.0 and 1.0

initialize random population of POPULATION SIZE
identify individual with best fitness in population

run generation loop
 repeat for NUMBER OF CHILDREN

set PROBABILITY to random number between 0.0 and 1.0
if PROBABILITY < RECOMBINATION PROPABILITY

 select two parents from population using binary tournament selection
create CHILD from both parents using two-point crossover
apply simple mutation to CHILD

else
 select one individual from population using binary tournament selection

make CHILD by copying individual
 apply simple mutation to CHILD

end if
 end loop

 for each CHILD
 select weaker individual using binary tournament selection
 replace weaker individual in population with CHILD
 if CHILD fitness is better than best individual
 mark CHILD as best individual
 end if

next child

until STOP CRITERION is reached

Figure 10: Pseudo Code Evolutionary Algorithm

The algorithm was set up to create a population of 100 individuals and to produce 20

children in every generation. Children are created by copying selected individuals from

the population using binary tournament selection and through gene mutation. The

selection operator picks two random individuals and selects the one with better fitness.

There are two evolutionary operators, applied with a probability of 50%. First of them is

a mutation with a variable mutation rate. Variable means that the rate changes in each

iteration randomly and applies changes to between one to four random selected genes of

a selected individual; altering the gene values to random new ones which are determined

by a Gaussian Distribution based on the previous value. The Box-Muller transform

equation was used (Muller, 1958). The pseudo-code is shown in Figure 11. It returns a

new gene value which has a higher probability to be closer to the previous one based on

a normal distribution.

51

set SIGMA = 0.2
set MEAN = OLD_GENE_VALUE

Create two random floating-point numbers U1 and U2 that are greater than or
equal to 0.0, and less than 1.0. However, the first number cannot be 0.

set U1 = 0
while(U1 ==0)
 U1 = Round(1.0 – Random_Double)

U2 = Round(1.0 – Random_Double)

Calculate new gene value based on Gaussian distribution (Box-Muller transform)

set Z0 = Round(Sqrt(-2.0 * Log(U1)) * Sin(2.0 * Pi * U2))
set NEW_GENE_VALUE = Z0 * SIGMA + MEAN

*Random_Double return a number between 0.00 and 1.00
*Round is rounding to two decimal places

Figure 11: Pseudo Code Box-Muller transform equation

The second operator is a two-point crossover recombination followed by a mutation using

the same principle as explained in the previous section. The recombination takes two

individuals from the population using the same selection method and exchanges a

chromosome segment between them; determining the segment by two random points

defining the start and end position. The child contains the segment of the first parent and

up to two segments, at the beginning and the end, of the second parent. Children are being

added to the population in each generation by replacing selected individuals of the

population using a tournament selection. In this case, it picks the weaker of two randomly

chosen individuals. This procedure repeats until the maximum number of generations is

reached, or the user terminates the process. The algorithm was carefully designed in an

iterative manner supported by the visual interface. The interface allowed to evaluate the

performance visually and guide the development process of the algorithm and operators.

3.3.4 Fitness Evaluation

The candidate solution’s fitness relates to the similarity between a candidate shape and a

target shape. In literature, often the symmetrised Hausdorff distance or Euclidean distance

is used to calculate the fitness (Chang et al., 2003; Khan & Ray, 2012; Nashvili et al.,

2005; P. Zhang et al., 2007). However, this research uses a different approach, not directly

dependent on the comparison of coordinates between the solution and target shape.

Instead, the fitness function uses the sum of two penalties, based on a comparison of target

and solution surface areas. The penalty value decreases when the candidate shape is more

similar compared to the target shape. A total penalty value of zero means that the solution

and the target shape are identical in form and position. Figure 12 shows the target shape

area, the solution shape area, and the intersection between both.

52

Figure 12: Fitness Evaluation

The following equations show the calculation of the penalties:

 | At - As| = Ps (1)

 |At - Ai| = Pi (2)

 Ps + 2 Pi = Pt (3)

The first penalty Ps results from the difference between the total area size of the target

and the area of the solution, shown in Eq.1. Pi is the second penalty which results from

the difference between the total size of the target and the intersection area with the

solution, shown in Eq.2. Eq.3 shows the total penalty Pt in which Pi has a double weight

to avoid a direct competition of the penalties as the size penalty Ps and intersection

penalties Pi may work against each other. The double weight is important to avoid a

similar penalty value change when an applied mutation increases the size of the area and

at the same time, changes the intersection area. In this case, the penalty values would

eliminate each other, and the total penalty would not change. The algorithm would not be

able to navigate to a better solution. By doubling the intersection penalty, it receives

greater attention, and the algorithm avoids getting trapped in a local optimum.

The areas were extracted using the open-source Clipper C# library (angusj, 2010). The

areas for the shapes were calculated using the following C# method shown in Figure 13.

53

/// <summary>
/// Calculate the area of the shape
/// </summary>
/// <param name="shapes">List of shapes where ech shape is a
/// list of coordiantes</param>
/// <returns>Area of all shapes</returns>
private float AreaOfShape(List<List<IntPoint>> shapes)
{
 double result = 0f;
 if (shapes.Count == 0)
 return (float)result;

 foreach (List<IntPoint> shape in shapes)
 {
 shape.Add(shape[0]);
 float area = Math.Abs(shape.Take(shape.Count - 1)
 .Select((p, i) => (shape[i + 1].X - p.X)
 * (shape[i + 1].Y + p.Y)).Sum() / 2);
 result += area;
 }

 return (float)result;
}

Figure 13: C# code to calculate the area of a shape

3.3.5 Experiments

Experiments were run 25 times on each of the 24 target shapes for 500,000 evaluations

with each representation method. Experiments were conducted using an Intel Core i5-

2500 3.3Ghz with 4GB RAM. The target shapes used are shown in Figure 6. Shape p01

to p12 are lever shapes extracted from an automotive closure system and shape p13 to

p24 are general basic shapes.

The algorithm configuration looked as follows: The population was set to 100, and the

number of children generated per generation to 20. These values resulted from testing and

observations. The number of generations was 25,000, which results in a total number of

500,000 evaluations after which the experiment stopped. The chromosome length for

each representation was set to 77 genes to represent one solution to make the comparison

fair. In general, a higher number of genes leads to a higher representation quality for all

representations as the representations can generate a higher number of control

coordinates. Representations which use more genes to create a coordinate may have a

disadvantage, e.g. R1 uses two genes for one x-y coordinate, whereas R4 uses 5 genes to

place four x-y coordinates (rectangle).

3.4 Results and Evaluation

The results include a comparison of the four representations’ performances in producing

each target shape. Figure 14 shows an example of evolving p04 with the representations

R1 – R4.

54

Figure 14: Evolved solutions with R1 - R4

Each row shows a representation and each column a different stage at the evolutionary

process. A smaller fitness value means that the evolved shape is more similar to the target

shape. The last column shows the final shape after 500,000 evaluations. The solution

number increased each time a better solution was found. A higher solution number

indicates that the shape evolved in more incremental steps. It is noticeable that in this

example, R1 was not able to represent the target shape efficiently. The other

representations performed well. R2 and R3 seem to evolve similarly, however, R3 seems

to improve in smaller steps. R4 starts the evolutionary process with multiple shapes

scattered over the canvas but can approximate the target shape in a similar way such as

R2 and R3.

The Mann-Whitney U-Test was used for statistical analysis since normality of the

distributions cannot be assumed. A p-value of p≤0.05 indicates high confidence that

distributions significantly differ. The p-value refers to the median distribution of best-

performing solutions at the end of each run.

55

Table 1: Comparison of Methods p-values

Table 1 shows the p-values of comparing two representations to each other for each

problem. All comparisons where no significance could be determined are highlighted in

grey. It can be seen that the performance of R1 differs significantly. The other

representations show significant differences in performance for some problems, however,

for seven cases, no significant differences could be detected.

 Figure 15 shows the comparison of the representations R1 – R4 next to each other for

every target shape, with the mean penalty of all 25 runs and the confidence interval. The

supplementing tables for the boxplots can be found in Appendix 1.

method 1 method 2 p01 p02 p03 p04 p05 p06 p07 p08

R1 R2 3.18E-07 9.02E-08 7.42E-03 1.24E-07 5.85E-07 1.50E-09 6.97E-09 3.39E-08

R1 R3 3.03E-08 1.53E-07 4.76E-03 5.86E-08 4.10E-07 1.50E-09 6.97E-09 2.43E-08

R1 R4 2.71E-08 2.87E-07 5.52E-09 5.25E-08 7.06E-06 4.37E-09 1.89E-07 6.53E-08

R2 R3 1.18E-01 1.38E-01 8.69E-01 2.90E-01 3.99E-01 3.32E-01 5.41E-01 2.05E-05

R2 R4 6.77E-01 7.49E-01 7.82E-09 1.09E-01 3.18E-07 4.85E-01 1.58E-05 1.01E-02

R3 R4 2.99E-01 4.32E-01 1.38E-08 6.00E-01 1.38E-07 1.23E-01 3.74E-05 6.89E-08

comparison problems (p-values)

method 1 method 2 p09 p10 p11 p12 p13 p14 p15 p16

R1 R2 1.55E-08 2.43E-08 1.33E-09 4.07E-05 1.12E-07 3.18E-07 4.78E-07 2.24E-05

R1 R3 1.17E-06 4.22E-08 1.33E-09 4.81E-05 6.97E-09 1.00E-07 1.29E-06 7.06E-06

R1 R4 1.91E-09 2.87E-07 2.73E-09 1.70E-07 1.01E-05 2.55E-04 1.58E-05 2.75E-04

R2 R3 1.37E-04 1.66E-02 8.84E-01 8.92E-01 5.87E-03 1.15E-03 3.88E-02 1.18E-01

R2 R4 1.90E-06 6.16E-04 7.49E-01 1.24E-03 1.37E-04 2.32E-03 1.41E-03 3.88E-06

R3 R4 1.12E-07 1.57E-01 4.91E-01 8.17E-04 2.71E-08 1.18E-07 1.01E-01 1.38E-08

comparison problems (p-values)

method 1 method 2 p17 p18 p19 p20 p21 p22 p23 p24

R1 R2 1.91E-09 2.58E-07 2.58E-07 1.57E-06 3.21E-08 2.17E-08 2.73E-09 5.54E-01

R1 R3 4.37E-09 1.24E-07 5.85E-07 1.12E-07 3.39E-08 2.57E-09 1.70E-09 5.09E-01

R1 R4 1.89E-07 2.54E-06 4.46E-06 3.07E-06 4.78E-07 5.22E-05 4.92E-09 1.38E-08

R2 R3 2.33E-01 4.38E-01 9.85E-01 4.46E-06 9.15E-01 3.19E-04 4.26E-01 9.77E-01

R2 R4 1.24E-03 3.32E-01 6.97E-02 5.12E-02 2.17E-08 1.75E-02 5.48E-01 1.50E-09

R3 R4 2.63E-02 1.18E-01 1.38E-01 4.46E-02 1.74E-08 1.80E-05 1.97E-01 1.50E-09

comparison problems (p-values)

56

Figure 15: Method Comparison

57

Vargha-Delaney A-measure (VDA) (Vargha & Delaney, 2017) is used to identify which

Representation outperforms another. VDA is a statistical test to evaluate differences

(effect size) between two non-normally distributed populations. It provides a value (A-

measure) between 0 and 1 which indicates if there is a small, medium, large or no

difference between populations. A value of 0.5 refers to no difference. A value under 0.44

or above 0.56 indicates a small difference. A value under 0.36 or above 0.64 states a

medium difference and a value under 0.29 or above 0.71 indicates a large difference.

Table 2 provides the A-measure for the comparison of all representations on every

problem. The comparison focuses on medium and large differences between the

representations. The arrows show if the first method was better (arrow up), or worse

(arrow down), than the second method. The diagonal arrows indicate a medium

difference, and the horizontal arrows indicate no difference between the compared

methods. The last row shows which representation performed best on the particular

problem.

Table 2. Comparison of Methods using VDA.

method 1 method 2 p01 p02 p03 p04 p05 p06 p07 p08

R1 R2 0.922 0.941 0.7208 0.936 0.912 0.998 0.978 0.955

R1 R3 0.957 0.933 0.7328 0.947 0.918 0.998 0.978 0.96

R1 R4 0.958 0.923 0.981 0.949 0.8704 0.984 0.93 0.946

R2 R3 0.6288 0.3776 0.4864 0.5872 0.5696 0.58 0.4496 0.8512

R2 R4 0.5344 0.4736 0.976 0.632 0.078 0.4424 0.144 0.288

R3 R4 0.4144 0.5648 0.968 0.5432 0.066 0.3728 0.16 0.055

R2,R3,R4 R2 R4 R2,R3,R4 R2,R3 R3 R2,R3 R3

problems (A-measure)comparison

best performance

method 1 method 2 p09 p10 p11 p12 p13 p14 p15 p16

R1 R2 0.966 0.96 1 0.8384 0.938 0.922 0.915 0.8496

R1 R3 0.9008 0.952 1 0.8352 0.978 0.939 0.8992 0.8704

R1 R4 0.995 0.923 0.99 0.931 0.864 0.8016 0.856 0.8

R2 R3 0.1856 0.3024 0.488 0.5112 0.7272 0.768 0.3296 0.6288

R2 R4 0.8928 0.2176 0.5264 0.7664 0.1856 0.2488 0.2368 0.1192

R3 R4 0.938 0.3832 0.5568 0.776 0.042 0.063 0.3648 0.032

R4 R2 R2,R3,R4 R4 R3 R3 R2 R3

problems (A-measure)comparison

best performance

method 1 method 2 p17 p18 p19 p20 p21 p22 p23 p24

R1 R2 0.995 0.925 0.925 0.896 0.956 0.962 0.99 0.5488

R1 R3 0.984 0.936 0.912 0.938 0.955 0.991 0.997 0.5544

R1 R4 0.93 0.888 0.8784 0.8848 0.915 0.8336 0.982 0.968

R2 R3 0.4016 0.564 0.4984 0.8784 0.4912 0.7968 0.5656 0.5024

R2 R4 0.2336 0.42 0.3504 0.6608 0.038 0.304 0.4504 0.998

R3 R4 0.3168 0.3712 0.3776 0.3344 0.035 0.1464 0.3936 0.998

R2,R3 R3 R2,R3 R3 R2,R3 R3 R2,R3,R4 R4

problems (A-measure)comparison

best performance

58

Results show that R1 has the worst performance on every problem compared to the other

representations. The findings show that using a post-processing procedure which disables

coordinates to resolve intersections consequently disables parts of the chromosome. It

makes the shape optimisation inefficient due to applying mutations to segments of the

chromosome that do not influence the solution. Furthermore, disabling coordinates also

lowers the method’s ability to represent complex shapes as fewer coordinates are left to

represent it.

Another finding is that R2 and R3 perform mostly equally, with R3 being the best

performing solution more often. Both methods are having a similar basis and similar

range of operation, which may cause the outcome. R2 has larger flexibility in terms of

shapes it can produce. R3 distributes its coordinates in specific sectors whereas R2 can

concentrate all its coordinates in one sector. However, R3 has the benefit of large changes

in the chromosome, leading to smaller changes in the solution compared to R2. The

optimisation algorithm is better guided by incremental improvements, making R3 obtain

a better solution quality. Both methods seem to be slightly better than R4, which eight

times performed better than other methods; however, the difference is very small.

Furthermore, R4 produces better solutions to problem p03, p09, p12, and p24. The shapes

in these cases have an undercut characteristic which cannot be produced by the other

methods. Nevertheless, R4’s performance on p05 and p21 is still good, although worse

when compared to R2 and R3, due to R4’s rectangle base that makes it difficult to

represent spikes and fine details.

Figure 16 shows the solution quality increase over time. Each smoothed line shows the

found solutions over each iteration of 25 experiment runs and all 24 problems for one

representation method.

59

Figure 16: Improvement Over Time

If taking a penalty value of 5,000 as a baseline for the solution quality, R3 needs 5,000

iterations, R2 needs 10,000 iterations, and R4 needs around 12,000 iterations to reach the

threshold. R1 never reaches the threshold. It shows that R3 is faster in improving the

solution quality compared to all other methods. Figure 16 also shows the time needed to

perform 500,000 iterations with each method. R1, R2, and R3 need between 0.63 and 0.92

minutes, whereas R4 needs around 3.1 minutes. R4 is requiring more processing for

calculating the outline of the intersecting rectangles. However, the time for one iteration

was far below one millisecond with all representations. Taking into account that the

representation’s purpose at a later stage is to generate mechanical systems, where the

evaluation of a solution requires a physics simulation which is taking a longer time than

the calculations of the mapping procedure from genotype to phenotype.

3.5 Summary

This chapter focused on the evaluation of shape representations for mechanical

components used in combination with an evolutionary algorithm. It is an initial step

towards a generative design system for mechanism design. Representations were

developed iteratively by using the method of evolving target shapes, instead of direct

evaluation in a physics simulator. It allowed investigating the representation’s capabilities

and limitations in-depth, employing a helpful tool to identify flaws, improve, and

compare representations performance. The requirements for a shape representation were

defined, and the method used for development, testing, and evaluation of shape

60

representations was presented. Furthermore, explaining that the potential shape

representation needs to fulfil criteria to be well-performing, including keeping the number

of descriptive parameters as low as possible; covering the entire relevant search space;

avoid producing invalid solutions, and be compatible with genetic operators.

Four representations were developed and evaluated. Their performance was investigated

to evolve a specified set of target shapes. These consist of mechanical lever shapes taken

from an automotive closure system and a set of basic shapes. The first representation (R1)

used direct mapping of genes to coordinates and a post-processing procedure to resolve

shape intersections. The second representation (R2) mapped the chromosome to vectors

which were connected in a clockwise direction to avoid intersections. The third

representation (R3) mapped the chromosome to vectors as well; however, it allowed each

vector to operate in a specified area. In the fourth representation (R4), the chromosome

was mapped to multiple overlapping rectangles of which the overall outline was extracted.

Two functions were applied to the resulting shape of the four methods. The first function

applied a spline function to the shape, introducing curves and the second removed vertices

too close to each other, avoiding aggregation of vertices.

Several experiments were undertaken to evaluate the performance of each method to

produce the target shapes. The performance was compared and statistically evaluated

using the Vagha-Delaney A-measure. Results show that the direct mapping of R1 and

resolving intersections in a post-processing procedure leads to low-quality solutions. The

R1 representation was not able to evolve complex shapes. R2 and R3 performed almost

equally in terms of solution quality, with R3 performing slightly better and needing fewer

iterations to reach a superior result. R4 was slower than the other representations;

however, it could produce similar results to R2 and R3 in many cases. R4 was the only

representation capable of producing shapes with undercut features, an example is shown

in Figure 17, to a high quality which can be considered as being more complex shapes.

61

Figure 17: Undercut feature

Findings showed that R4 covers a large search space using only 77 descriptive parameters.

All representations were designed to produce exclusively valid solutions, and the

evolutionary algorithm was able to navigate the search space with all representations.

Therefore, R4 was chosen to be extended and used for evolving mechanisms. In the

following chapter, the representation is developed further and embed it in a physics

simulator evolving shaped components.

62

4 Evaluation Method for Evolutionary Design

using a Physics Simulator

4.1 Introduction

In the previous chapter, different shape representations were evaluated in their ability to

create mechanical component shapes guided by an evolutionary algorithm. After showing

that the representations are capable of evolving mechanical shapes, the next step is to

embed them into a physics environment, which will allow investigating their ability to

create shapes capable of adapting to surrounding obstacles and satisfying functional

objectives.

The previously employed fitness function focused on target shapes. This chapter presents

a method to evaluate the performance of potential solutions within a physics scenario. For

that purpose, a simulator and visualisation tool was developed, allowing to specify design

aims, design problems, and visualise the movement of components. The simulator

resolves the movement of physics components according to a scenario.

Box2D, a two-dimensional game physics engine (Catto, n.d.), was chosen as the

backbone for the simulator. Box2D can resolve movements and collisions between rigid

bodies in a virtual world, including forces, torque, friction, restitution, mass, and gravity.

It provides a way to define a virtual world of rigid bodies and is capable of defining

parameters around material properties and masses. The physics engine returns position

and orientation of all components in the virtual world on a frame by frame basis. It

simulates seconds-long scenarios, within a few milliseconds, depending on its

complexity, in contrast to conventional simulations used in mechanical design, as they

tend to focus on precision, rather than speed. Conventional methods often compute details

such as elastic deformation which is not necessary at early design stages. Although the

implemented simulator is less accurate than others employed within the industry, it is

accurate enough to be used for resolving the motion in the less detailed, early conceptual

design phase, when focusing on shape and placement of components. It is well suited to

evaluate a large set of potential solutions at a very fast pace.

For this research, the simulator is embedded in a generative system, using the

evolutionary algorithm of the previous chapter to evolve the shape of a component. The

approach allows producing candidate solutions, and evaluate them, as well as adapting a

component to its environment with the objective to traverse a set of landscapes. Different

63

scenarios can be defined with the same design objective, enabling a performance

evaluation of the evolutionary algorithm.

The simulation environment and its capabilities are detailed below, together with a

validation of the simulator and the generative abilities of the method.

4.2 Background

This section gives insight into the simulation capabilities required for planar mechanical

systems. It discusses different simulation approaches, explains the physics parameters,

and provides the details of the generative application.

4.2.1 Requirements for Physics Simulator

A physics simulator employed for this research is concerned with qualities of mechanical

systems; in particular, it allows resolving movements and collisions between components

of these systems. Other approaches which use simulation in similar context focus on

kinematic properties, as explained in the literature review. Kinematic simulation resolves

motion; however, it omits mass, friction, gravity or collisions between components.

Often larger mechanical systems are broken down into subsystems such as cam and

follower mechanisms, to reduce the problem complexity (J. Lampinen, 2003; Mundo et

al., 2006; Ruan et al., 2015). The optimisation within kinematic simulators is limited to

subsystems with components that do not lose contact with each other, which makes the

calculation of the behaviour easier. In real-life mechanisms, some sections of components

are only occasionally in contact with other components or the environment.

There is currently no known simulator available tailored for planar mechanism prototypes

that can be used in combination with an evolutionary algorithm to conduct experiments.

Evolutionary computation requires hundreds or thousands of evaluations to be performed,

which necessitates a physics simulator to be fast in resolving the kinematic behaviour of

candidate solutions. The simulator should be able to compute multiple components

simultaneously without the requirement of breaking systems down into smaller

subsystems.

The simulator should also have the ability to resolve scenarios in which components are

not constantly in contact. The length of the simulation should be specifiable. The output

format should contain the locomotion, components movement, of the scenario for each

simulation frame, as each of them embeds the position and orientation of the involved

components at a specific time. The selected frames can be used to replay a visualisation

of the scenario to review solutions; this, in turn, may be used to evaluate the performance

64

of a solution. Furthermore, the simulator needs to include parameters, such mass; friction;

and restitution, to be able to reassemble a real-world mechanism, as well as drive

implementation and gravity which introduce input forces and movement to the scenario.

4.2.2 Physics Parameters

Relevant physics parameters considered in this research include gravity, as well as

material parameters such as mass, friction, and restitution that influence a mechanical

system’s kinematic behaviour.

Every component in the system has a mass, influencing the inertia, and the force needed

to move it. Mass can be specified for each component directly by definition, or results of

the specification of the material density. In the latter case, the mass increases with the

growth of the surface area of the component.

Friction specifies the amount of resistance force between the contact surfaces of two

components when sliding against each other, while restitution represents the energy loss

in a collision between two components. The latter is a material attribute which simulates

the bouncing behaviour of colliding components.

Gravity influences all dynamic components. It is a constant force and influences the

overall behaviour of a mechanical system specified by one parameter. Components on a

2-dimensional layer accelerate in the direction of the defined gravitational direction.

However, in cases when looking at the mechanical system from a birds-eye perspective,

the gravity can be turned off by setting it to zero.

Also, all listed parameters can be part of the optimisation. In this work, though, the aim

is to optimise the shape and configuration rather than the material choice, which is why

these parameters are constant values in the problem description.

Throughout experiments, the material density was set to 1.0 grams per cubic centimetre,

the restitution coefficient to 0.6, and the friction coefficient to 0.5 which should represent

a hard plastic.

4.2.3 Application for Experiments

Research to the date shown that there is no known suitable application with the

functionality required to conduct relevant experiments. For that reason, a generative tool

was designed and implemented, uniting the evolutionary algorithm and physics engine,

and providing a graphical user interface to conduct experiments and visualise them.

Figure 18 shows the application.

65

Figure 18: Generative Tool - Load Menu

The interface consists of three sections. The user controls are on the left-hand side, the

simulation view on the top-right, and a feedback console on the bottom-right.

The user controls provide three tabs, namely load; simulation; and generative menu. The

load tab has two buttons, one for importing files containing a design scene, and the second

for saving the session, e.g. with a design solution. After loading a file, the view shows

attributes of the file and the problem, e.g. several components within the scene. The file

contains the framework to define mechanism design, explained in detail in Chapter 5.

The simulation tab opens a menu connected to the physics simulator, shown in Figure 19.

66

Figure 19: Generative Tool - Simulation Menu

The simulation menu enables setting the length of the simulation according to the number

of frames and the frame rate. Dividing the total frames by the frames per second results

in the total simulation time in seconds. The gravity in meter per square second is settable

in x and y-direction.

A checkbox provides the option specifying whether connected components should collide

with each other or not; another changes the colour setting of the simulation. The

“Generate Frames” button starts the simulation of the current scene, which can be

subsequently visualised, paused, or skipped frame by frame using the related buttons.

Furthermore, a button allows resetting the simulation to the first frame. The visualisation

speed is adjustable be defining it in frames per second.

Figure 20 shows the generative menu.

67

Figure 20: Generative Tool - Generative Menu

68

The menu is connected to the generative system and contains the control elements for

configuration. The evolutionary algorithm can be started and stopped, and the current

progress can be manually requested. The number of evaluations defines the stop criterion.

The design objective is to let a solution traverse a physics landscape, explained in detail

throughout this chapter. The walking objective can be set in x and y-direction, in which

the solution should move.

A checkbox can be enabled to produce output data. It creates a folder on the desktop and

a solution file each time the algorithm finds a result with better fitness. The data is the

basis for the analysis of the performance of the algorithm.

The “Algorithm Setup” section contains the configuration of the algorithm. Different

implemented evolutionary operators, such as mutation and recombination, can be selected

from a drop-down menu. The population size and number of children per generation can

be defined. Furthermore, a drop-down menu provides a way of choosing a representation.

This part of the menu allows testing representations of similar or different mechanisms,

e.g. to produce single or multiple components, or linkages, further explained throughout

this and the following chapters. Representation related thresholds can be defined, such as

minimum and maximum size of a solution and number of shape elements utilised.

Additionally, the generative menu has a section with a list box containing all found

solutions. These can be selected and visualised.

An “Optimisation Info” section provides feedback on the generative process. A “Solution

Score” section includes the option to set a weight for several fitness values given to

different properties of the solution, such as the rotation of the actuator, walking distance,

shape area, and a jump penalty. In this work, the focus is mainly on walking distance

fitness.

The simulation view on the right-hand side shows the physics environment as previously

explained. The user can scroll through the scene and zoom in and out. The console at the

bottom gives feedback on the simulation, the generative process, and occurring errors.

The simulator was implemented in C# using the WPF framework. The code architecture

separates the view from the logic. The software can be extended to accommodate new

algorithms, operators, representations, and design objectives.

69

4.3 Method

A simulator was implemented, providing a visualisation of the locomotion and behaviour

of a physics scenario. It delivers the data for the fitness function of the evolutionary

algorithm, which evaluates the change of the configuration of the scenario throughout a

specified timespan.

The evolutionary algorithm used here is similar to the one in the previous chapter, except

applied in a new context including the physics simulator as well as extended forms of

representations. The evolutionary algorithm’s capability is investigated to evolve shape

components able to traverse physics environments. A set of scenarios was designed

containing descendant landscapes with different profiles (which will be introduced in

Figure 26) to test the evolutionary algorithm’s performance.

For the experiments, a shape component is placed on the top of the descendant landscape.

From there, gravity pulls it to the ground and makes it roll down. The profile of the

landscape is designed to hinder the component’s ability to roll. The objective function

evaluates how far and quick the component moves down the landscape, which allows the

evolutionary algorithm to evolve solutions capable of overcoming this obstacle. In result,

it changes the shape of the component and tries to evolve the best suitable shape for the

landscape.

This chapter focuses on testing the following:

• Firstly, the function of the simulator using unit and acceptance tests.

• Secondly, the suitability of the simulator to be employed in an evolutionary

computing application, by evolving components whose fitness is dependent on

their shape and interaction with a physics scenario, to fulfil the design goal.

4.3.1 Functionality Testing

Throughout the development, the simulator was tested using unit tests. Their purpose is

to validate whether every unit of the software performs as intended. A unit is the smallest

testable part of the software, usually called a method. A method takes input variables and

provides an output. Unit tests are other test methods implemented for each method of the

software. They include all input scenarios and feed the software with defined values, and

compares the output to the desired output. If the output is different from the desired

output, then the test fails. The generative system’s code, including simulator, is covered

by unit tests where possible. The unit-tests are embedded in the code.

70

Furthermore, acceptance tests are used to validate the correct implementation of the

simulator. Different scenarios are defined to examine the simulator visually, e.g. whether

the placement of the components is correct; the computation of collisions is reasonable,

and the parameters, such as mass, friction, restitution, and gravity, are correctly applied.

The acceptance tests, including all tested scenarios, can be found in Appendix 2.

4.3.2 Evolutionary Representation

The previous chapter provided an evaluation of four representations based on different

principles. The rectangle-based representation explained in section 3.3.2 (Representation

R4 - Rectangle-based) performed well and was taken further to be used for evolving

component shapes within a physics environment, investigating its ability to evolve

solutions for different landscapes which fulfil a design goal.

However, throughout initial experiments, it was found that using the representation

without any changes produced many scattered shapes, which led to extending the

representation and creating two further versions of it. These included minor adjustments.

Their performance was compared in experiments.

The first representation R is similar to the one in section 3.3.2, served as a baseline in this

chapter. R* is the second representation with a modified distance constraint that defines

the displacement of rectangles from the centre point of the component. The rectangles

have a higher probability of overlapping. R** is the third representation, in this case,

based on R*, broaden with an additional gene per rectangle which enables or disables it.

R** has a higher probability to solve a problem with a simpler shape assembled with

fewer rectangles than the other versions. The representation should lower the possibility

of getting trapped in a local optimum when some undesired rectangles hinder the shape’s

ability to be evolved to a better solution.

Figure 21 shows the encoding for R.

71

Figure 21: Encoding

As previously explained, R employs multiple rectangles to assemble the shape of a

component. The component has a centre point. A representation constraint defines the

maximum distance of positioning a rectangle away from the centre. A group of five genes

describe a rectangle which each gene is describing its x and y offset position, tilt-angle,

width, and height. Overlapping rectangles construct an overall outline. The edges of the

outline fulfil the role of control points for a spline function. The representation produces

multiple shapes if rectangles do not overlap, which still behave as one component and

stay the same distance appart when moving.

R* has the same encoding as R; however, the rectangles displacement from the centre

point is limited to a smaller maximum distance. Figure 22 shows an example of the

maximum distance in which placing a rectangle away from the centre point is possible.

Figure 22: Maximum Distance from the Origin

72

R has a maximum distance of 80 pixel which is twice the distance of R*.

Representation R** has an encoding modification, including additional genes such as

shown in Figure 23.

Figure 23: Turning-off Rectangles

For R**, one additional gene (v) per rectangle enables the algorithm to blend out

individual rectangles. It works in a binary way. Due to using real value genes, the

algorithm enables a rectangle if the number is mutated to an even value and disables it

when the number is odd. The representation has an advantage in producing simpler

shapes, e.g. it can produce ellipsis and circles by disabling rectangles. The other

representations would need to position additional rectangles inside of one rectangle to

generate an ellipsis or circle which requires specific gene configurations on the genotype.

4.3.3 Evolutionary Algorithm

For the experiments, the evolutionary algorithm explained in Chapter 3 is used with minor

changes, although with a different configuration and including different representations.

A population size of 40 individuals and eight children per generation was defined, a

similar ratio as the one used previously. The smaller population size was found to perform

better throughout initial testing. All other algorithm properties were identical.

For this chapter, two different mutation operators and two different recombination

operators were implemented and compared. The first mutation operator M1 changes

chromosome values to new ones, with a deviation based on a Gaussian Distribution. This

means that new values are more likely to be closer to the old ones. The second mutation

operator M2 changes values randomly. The first recombination operator is a one-point

73

crossover operator R1 with a random crossover point. Figure 24 shows an example of a

one-point crossover operation.

Figure 24: One-point Crossover R1

The crossover R1 takes one part of the first parent’s chromosome and the second part of

the second parent’s chromosome to create a child chromosome. The second

recombination operator, R2, is a two-point crossover operator, which uses a random start

and random end crossover point, shown in Figure 25.

Figure 25: Two-point Crossover R2

The crossover operator R2 is similar to the one used in Chapter 3. It exchanges a section

between the start point and an endpoint of parent one’s chromosome, with parent two’s

chromosome, to create a child chromosome. Experiments were conducted to evaluate the

operators. Section 4.4 shows the results.

The gene sequence is essential to preserve solution features. E.g. a uniform crossover

which exchanges multiple values instead of a sequence between parents does not conserve

the solution's features and would introduce too large disruption.

4.3.4 Fitness Evaluation

The fitness of a potential solution is determined through measuring the travel distance of

the shape component on a descending landscape. The objective is to maximise the

position of the evolved component in the x-direction at the end of a specified timespan.

The shape component is pulled by gravity and rolls down the landscape while

encountering obstacles that require the shape to adapt accordingly to the landscape, to not

get stuck on its path down.

74

4.3.5 Experiments

The experiments tested the evolutionary algorithm’s ability to adapt a shape component

in a physics environment to a provided landscape. A candidate shape is mapped into a

physics component and placed at the top of a descending surface path. The component is

pulled down by gravity with the objective to roll down the landscape as far and fast as

possible within a specified timespan. The evolutionary algorithm evolves the shape to the

topology of the landscape required to fulfil the objective. The idea is that if the

evolutionary system is capable of adapting a shape to a ground surface, then it is also

capable of adapting a shape within a mechanical context to its surrounding components

in the environment, which is important for evolving mechanical components, described

in the next chapter. Five different landscapes with different topology and difficulty were

designed to test the algorithm, shown in Figure 26.

Figure 26: Simulation Landscapes

Landscape a is a simple straight descending path; landscape b is a straight path as well,

except it includes wall obstacles which are repeating over the length of the path which

adds complexity by limiting the height of the descending path. Landscape c is a more

complex digital shaped path; landscape d is a digital shaped path as well, except with a

repeating height limit. Landscape e is an irregular path with the highest complexity due

75

to introducing multiple obstacles, such as a hole, a height limit, and a small rising section.

The dimensions of the landscape relate to an evolved shaped as follows: The landscapes

a-d show a section of an estimated 400 x 400 pixels and landscape e 400 x 800 pixels.

The maximum size of an evolved component can reach is around 240 x 240 pixel.

Each of the three representations was tested using these landscapes with two different

mutations and recombination preferences, and compared to random sampling taken as a

baseline. Random sampling means that in each iteration new random chromosome values

were assigned. The experiments were run 24 times on each descending landscape and

stopped after 20,000 evaluations. It is a lower number of iterations than used in the

previous chapter, as the evaluation is computationally more expensive. This leads to 30

to 40 hours runtime for one experiment with 24 repeats on one landscape, using an Intel

Core i5-2500 3.3Ghz with 4GB RAM.

4.4 Results and Evaluation

Experiments were run to investigate the generative system’s capabilities to evolve

component shapes that efficiently traverse a provided descending path, pulled by gravity.

• Firstly, the simulator was validated.

• Secondly, the mutation and recombination operators were evaluated to identify

their effect on evolving solutions using one version of the rectangle representation

(R*) on one problem instance (landscape a).

• Thirdly, the evolutionary algorithm was evaluated in its ability to evolve solutions

for one problem instance (landscape a) using the three versions of the rectangle

representation by comparing it to random sampling.

• Fourthly, two different mutation (M1 and M2) and recombination-settings (R1 and

R2) were evaluated on four different problem instances (landscape a-d) using the

three versions of the rectangle representation.

• Then, the generative system’s performance was evaluated using an environment

(landscape e) with enhanced complexity, including irregularities utilising the

three versions of the rectangle representation with the two different mutation and

recombination settings.

The Mann-Whitney U-Test was used for statistical analysis since normality of the

distributions cannot be assumed. A p-value of p≤0.05 indicates high confidence that

distributions significantly differ. The p-value refers to the median distribution of best-

performing solutions at the end of each run.

76

The key findings can be summarised as follows:

Evaluation of evolutionary operators:

• M1, which uses a Gaussian Distribution, performs significantly better than M2

• R1 and R2 show no significant difference in performance

Evaluation of a generative system’s ability to evolve solutions:

• R performs on average similar to random sampling, however with a wider

confidence interval

• R* and R** perform better than random sampling

• R* performing better than R**

Evaluation of evolutionary settings (including environment (landscape e) with enhanced

complexity):

Table 3 summarises the results for each landscape. It shows the best performing

evolutionary setting for each representation and environment. In some cases, both settings

perform equally. The best performing representation for each environment is presented

as well.

Table 3. Evaluation of evolutionary settings.

• R performs better when bigger changes are applied (S2), however, it has a higher

potential to get trapped in local optima

• R* is stable throughout all problem instances and evolutionary settings

• R** appears to perform well with simple problems and is biased towards

producing simpler shapes

The findings are discussed in detail in the following sections.

4.4.1 Simulator Validation

The simulator passed all unit-tests related to the code implementation. Acceptance tests

were conducted, including collision tests of shape components such as circles, polygons,

and mixed shape types on one and multiple layers (further explained in section 5.2.1).

Tests of the parameter setting, namely gravity, density, friction, and restitution were

a b c d e

R S2 S2 S1/S2 S1 S1/S2

R* S1 S1 S1/S2 S1/S2 S1/S2

R** S1/S2 S1/S2 S1/S2 S1/S2 S1

Best performance R R** R, R* R R*

Landscape
Representation

77

conducted. The revolution joint was tested as a single joint and within a linkage. Also,

the actuator function was investigated. The simulator passed all tests. It performed well

when choosing a frame rate of over 60 frames per second (fps). Lower frame rates

produced simulation errors in some cases due to clipping, namely penetrating

components, especially when faster movements were involved. Choosing higher frame

rates improved the simulation quality; however, it resulted in longer simulation time.

4.4.2 Evaluation of Evolutionary Operators

In this section, the different mutation and recombination operators are evaluated to

identify their effect on evolving solutions using representation R* on landscape a. A

perfect circle reaches a score value of 3350 in this landscape. Figure 27 shows three sets

of results with different evolutionary operator settings.

78

Figure 27: Comparison of Evolutionary Operators

79

The plots show the fitness of the best solution after every evaluation. For the first plot

(red) in the figure above, the evolutionary algorithm uses operators M1 and R1, which

were explained previously in section 4.3.3. For the second plot (blue), the operators M2

and R1 are used; and the third plot (green) shows the performance achieved with

operators M1 and R2. The plots allow comparing the performance of the individual

operators.

Analysis of the first and second plot shows a difference in the performance of the mutation

operator. It demonstrates that M1, which uses a Gaussian Distribution, performs better

than M2, which assigns random values to a gene. The difference between both

distributions is significant (𝑝 = 0.00319). In plots one and three, different recombination

operators are used; however, there is no significant difference between the distributions

(𝑝 = 0.959), which shows that the recombination operators perform very similarly.

4.4.3 Evaluation of Generative System’s Ability to Evolve Solutions

The evolutionary algorithm was evaluated in its ability to evolve solutions for landscape

a, recording the solution's fitness increase over 20,000 evaluations. The three versions of

the rectangle representation were compared to random sampling to investigate whether

the evolution is occurring. Furthermore, the representations were compared to each other.

Figure 28 shows the performance of the random sampling (red) compared to the

performance of the representation R, R*, and R** (blue) including the p-value indicating

the confidence in the difference of the populations.

80

Figure 28: Comparison of Generative System to Random Sampling

81

The results show that R performs on average similar to random sampling. Random

sampling reaches a fitness value of around 1250 whereas R reaches 1150. However, R has

a much wider confidence interval than random sampling and may occasionally find

better-performing solutions. The wider confidence interval may be caused by a too large

disruption introduced when generating new solutions. R allows placing rectangles in a

larger area, which may lead to too large changes in the phenotype.

When looking at the results produced by random sampling, compared to representations

R* and R**, the solutions reach a fitness value of around 1500 with a very similar trend.

The evolutionary algorithm produces better results with fitness values of around 2000.

Both distributions significantly differ from each other, with R* performing better than

R** (𝑝 = 8.366 × 10−4) on landscape a. The difference between R* and R** could be

attributed to R** using a larger chromosome length, which increases the search space and

computational effort to traverse it.

4.4.4 Evaluation of Evolutionary Settings

In this section, the three representations are evaluated on their ability to produce solutions

for landscapes a – d with two different evolutionary operator settings. The focus is not

on the mutation rate, as a variable rate was used that can mutate up to 25% of the

chromosome. Instead, the research focused on the actual gene value changes, as using a

real value chromosome. The aim is to evaluate the performance of each representation to

produce solutions for different landscapes using two different configuration settings and

to identify which representation – setting setup performs well.

In the first setting S1(green), the mutation operator M1 based on Gaussian Distribution

was employed, applying a smaller gene value change. The operator is used together with

the recombination operator R2, a two-point crossover that exchanges a sequence of one

parent with another parent to create a child solution. In the second setting, S2 (blue)

employs the mutation operator M2 which changes the gene value randomly, together with

recombination operator R1, a one-point crossover which exchanges one part of one parent

with another parent to create a child. The difference between S1 and S2 is that S1 applies

smaller changes compared to S2 while producing a child. S2 applies larger changes to the

chromosome. The experiment concentrated upon determining how the representations

cope with these different evolutionary settings. The performance of the representations

and settings was compared for each problem instance individually.

Figure 29 shows the results using the three representations in combination with S1 and

S2 on landscape a.

82

Figure 29: S1 and S2 for R, R* and R** on Landscape a

83

The first plot shows the representation R with the two evolutionary operator settings. R

does not perform well with setting S1 compared to S2. The populations do not show a

significant difference (𝑝 = 0.0606). The confidence interval in both plots is wider

compared to the other results. It is an indicator that evolution gets trapped in a local

optimum. A larger change using S2 helps the algorithm to escape it. R does not work well

with smaller mutations based on Gaussian Distribution and two-point crossover.

The following two plots for R* and R** show a narrow confidence interval. Looking at

R*, applying smaller changes with setting S1 increases the performance of the solutions

in contrast to larger changes using S2. Both populations are significantly different (𝑝 =

0.00376).

For R**, the performance comparison between settings S1 and S2 shows no difference

(𝑝 = 0.16). There is no difference in applying smaller and larger mutations.

R performs better than R* (𝑝 = 0.035) and R** (𝑝 = 0.0088) when applying larger

changes using S2.

Figure 30 shows the results using the three representations in combination with S1 and

S2 on landscape b.

84

Figure 30: S1 and S2 for R, R* and R** on Landscape b

85

According to the results above, R does not cope well when applying small changes (S1)

in landscape b (𝑝 = 0.014969). The evolution gets trapped in a local optimum quickly

and has a wider confidence interval. R* performs better with setting S1 compared to S2

(𝑝 = 0.000456). R** performs similarly with both settings with no difference (𝑝 =

0.0854). However, it appears that R** is constantly increasing its performance. R** with

setting S2 reaches the highest performance value with a difference compared to R (𝑝 =

8.41 × 10−9) and R* (𝑝 = 2.85 × 10−9).

Figure 31 shows the results using the three representations in combination with S1 and

S2 on landscape c.

86

Figure 31: S1 and S2 for R, R* and R** on Landscape c

87

The settings S1 and S2 perform similarly on R with no difference (𝑝 = 0.62) and a wider

confidence interval. There is also no difference comparing S1 and S2 in R* (𝑝 = 0.2277);

for R** (𝑝 = 0.16). However, R and R* perform similarly well (𝑝 = 0.82) while using

S2, whereas, R** performs worse compared to R (𝑝 = 0.0006) with a significant

difference. R** seems to perform in general worse on landscape c.

Figure 32 shows the results using the three representations in combination with S1 and

S2 on landscape d.

88

Figure 32: S1 and S2 for R, R* and R** on Landscape d

89

This figure shows that R performs better applying smaller changes with S1 compared to

S2 (𝑝 = 0.0177). However, S1 produces a wider confidence interval which indicates that

the algorithm gets trapped in local optimum more often. R* shows no significant

difference comparing S1 and S2 (𝑝 = 0.0797). R** demonstrates no significant

difference between S1 and S2 (𝑝 = 0.6876) either. While analysing S2, R is the best

performing representation compared to R* (𝑝 = 0.0016) and R** (𝑝 = 1.4 × 10−6).

The performance of the algorithm was investigated with different representations and two

different evolutionary settings S1 and S2. S1 applied smaller changes to the chromosome

than S2.

Findings show that R performs worse when smaller changes are applied, and it has a

higher potential to get trapped in local optima compared to the other representations. With

it’s broader rectangle placement constraint, it has a larger bias towards evolving shape

fragments that disturb the movement of the shape component, such as shown in Figure

33

Figure 33: Fragments

The performance of R* is stable throughout all problem instances and evolutionary

settings. R** appears to perform well with simple problems such as landscape a, and

worse compared to the other representations on more complex landscapes. The reason

may be founded in the attributes of R**, as it can produce simpler shapes by removing

rectangles which gives it a higher bias towards evolving round shapes compared to the

other representations. These are always using multiple rectangles and are confronted with

shape fragments that disturb the performance.

90

4.4.5 Evolving Solutions for Environments with Enhanced Complexity

This section is dedicated to investigating the performance of the representations on a

problem instance with enhanced complexity by applying irregularities in the landscape.

Landscape e is irregular; it contains a hole, a height limit, and is unevenly descending.

Figure 34 shows the results. The performance of the three representations is investigated

on this landscape with the evolutionary settings S1(green) and S2 (blue).

91

Figure 34: S1 and S2 for R, R* and R** on Landscape e

92

Overall, the plot shows that R does not perform well on landscape d. It gets trapped in a

local optimum when using S1 and S2 (𝑝 = 0.1147). The wide confidence interval in the

second plot shows that the algorithm appears to be able to escape from it when applying

larger changes using S2. R* performs equally well while using S1 or S2 (𝑝 = 0.934). For

R**, using smaller changes with S1 leads to better performance compared to S2 (𝑝 =

0.038). R does not perform well on the more complex landscape. When analysing the

setting S2, R* is the best performing representation compared to R (𝑝 = 1.9 × 10−6) and

R** (𝑝 = 0.000777).

As previously suggested, the reason may be that R can place rectangles in a wider area

around the centre, which may produce shape artefacts that disturb the movement of the

shape component. R** is biased towards simpler shapes because of its ability to remove

rectangles from the shape. It leads to evolving round shapes first, which move quicker at

the beginning and get stopped by obstacles very quickly. The solution is not able to escape

the local optima anymore. R* performs well with both evolutionary settings and can

evolve well-performing solutions when small or larger changes are applied.

4.5 Summary

An evolutionary algorithm was used to evolve the shape of a component and to adapt it

to different landscapes in a physics environment. The capability to adapt shapes to its

environment is crucial for an evolutionary system for evolving more complex mechanical

systems, e.g. ones involving multiple components. The physics environment was

implemented and functionally verified with unit and acceptance tests.

An evaluation was conducted of applying an evolutionary algorithm to evolve a shape

component which can traverse a descending landscape pulled by gravity. The rectangle

shape representation was taken from Chapter 3. It did not appear to function as expected,

which led to the design of two modified versions of the representation. The first

modification was a change of the maximum distance at which rectangles can be placed

relative from the centre of the shape component. The second modification enabled the

algorithm to remove rectangles when creating a shape.

• Firstly, the simulator was validated.

• Secondly, two different mutation operators and two different recombination

operators were evaluated by comparison.

• Thirdly, the generative systems ability to evolve solutions by comparison to

random sampling was evaluated.

93

• Fourthly, an investigation was conducted into three different representations, with

two different evolutionary settings, using four problem instances with different

complexity. The evolutionary setting S1 applied smaller changes to the

chromosome than setting S2.

• Finally, the representations and evolutionary settings were applied to a more

complex irregular problem instance.

The findings show that the simulator performed well in the evolutionary computing

context. The representation R* with the modified placement constraint performed well

through all problem instances and with both evolutionary settings. The initial

representation R did not cope well with simpler problem instances as it evolved shape

fragments that disturb the movement of the shape component. R** did perform well in

simpler problems and worse in more complex ones. The reason for this may be that the

representation is biased towards producing simpler (round) shapes as it is capable of

removing rectangles. Simpler shapes were performing well on, e.g. a descending path

without obstacles, and then, when obstacles were introduced, the representation was not

able to evolve further and got stuck in its initially well-performing design.

The following chapter will extend the work by moving from evolving shape components

into defining a framework for evolving conceptual designs of planar mechanisms.

94

5 The Conception of a Framework for Evolving

Designs of Planar Mechanisms

5.1 Introduction

The following chapter is dedicated to a framework specifying boundaries, constraints,

and limitations for evolving planar mechanical designs. The framework allows the

definition of scenarios, using the simulator discussed in Chapter 4.

As previously discussed, an evolutionary representation, able to evolve single

components to meet a design goal, was evaluated. In this chapter, it is taken forward, with

a focus on evolving mechanisms. In this scenario, the algorithm evolves multiple shape

components in a dynamic environment rather than a static landscape. Joints are used to

attach the shape components to the bearing plate while introducing a rotatory movement

and torque. The aim is to evolve a mechanism capable of moving as far as possible

through a set of defined landscapes, within a given time. The solution’s behaviour and

its’ performance are the effect of input movement, as well as shapes of components

interacting with each other, and with the landscape.

This solution employs the same fitness evaluation as previously used, with the difference

to evolve actuator driven mechanisms, rather than a single shape component.

Furthermore, these mechanisms consist of multiple components acting as levers;

revolution joints; mounted on a bearing plate.

The new set of different landscapes, even instead of descending, is provided. The forward

movement results from the driving components rather than from gravity, which is acting

on the complete system and pushing the mechanism onto the landscape. A scripting

language is introduced that enables specifying design problems and solutions, and storing

them in a file. The evolutionary algorithm is evaluated through a set of problem instances,

designed specifically for experiments which include evolving the placement and shape of

multiple components mounted on a bearing plate simultaneously.

The following sections will provide extensive background regarding the employed model,

the method to evolve design solutions, and the results of the experiments.

95

5.2 Background

In order to gather the requirements, and develop a computational representation (i.e. a

model) for planar mechanisms, it is important to understand the way these works. A large

number of mechanical systems were summarised and classified by Artobolevsky

(Artobolevsky, 1975). These are mostly planar and can be divided into gear, and lever

systems. Gears can be represented in a simple way, e.g. by pairs of circles. A gear

system’s behaviour can be obtained by calculating the transmission ratio, which does not

require simulation or resolving collisions and motion. Lever-type components transmit

forces and movements in a similar way to gears; the main difference is that these can have

an infinite variation in placement and shape, which makes it more complex to resolve the

locomotion and transmission ratio between them. For instance, two levers may not always

be in contact with each other while interacting on different sections of their outline.

Obtaining the locomotion and behaviour requires a dynamic simulation.

Planar mechanical systems interact through collisions of interconnected components on

a single axis plane. These can be either linked together in the form of lever chains or as

individual components positioned in a relative distance from each other, occasionally

getting into contact. Both types transfer motion and torque through the outline shape and

the linkage. Each component has a mass, produces friction between itself and other

components when in contact, and has restitution, which influences the behaviour of the

overall mechanical system as well. Components can be mounted on a bearing plate, which

keeps them in relative distance to each other. A mechanical system can be imagined as a

clockwork mechanism where multiple components need to be positioned, constraint, and

shaped in a specific way, to perform the desired design task. Assembling a mechanism

made out of random lever combinations often does not generate movement as it is likely

that they hinder each other. In addition to levers, a mechanical system consists of joints,

which constrain the motion of a lever.

Mechanism design is a broad area that can include a variety of parts. This work focuses

on a limited set of them and their virtual representations. It excludes components such as

specific joints, e.g. translational joints; springs; and dumpers, as the implementation of

those would be beyond the scope of this work. However, the simulator allows such

extensions to be implemented in future.

The proposed model is a 2-dimensional representation of planar mechanisms at a lower

level of detail, which decreases the number of parameters needed to describe it (Pahl et

al., 2007). The model focuses on the shapes of components and their interactions between

96

each other. The attention is placed upon early-stage design prototypes and does not

consider a more detailed evaluation of their elastic behaviour.

5.2.1 2-Dimensional Environment

The 2-dimensional environment is the space in which virtual physics objects can be

placed. It consists of multiple layers. Each layer may contain the shape and position of

components and their joints. Collisions between components can only take place if their

shapes are on the same layer. Figure 35 shows a multi-layer environment.

Figure 35: 2-Dimensional Multilayer Virtual Environment

A mechanism may consist of multiple components, and each component may be made of

multiple shapes. It may also have shapes on different layers which enables the

representation of 3-dimensional components in 2-dimensions as long as the collisions

take place in one axis plane on the same layer. As an example, Figure 36 shows the

representation of a 3-dimensional component with an undercut, as one component

consisting of three shapes, placed on three layers.

97

Figure 36. Representation of a 3D Model in the 2D Environment

The 3-Dimensional component is broken down into three rectangle shapes, each placed

on a different layer. However, all move simultaneously and behave as one. Each rectangle

can collide with other shapes on the same layer with an influence on the other shapes on

different layers.

5.2.2 Lever Representation

One component of mechanisms is the lever. It interacts with other components via its

outline shape, which results in the motion of the system. Figure 37 shows a real lever

component taken from an automotive closure system of a car lock.

Figure 37: Real Lever Component

98

A real lever component has many characteristics, such as areas acting as shock absorbers

to reduce noise, sections of material reduction, and positioning points used for

manufacturing purpose. These areas are not relevant for obtaining the locomotion and are

not considered in the model.

Instead, this research focusses solely on the virtual representation in the initial prototype

design state. Once finding a well-performing mechanism, its components can be taken

further to the production stage that would require choosing the right material according

to the appearing forces, as well as adding cavities for material reduction and dumpers.

Figure 38 shows the simplified virtual representation of the real lever.

Figure 38: Lever Representation

Each lever has an outline, a joint position or, in case of a lever chain, multiple joins

connecting it to other components. The virtual representation does not take internal

cavities into account, as they are not relevant in the context of obtaining locomotion. It is

either a single interconnected structure or when thinking 3-dimensional, it may also

consist of multiple not connected shapes, connected in another layer, such as previously

explained in section 5.2.1. Levers may be symmetrical, although often do not show

symmetries. Some sections of the outline will collide with others, or the environment;

99

other sections will not. Figure 39 shows a component placed on a virtual plain with one

layer.

Figure 39. Representation of 3-dimensional Lever

5.2.3 Joints

Joints are functional components and have a position but no shape. They constrain the

freedom of movement of lever components which influences their kinematic behaviour.

Joints connect lever components to the bearing plate, or each other, which constrains the

component’s freedom of movement. This research considers revolution joint which

constraints a component only to conduct a rotatory movement around the joint.

5.2.4 Actuators

An actuator introduces input forces and movement to the system. It acts upon a

component which is attached to the environment or a bearing plate with a joint. Attributes

are assigned to the joint, such as the rotation speed in revolutions per minute, and a

maximum torque that can be applied. Figure 40 shows an example of the rotation and

torque specification.

100

Figure 40: Rotation Torque and RPM

In this figure, a lever component is attached to the environment with a joint. The joint has

a revolution per minute and maximum torque specification which sets it into motion. It

represents the input characteristics of, e.g. an electric motor.

5.2.5 Mechanism Representation

The mechanism is virtually represented in an abstract way which lowers the level of detail

and focuses on the essential parts which are necessary to decrease the number of

parameters describing it (Pahl et al., 2007). In this way, the search space can be scaled

down, which lowers the processing time to evolve solutions. Figure 41 shows a

photograph of a locking mechanism taken from an automotive closure system and the

abstraction into a virtual model.

101

Figure 41: 2-Dimensional Mechanical System

In the virtual representation, the components are rigid bodies with no elasticity. The 3-

dimensional system is simplified to 2-dimensions on two layers. The first layer contains

the housing outline and two lever components, which are constraint by two revolution

joints. The housing is static in this case and does not move, whereas the lever components

are dynamic and able to move within their boundaries. Both can collide with each other.

The second layer contains a static wall element in the background of the lever components

on a different layer. It does not collide with the other components.

102

5.2.6 Mechanism Types

Two types of planar mechanisms were implemented. The first type of mechanism is a set

of individual components connected to the environment or a bearing plate using joints,

although with no connections between each other, as shown in Figure 42.

Figure 42: Individual Components

The components have a relative distance to each other. If a driving component introduces

motion, it transfers them to others, over their outlines, through collision.

The second type is the lever chain or linkage. These consists of a set of lever components,

interconnected with each other using joints. At least one component in the linkage is

attached to the environment or a bearing plate. Components, which are directly connected

do not collide with each other; however, they can collide with other components in the

environment.

Figure 43 shows an example of a lever chain with two components connected to the

environment, and another one connecting the two components with two joints to each

other. If one component moves, it moves the other components due to their connection.

Both types of mechanisms can be combined, as shown in Figure 44. The figure shows a

lever chain on the left-hand side consisting of three components that can collide, with a

single lever component on the right-hand side. Both are connected to the environment

using joints.

103

Figure 43: Linkage

Figure 44: Linkage with Collision

104

5.2.7 Bearing Plate

Mechanical components can be attached to a bearing plate. The bearing plate holds the

mechanism together and specifies the relative distance between joints. It is a dynamic

component as it can move freely in a virtual environment.

5.2.8 Problem Scope

The problem scope includes a variety of components such as lever components, obstacles,

and bearing plate; joints, and actuators. These are explained in Section 5.2. Other

components, such as walls and stoppers, fulfil the role of obstacles in the 2-dimensional

environment. These can be static or dynamic components. Static obstacles such as ground

path, and walls, cannot move. However, they collide with other dynamic components on

the same layer. Dynamic obstacles are components which can move freely. Static and

dynamic obstacles are elements placed in the environment.

A bearing plate is a dynamic element in the environment. It represents a surface for

attaching lever components with joints, or dynamic obstacles, such as walls and stoppers.

A bearing plate may correspond to mechanism-housing which guarantees that all attached

lever components with joints and walls have a constant relative position to each other.

Together they assemble the mechanism. The problem scope provides a configuration of

physics parameters, such as gravity for the environment, or mass, friction, and restitution

can be set for every component individually.

A design scenario needs to be defined beforehand by, e.g. an engineer, in a computer-

readable format, e.g. in a file. A scripting language was developed to enable the definition.

An interpreter translates the file into a physics scenario, which can be processed by the

physics simulator. The resulting simulation, a sequence of frames, is written into an

output file for further analysis. Appendix 3 provides an example of a problem definition

file.

The file is based on the eXtensible Markup Language (XML) using the Scalable Vector

Graphics (SVG) standard with customised tags, compatible with being opened in a

browser. Figure 45 shows the structure of the file.

105

Figure 45: File Structure

The file consists of five sections. Four of them are describing the geometric and material

properties of the environment and its components, and one section contains parameters

for the evolutionary algorithm, design constraints, and the simulation properties.

The first section describes the ground. It specifies the static shape of the landscape, path

and obstacles. The second one defines the environment elements. Movable obstacles can

be included in the environment. The third section specifies housing, which is movable in

space. It can contain walls or mechanical stops. The fourth is the mechanism, the solution,

which consists of lever components, their shapes, and joints. The last section contains the

parameters for the optimisation algorithm; the geometric constraints of the mechanism,

such as minimum and maximum size; and parameters for the physics simulator.

5.2.9 Solution Hierarchy

The solution can be a single component or multiple components connected with joints to

a bearing plate. Figure 46 shows the hierarchy of the solution.

106

Figure 46. Planar Mechanism Model

The bearing plate can move freely on a layer. It contains the components. Each

component may consist of multiple shapes and can have multiple joints. Polygons

describe the shapes with an array of coordinates placed on one layer. Shapes can be placed

on multiple layers simultaneously, as previously explained. Shapes on the same layer can

collide with each other, whereas these on different layers do not collide. Each component

may have one or more joints assigned with a position coordinate and a specification which

components it links together.

5.2.10 Design Objectives

Usually, the focus in mechanical design is to move a lever from one to another position

by working against forces and moments such as shown in Figure 47.

Figure 47: Force and Movement Objective

The figure shows three positions. The component’s initial position is A and the desired

position C. The component is pushed anti-clockwise in the direction of A by an incoming

107

force, e.g. initiated by other components. A minimum force F is needed to pull it to

position C. If F is too small, the component would not move and stay in position A or not

reach C completely. F needs to be high enough to rotate the lever into the desired position

C. As larger the applied force is, as faster the component would move to the desired

position C.

Another design objective may be to follow a specified path or rotation. Figure 48 shows

an example of a path specification.

Figure 48: Path-based Objective

A is the start position of the lever and B the desired end position. The thick dashed line is

the desired path. An additional objective may be the desired time to complete the

movement. A component with a specific shape needs to be attached with a joint in the

exact position to allow a driving component to push it in the right way to enable it to

follow the path from A to B. The evaluation process, in this case, would be a comparison

of the desired position and the measured position, and the time needed to reach it. Path-

based objectives are evaluated through comparing of the undertaken path and desired

path. Techniques such as Procrustes Distance Calculation are used to compare paths,

especially if desiring more complex paths (Dryden & Mardia, 2016).

108

Procrustes Distance Calculation is a mathematical comparison of the similarity of

different paths usable for fitness evaluation. Another technique is Dynamic Time

Warping. It can be used to compare the similarity of time or distance-dependent

requirements, such as force changing over time or distance. (Ratanamahatana & Keogh,

2004)

As explained previously, the design of planar mechanisms can have a variety of different

objectives related to specific motion and forces at an output which is highly dependent

on the specific design task. In real-world design scenario, often an output component

needs to move in a specific way, apply a specific force, or should not extend a specific

torque. The variation of design objectives allow defining many real-world design

scenarios; however, these are often not directly comparable and may be very particular

or focus on one mechanical part. This research does not focus on these because evaluating

a generative system requires more flexibility. In this work, the overall behaviour of the

mechanism is evaluated to obtain the overall performance instead of focusing on the

behaviour of a single component. This approach makes it easier to evaluate the generative

system instead of focusing on individual design cases.

The emphasis on a high-level behavioural objective enables comparing the performance

of different scenarios, whilst keeping the fitness function exchangeable to any design

problem. It removes the focus from specified target forces and movements, which can

often be only approximated or not solved at all depending on the problem. Instead, it gives

attention to the global aim of moving a mechanism forward, which always provides a

solution.

The fitness evaluation of a potential solution is based on the output of the simulator,

therefore on the configuration of the complete scenario throughout a defined timespan.

This type of output enables making kinematic analysis and can be used to implement

other objectives, such as producing specific desired component motion, making it

extendable to other design objectives in future.

The area of Artificial Evolutionary Life Forms focuses on the evolution of high-level

behaviours, such as swimming, walking, jumping, or following (Bentley, 1999). In this

work, the design objective was defined similarly to moving a complete mechanism

forward as well; it takes place through environments with different terrain and obstacles.

Input parameters for the driving components such as revolution per minute and maximum

torque, and an initial design, such as bearing plate to place a solution design, can be

predefined. Similar distance-based evaluations were done in soft-robotics (Cheney et al.,

109

2013), evolving simple car shapes (“BoxCar2D,” 2015), and Genetic Algorithm walkers

(Matsunaga, 2015). Evolutionary Artificial Life-Forms also used behaviour based fitness

evaluation (Bentley, 1999). The approach utilised in this work considers the behaviour

derived from the shapes of components with a constant input patter. In other research, the

focus was often placed on evolving the input pattern on a predefined design or simpler

shape manipulation using building blocks. This approach provides the freedom to focus

on the evaluation of the generative system, rather than on the definition of objectives for

mechanical design. At this stage, it provides the basis to create a set of design scenarios

and to investigate the performance of the evolutionary algorithm in solving them.

5.3 Method

This section investigates the capabilities of the evolutionary algorithm and the framework

in evolving design solutions. The previously evaluated shape representation from Chapter

4 is extended to be used to evolve multiple components mounted on a bearing plate.

Several landscapes were designed for experiments to evolve mechanisms capable of

traversing these landscapes within a fixed time.

5.3.1 Evolutionary Representation

The representation is capable of placing lever components on a bearing plate with two

fixed joint positions. Both components are set up as actuators with a speed and torque

specification which is also optimised by the algorithm. These have an upper and lower

limit, which were found suitable through initial testing. The speed can vary between

15rpm to 60rpm, and torque varies in a range from 10 Nm to 80 Nm. The evolutionary

representation is based on a rectangle shape explained and evaluated in previous chapters.

It was extended by multiplying the number of genes, enabling the representation of two

components, and adding additional genes to evolve the speed and torque for each

component. Figure 49 shows an initial solution created by the representation in a

landscape with stairs.

110

Figure 49: Mechanism with Two Levers Climbing Stairs

The scenario shows a mechanism which is climbing stairs. It consists of two lever

components which are attached with joints to a bearing plate.

5.3.2 Evolutionary Algorithm

The evolutionary algorithm is similar to the one used in the previous chapter with the

following configuration: The population uses 40 individuals and produces ten children in

every generation. These parameters were chosen after the initial testing. Previously,

findings showed that the rectangle representation R* worked well with evolutionary

setting S1, so it was used further during the experiments.

5.3.3 Fitness Evaluation

The objective is to evolve a moving mechanism which is capable of traversing different

landscapes. The evolutionary algorithm evolves a mechanism with two lever components

mounted on a bearing plate to traverse different landscapes. The objective is to maximise

the mechanism’s position in the x-direction at the end of a specified timespan. The

distance is measured from the middle point of the bearing plate in the first frame to the

middle point of the bearing plate in the last frame. In contrast to the previous chapter, the

extended representation can produce a mechanism.

111

5.3.4 Experiments

A bearing plate is positioned on a landscape with gravity applied in the negative y-

direction, set to 9.81 m/s2. All components were given the same material parameters for

density (1.0), friction (0.5) and restitution (0.6). Five different environments were

designed to investigate the generative system’s abilities to produce solutions for these

environments, shown in Figure 50.

Figure 50: Environments

The figure shows a straight landscape a; a digital shaped landscape b; a second digital

shaped landscape with different scale c; as well as a landscape containing stairs d.

Furthermore, a complex landscape e containing different obstacles, such as uneven

terrain, walls and holes.

Experiments were run 24 times on each of the environments at 60 frames per second for

600 frames which equates to 10 seconds of simulation on each landscape. The complex

environment was simulated for 1,800 frames which equates to 30 seconds of simulation

- as the environment is changing over a longer path. This configuration was found to be

an appropriate balance between outcome and simulation time. Each experiment stopped

after 20,000 evaluations.

112

5.4 Results and Evaluation

Experiments were run to investigate the generative system’s capabilities to evolve a

mechanical system consisting of multiple components attached to a bearing plate with

revolution joints. The objective was to efficiently traverse a set of provided landscapes

driven by joint actuators.

• Firstly, the evolutionary algorithm is evaluated in its ability to evolve solutions

for five problem instance (landscapes) by comparison to random sampling.

• Secondly, solutions evolved for each landscape are investigated.

• Thirdly, the simulator limitations are discussed which emerged throughout the

experiments.

The Mann-Whitney U-Test was used for statistical analysis since normality of the

distributions cannot be assumed. A p-value of p≤0.05 indicates high confidence that

distributions significantly differ. The p-value refers to the median distribution of best

perfroming solutions at the end of each run.

5.4.1 Evaluation of the Generative System’s Ability to Evolve Solutions

In this section, the evolutionary algorithm ability to evolve solutions for five different

landscapes is evaluated, recording the fitness increase over 20,000 evaluations. The

evolutionary algorithm is compared to random sampling to investigate if evolution is

happening.

Figure 51 shows the performance of random sampling (red) and the performance of the

evolutionary algorithm (blue) for five landscapes. The p-value shows if distributions are

significantly different for each comparison.

113

Figure 51: Evaluation of Evolvability

The results show that the evolutionary algorithm outperforms random sampling. All

distributions significantly differ from each other. It indicates that the algorithm can evolve

solutions and overcome local optima which can be observed in the complex landscape.

Random sampling produces solutions which get stuck in obstacles in the beginning and

is just occasionally able to overcome them.

114

5.4.2 Evolved Solutions in Different Landscapes

Figure 52 shows the five landscapes, including one evolved mechanism for each of them.

The mechanisms consist of a bearing plate with two attached driven levers that may apply

different speed and torque.

Figure 52: Mechanism Solutions in Different Landscapes

Plot a shows a solution evolved in the straight landscape. It consists of an approximated

wheel type lever on the rear, with a joint in its middle point, and an asymmetrically shaped

lever in the front. The front lever’s outer shape is rounded and might contact with the

ground surface. The rear wheel drives the assembly forward, whereas the front lever

moves the bearing plate’s front part periodically up, whereby the front part of the bearing

plate loses contact with the ground for a short time. The rear lever is not perfectly round,

115

which would be expected from an optimal solution; while, it is capable of moving the

mechanism forward, and the middle point is centred. The uneven characteristic may

produce more friction between ground and lever, which would lead to less slipping. The

front lever does not block the rear lever, and also does not hinder the mechanisms in its

forward movement. The bearing plate is not steady throughout the forward movement;

however, it was not the objective. The periodical uplift of the front lever and contact loss

with the ground surface may reduce friction, which benefits the rear lever in pushing the

mechanism forward. This may be the reason why the front shape just partially evolved

round characteristics.

Plot b shows a mechanism evolved in a landscape containing stairs. It has a lever

consisting of circle shapes, arranged in approximately 120 degrees angle between each

other around its middle point, which is close to the joint. In each lever rotation, one circle

lands on top of one stair and pushes the mechanism up. At the same time, the front lever,

with a decentred asymmetric shape, acts as a mechanical stop by pushing itself against

the front side of a stair, each time the rear lever reaches a new step. Furthermore, each

time the front lever pushes against the front of a stair, a segment of shape lands on the top

of it, and while rotating, lifts the front of the bearing plate. In this case, the front of the

bearing plate does not get caught in the stairs.

Plot c shows a mechanism evolved in a landscape with periodic holes. The rear lever

consists of two shapes, which are decentred from their rotation point. The shapes have

segments with hook characteristics. One hook is pushing the mechanism forward by

catching the edge of the hole, which makes the rear part of the mechanism slip into the

hole. The other hook lifts it out of a hole again. The front lever has round characteristics

and is also out of the centre. It fulfils a forward pull by using the inner hole walls. At the

same time, it guides the bearing plate front and avoids getting blocked in a hole.

Plot d shows a mechanism evolved in a landscape with a tooth-shaped surface. The rear

lever’s middle-point is positioned close to the joint. It has round characteristics with

notches. The notches avoid the contact with the tooth edges, only the round parts of the

shaping role over the straight tooth bottom and the top. The front lever is asymmetrical

and has segments which hook into a tooth and pull the mechanism forward. Other

segments are straight and slide over the top of a tooth and lift the front of the bearing plate

up to avoid getting blocked in it.

Plot e shows an evolved mechanism in different positions while traversing the complex

landscape. Both levers are asymmetrical and out of the centre. It is difficult to assign

116

specific functions to the shapes’ segments because the interactions with the ground are

versatile. The mechanism is able to pass all obstacles by having the right timing, shape,

and weight distribution, which is not the case for randomly created solutions. Most of

them tend to get stuck in obstacles.

In all solutions, both levers do not interfere with each other or slide against each other

without getting stuck. The mass of the levers needs to be considered. Sometimes parts of

the lever may seem unnecessary; however, because of their mass these may be important

to balance the mechanism. Yet, this may lead to unreasonable looking shapes.

The discussed solutions were selected due to their interesting shapes and interactions

while still being describable or explainable. The variety of solutions is wide if considering

all conducted experiments. Shape segments contribute in different ways to a more or less

steady forward movement. The shapes are very complex and difficult to describe.

Sometimes the same shape sections have more than one function, especially when

evolved in the complex environment e. The landscapes a-d have a repeating ground path,

so shape segments seem to fulfil specific repeating functions.

Random sampled solutions tend to look more complex; however, they get stuck on the

path in obstacles, or the lever motion is not synchronised, which leads to levers blocking

each other.

5.4.3 Simulator Limitations

The simulator in combination with the generative system encountered several issues

which needed to be addressed, namely:

• Intersections with the ground surface.

• Overlapping shape components.

Initially, the bearing plate was positioned closer to the ground surface. The generative

system produced lever components which occasionally overlapped with it, such as shown

in Figure 53 a. The physics engine usually resolved the overlap, however, in some cases,

the overlap was too large, and one or multiple components got stuck in the ground surface

which led to unreasonable behaviours, such as an unstable simulation, jumping of the

component, sometimes even catapulting the mechanism out of the scene. This problem

was addressed by placing the mechanism higher and dropping it on the ground surface,

which resolved the problem, shown in Figure 53 b.

117

Figure 53: Overlapping with Ground

In some cases, the evolutionary algorithm created initial solutions which may overlap

with other components in the first frame, such as shown in Figure 54. Again, the physics

engine was able to resolve most of them and rearrange the components. However,

components were occasionally jammed together in a way that the physics engine was not

able to resolve the overlap. An example is shown in Figure 54 b. Either it was too large,

or there was no mechanism configuration available without overlapping components.

Figure 54: Overlapping with Components

These solutions tend to vibrate or move in an uncontrolled manner, or even jump, which

may produce a false positive fitness value and inhibit evolution which is shown in Figure

55. A filter was implemented to solve this problem. Before evaluating the fitness of a

solution, it goes through a filter which recognises false behaviour. The filter measures the

rotation of the driving components and compares it with the mechanism’s distance

travelled. A solution is tagged as invalid if the driving component did not rotate; however,

118

the mechanism still moved forward at the same time. In this case, the solution was

discarded by returning a fitness value of zero.

Figure 55: False Movement

These limitations need to be considered when simulating physics scenes with the current

implementation of the simulator or addressed by improving the code.

5.5 Summary

This chapter described the framework for planar mechanism design to evolve

mechanisms using an evolutionary computing approach. The framework enables the

definition of components attached to a bearing plate with rotation joints. Furthermore,

drive specifications can be set to introduce forces and movement into the system.

An evolutionary algorithm was used to evolve a mechanism consisting of two lever

components with the objective of traversing different landscapes in a physics

environment. The rectangle shape representation used in the previous chapters was

extended to evolve mechanisms. Experiments were conducted to evaluate the

evolutionary algorithm’s capability to evolve solutions by comparing it to random

sampling. Solutions were shown, and the limitations of the simulator investigated.

Two problems were encountered when using the simulator in combination with the

generative system. Firstly, overlapping of initial solutions with the ground surface, and

secondly, overlapping of lever components with each other. In some cases, the physics

engine was not able to resolve the overlap, which led to undesired behaviours, such as

vibration, jumping, and unstable simulation. The first problem was addressed by

positioning the bearing plate further away from the ground and dropping it on the surface.

The second problem was resolved by introducing a filter which discarded solutions with

119

undesired behaviour by assigning a fitness value of zero. The filter investigated each

solution before evaluating its fitness. It measured the rotation of the driving components

and compared them to the forward movement of the mechanism. When a forward

movement was detected without rotation of the driving component, the solution was

flagged as invalid.

The generative system was used to evolve mechanisms for five landscapes with different

complexity. The results were compared to a random sampling. It was found that the

performance of the evolutionary algorithm and random sampling significantly differ in

favour of the evolutionary method. This indicates that the algorithm is capable of evolving

solutions which overcome obstacles in the landscape, whereas random sampling gets

stuck in obstacles.

The following chapter will extend the work by focusing on mechanisms with linkages.

120

6 Evolving Four-Bar Mechanisms

6.1 Introduction

In this chapter, the proposed framework is employed to evolve four-bar linkages, which

involves the locomotion of the mechanisms, collisions and interactions in different

environments. The focus is on evolving linkages together with an attached shape

component capable of traversing a set of provided landscapes using an evolutionary

algorithm.

Previous research in automated design often focused on mechanical linkages, such as

four-bar mechanisms, intending to generate mechanisms which follow a specified path in

space as closely as possible (Bose et al., 1997; Cabrera et al., 2002; Renner & Ekárt,

2003b; Roston & Sturges, 1996). More complex systems of this category were studied as

well, for instance, six-bar linkages (Tsuge et al., 2016), or even assemblies of mechanisms

(Ghassaei & Ming, 2015). Linkages were investigated from the perspective of their build,

namely bars, and did not consider the shapes of components or collisions between them.

Furthermore, properties such as torque; gravity; friction; or mass, are not considered.

The background section introduces the four-bar linkages and design objectives. It is

followed by the method section, which explains the representation used and the

experimental setup. The results discuss the influence of the attached shape component;

the performance of the algorithm compared to a random sampling method; the influence

of evolutionary operators; and the performance of the algorithm on problems with

enhanced complexity.

6.2 Background

This section provides the definition of four-bar mechanisms and their use in generative

design, according to existing literature. This is followed by a discussion regarding design

objectives.

6.2.1 Four-Bar Mechanism

The area of four-bar linkage design was chosen as it focuses on multiple connected

components and can create interesting locomotion. However, four-bar linkages are

usually studied from the perspective of being assembled on a non-movable frame and

designed to follow a specified trajectory, a coupler curve, in space as close as possible,

with a tracer point. There is no consideration of collisions between components or with

121

other environmental obstacles. Four-bar linkages were explained in chapter 2.2.2. The

current research considered more parameters, compared to classic four-bar mechanism

problem.

In this work, the four-bar linkage design was extended to a rigid body model placed in a

physics environment with gravity acting toward a ground surface on the components,

shown in Figure 56. It allows the assembling of mechanisms with the ability to collide

with their environment and to introduce additional parameters such as mass, friction, and

restitution.

Figure 56: Four-bar Mechanism with Attached Shape Component

The mechanism is attached to a frame which is movable in space. It also has a lever

component attached to the middle bar with an undefined shape that is moving with it. Bar

b fulfils the role of a driving component with rotation speed and torque range, which

allows the assembly to move. The Gravity makes it fall towards the ground. The positions

of all rotation joints, length of the bars b, c and d, the shape and position of the attached

lever component, and also the rotation speed and maximum torque applied to bar b are

evolved using an evolutionary algorithm. During the movement, the components’ shapes

collide with the ground surface in different angles and motion patterns. The patterns result

in a variety of mechanism behaviours, e.g. a forward or backward movement.

122

 Figure 57 shows a movement pattern of a four-bar mechanism with two attached shape

components.

Figure 57: Four-Bar Mechanism Movement

The first bar makes a complete rotation around the joint while the last bar just makes a

short movement to the right and left. The attached shape components stay in relative

position to the middle bar.

6.2.2 Design Objective

There can be different objectives for four-bar mechanism design. The typical problem

might be, e.g. to follow a trajectory or to produce a movement or torque characteristic at

an output. Various approaches exist for defining design objectives and measuring the

performance of potential design, e.g. as explained previously, in compliant mechanism

design, the authors compare the generated path of the mechanism with a user-defined path

(Sharma et al., 2008). The design problem is to transfer an input force and motion to an

output force and motion, which is also applicable in planar mechanism design.

However, this research focusses on evolving general behaviour in environments,

including different obstacles. The aim is to let the mechanism traverse a landscape as

quickly as possible in a specified time. It provides benefits compared to objectives that

involve following different trajectories, namely a set of different design problems can be

defined by changing the obstacles in the environment, whilst being still able to compare

the results to each other using a fixed simulation timespan.

123

In this scenario, the trajectory that makes a mechanism perform a forward movement is

unknown, as it is dependent on the shape and configuration of the mechanism’s

components. Many trajectory-shape combinations can perform well in solving a problem.

The evaluation of the distance travelled gives the generative system freedom in evolving

more diverse solutions. Furthermore, it allows studying the evolutionary method in an

environment, because the adaptation of components to the environment can be inspected

by observation. In contrast, focusing on the forces and trajectories of interacting

components may be more difficult, as forces are not visible. Lastly, the emphasis on the

travel distance makes it easier to understand the problem.

6.3 Method

An evolutionary representation for the planar mechanism was developed in order to

define the mapping procedure between genotype and phenotype. The representation

defines the search space of the algorithm. There were three requirements defined for the

evolutionary representation.

• Firstly, the representation needed to allow coverage of a large part of the search

space. In the context of mechanism design, this means that the representation

needs to be able to produce a large variety of solutions with distinctive

characteristics.

• Secondly, the evolutionary representation needed to be compatible with

evolutionary operators, such as mutation and recombination. For mutation, it is

necessary, that changes in the genotype result in equally sized changes in the

phenotype (Bentley, 1999). For recombination operators, it is necessary that the

parent phenotypes are passing some characteristics of each of them to the child

phenotype – otherwise, the recombination operator is simply providing mutation.

• The third requirement focused on the genotype to phenotype mapping. To be able

to evaluate the candidate’s fitness, invalid solutions should be either avoided,

recognised as invalid and eliminated or resolved.

As a use-case, the focus was on a four-bar linkage with the attached shape component.

Figure 58 shows an example of the mechanism in a virtual environment with a height

limit. Four-bar mechanisms were chosen because they produce a large variety of

trajectories depending on their bar configuration. In combination with a shaped

component, which follows the trajectory, it can develop interesting and useful interactions

with the ground surface or other obstacles.

124

Figure 58: Mechanism in Virtual Environment

An evolutionary representation was developed to create four-bar mechanism solutions

based on the findings gathered and described in the previous chapters. An evolutionary

algorithm was used to evolve solutions with the capability to traverse a set of different

landscapes.

6.3.1 Evolutionary Representation

The evolutionary representation for the mechanism consists of three parts, shown in

Figure 59.

Figure 59: Chromosome Representation

The chromosome is an array of real values between 0 and 1 rounded to seven digits of

precision. The first part of the chromosome defines the speed and torque of bar b, the

driving component, which rotates around the first joint. The second part defined the

position of the four joints that subsequently defines the length of the connecting bars b,

c, and d. The third part is the shape of the attached lever component using the

125

representation employed in previous chapters, with the centre point placed in the middle

of bar c.

The first two chromosome values define the speed and torque of the driving component

within a specified range of 15 to 45 rpm and 10 to 70 Nm. The next eight values are

mapped into the joint position coordinates within the frame a. The remaining values

define the shape and position of the attached lever component within the maximum and

minimum boundaries set to 10 and 80 size units (pixels) in the problem file. A

chromosome containing 60 parameters in total describes the mechanism.

6.3.2 Evolutionary Algorithm

The evolutionary algorithm is similar to the one used in the previous chapters with the

following configuration: The population size was 40, and 4 children were produced in

each generation. These parameters performed well through initial experimentation.

Similar to chapter 5, the rectangle representation R* was used with evolutionary setting

S1.

6.3.3 Fitness Evaluation

The objective is to evolve a moving mechanism which is capable of traversing different

landscapes. The algorithm evolves a four-bar linkage with a shape component attached to

one bar. It is mounted on a bearing plate with the aim to traverse different landscapes and

maximise the mechanism’s position in the x-direction at the end of a specified timespan.

The distance is measured from the middle point of the bearing plate in the first frame to

the middle point of the bearing plate in the last frame. The extended representation can

produce four-bar linkages, as opposed to the representation described in previous

chapters. Furthermore, a new set of landscapes is employed.

6.3.4 Experiments

The mechanism was evolved within an environment, including a ground surface. Gravity

was applied in the negative y-direction and set to 9.81 m/s2. All components were given

the same material parameters for density (1.0), friction (0.5) and restitution (0.6). Seven

different environments were defined to investigate the generative system’s abilities to

produce solutions, as shown in Figure 60.

126

Figure 60: Environments

The figure shows a straight, a sinusoid shaped, and a digital shaped ground surface.

Furthermore, three landscapes containing a height limitation; a hole; and a wall. The last

landscape is complex; it includes many combined characteristics of the other

environments.

Experiments were run 24 times on each of the environments for 1,200 frames, which

equates to 10 seconds of simulation using a frame rate of 120 per second.

The complex environment was simulated for 3,600 frames which equates to 30 seconds

of simulation - as the environment is changing over a longer path. The configuration was

found to be an appropriate balance between outcome and simulation time. The driving

component was allowed to have a rotation speed between 15 rpm to 60 rpm, and torque

in a range from 10 Nm to 80 Nm. The algorithm stopped after 20,000 evaluations. The

fitness of a candidate solution was evaluated by measuring the distance travelled by the

mechanism through the environment at the end of the simulation period.

6.4 Results and Evaluation

Experiments were run to investigate the generative system’s capabilities to evolve design

solutions which efficiently traverse an environment.

127

• Firstly, the influence on the quality of the solution of evolving the attached shape

component was analysed, by comparing the results of evolved four-bar linkages

with an attached shape, to evolved linkages without attached a shape.

• Secondly, the generative system was compared to random sampling.

• Thirdly, the mutation and recombination operators were evaluated to identify their

effect on a solution.

• Fourthly, the generative system’s performance was evaluated on an environment

with enhanced complexity.

• Finally, the simulator limitations which emerged throughout the experiments were

discussed.

The Mann-Whitney U-Test was used for statistical analysis. A p-value of p≤0.05 indicates

high confidence that distributions between two populations significantly differ. The p-

value refers to the median distribution of best-performing solutions at the end of each run.

6.4.1 Performance Validation whilst using the Attached Shape

The impact of evolving an additional shape component attached to the four-bar linkage

compared to evolving just the linkage alone was investigated. Figure 61 shows the results

of six different environments.

128

Figure 61: Median Fitness

All plots show the median fitness of 24 runs with ±95% bootstrapped confidence

intervals: Evolutionary algorithm with shape (blue) vs without shape (green) vs random

sampling with shape (red). They also present the best solution of all runs (gold). The

mechanism’s distance travelled determines its fitness.

The results show that evolving an additional shape component (blue), which is attached

to the four-bar linkage, leads to better results compared to evolving just the four-bar

129

linkage (green). The mechanism with attached shape moves faster and further through

the environments because the attached shape components provide an additional

advantage. The results for the height limit environment are the only ones showing no

significant difference. Figure 62 shows several well-performing solutions evolved in each

environment.

Figure 62: Evolved Solutions

130

Each image contains a few frames of a mechanism at different stages moving through a

landscape. The mechanism in a evolved a movement pattern similar to a foot touching

the ground rolling from the heel over the toe which makes the mechanism leap. A similar

movement pattern can be seen in d and e. In d, due to the hight constraint, the movement

pattern is slightly different and keeps the mechanism closer to the ground. In e, the pattern

and leaping are similar to a, however, it evolved a shape with a spike helping it to

overcome the hole. In c, the mechanism evolved a hook shape and a patter which digs the

hook between the niches in the landscape to pull it forward. The mechanism shown in f

evolved a movement pattern and shape which lifts the front part of the mechanism and

leaps it forward to overcome the wall.

6.4.2 Performance Validation using Random Sampling

The evolutionary algorithm was compared to random sampling to validate its ability to

evolve solutions. In Figure 61, comparing random sampling (red) with the evolutionary

algorithm (blue) shows that the latter significantly outperforms random sampling. It finds

more solutions and has a sharper increase in their quality. Random sampling ends in a flat

line and is unable to improve further, whereas the evolutionary algorithm continues to

find better-performing solutions. The results for the limited height environment show no

significant difference.

6.4.3 Investigation of Mutation and Recombination Operators

The evolutionary algorithm’s genetic operators were investigated to evaluate their

contribution to finding better performing solutions. Firstly, the algorithm was tested by

using the mutation operator without recombination. Figure 63 shows the evolution of a

mechanism by applying only the mutation, starting with a and ending with l.

131

Figure 63: Mutation Operator

Firstly, the figure shows that the mutation operator applies small changes to the bar length

and position of the joint, also to the position and shape of the attached component. The

component can separate into multiple shapes, all moving relative to the middle bar.

Visually, the operator does not produce too a large disruption, which is important for the

mutation operator to improve a solution efficiently.

Secondly, the recombination operator was investigated by evolving a solution using

recombination and further, one Gaussian based mutation operation. The mutation was

applied to avoid premature convergence, which was found to appear when using

recombination only. Figure 64 shows two parents, and as an example, four potential

resulting children.

Figure 64: Recombination Operator

132

The figure shows that all of the potential children contain some features of the parents.

E.g. child a has the linkage of parent 2 and the shape components of parent 1. Child b

has the shape components of parent 2 and partly the linkage of parent 1. Child c is similar

to child a but includes some new shape fragments. Child d has the linkage of parent 1

and some shape characteristics of parent 2. However, it seems that the recombination

operator introduces a disruption which may be too large. It does not take account of the

grouping of genes sequences that describe single rectangles. The rectangle information is

divided and partly transferred to the new generation, which leads to large changes and

new shape fragments.

Figure 65 shows a comparison between using the recombination operator with one

mutation operation, and using the mutation operator only, for the hole environment to

determine the contribution of the recombination operation.

Figure 65: Recombination with Mutation (blue) vs Mutation-only (green)

The results show that using the recombination with the mutation operator leads to

significantly better results when compared to using the mutation operator only. This

means that the recombination operator helps to escape from local optima and navigate

into different regions of the search space.

133

6.4.4 Performance on Problems with Enhanced Complexity

The complexity of the problem was increased by providing a more challenging path,

including multiple obstacles. Figure 66 shows a solution evolved in a complex

environment which traverses the landscape at different positions.

Figure 66: Moving through a Complex Environment

The evolutionary algorithm was able to evolve solutions, which succeeded to pass all the

obstacles. Figure 67 shows the median fitness of 24 runs with ±95% bootstrapped

confidence intervals (blue) and the best performing solution (green). The environment is

added on the y-axis, showing the mean position of all mechanism and the position of the

best mechanism in the environment, as well as their fitness.

Figure 67: Evolution in a Complex Environment

134

The figure shows that the evolutionary algorithm can also evolve mechanisms in a

complex environment. Comparing the graph to the environment path shows that most of

the solutions get stuck at some obstacles for some time. However, the evolutionary

algorithm manages to find solutions which bypass these in the long-run, allowing some

to travel through the complete environment and even to further improve their fitness after

passing the obstacles.

6.4.5 Simulator Limitations

The simulator was capable of resolving the physics scenarios provided by the generative

system. Nevertheless, because of the nature of the physics engine, it was found that

simulation errors may still occur due to overlapping shapes, jittering and clipping, which

are all potentially exploitable by the evolutionary algorithm. These errors were addressed

with the previously discussed filter, which detects if a mechanism is moving forward, e.g.

due to jittering, without rotation of the driving component. Those unrealistic solutions

were filtered and rated with a fitness value of zero.

Through experimentation, it was found that using a simulation frame rate of 120 frames

per second; as well as increasing the position and velocity iterations, which are Box2D

internal settings, from the default of 8 velocity and 3 position iterations to 16 and 6

iterations per frame, reduced simulation errors. These would be otherwise exploited by

the evolutionary algorithm when simulating linkages

The position and iteration count controls how many times the constraint solver sweeps

over all the contacts and joints in the virtual environment. Increasing the iteration always

yields a better simulation (“Box2D: Overview,” n.d.).

6.5 Summary

This chapter presented a method which enables the study of evolutionary algorithms for

evolving planar mechanisms. As a use case, the focus was on the ability to traverse

different environments by evolving freely movable four-bar linkages with an additional

attached shape component.

The generative system, including simulator, was validated by showing its capability to

produce and evaluate design solutions. The results indicate that evolving an additional

shape attached to the mechanism led to better solution quality. Furthermore, a comparison

of the evolutionary algorithm to random sampling showed that the algorithm evolves

solutions, rather than randomly selecting them.

135

The contributions of the genetic operators were investigated, and it was found that both

operators work well and that the recombination operator supports finding better

performing solutions. The operator enables the algorithm to escape from local optima and

navigate to different regions of the search space. However, it was found through visual

analysis that the recombination operator introduces, in some cases, a large disruption due

to breaking valuable gene sequences. This may slow down the evolution, which can be

addressed in future by considering the chromosome encoding, e.g. not breaking the

groups of rectangles within it, when using recombination. Moreover, the algorithm

performs well when increasing the problem complexity using a landscape with multiple

obstacles and enhanced complexity.

Overall, the results show that the system is capable of increasing the fitness of candidate

solutions and producing interesting mechanisms, which perform the desired behaviour.

The shape and configuration adapted to the environment and its obstacles, able to reach

different areas of the search space.

136

7 Conclusion and Future Directions

This chapter provides a summary of the work conducted, followed by a list of

contributions and a discussion. Lastly, it explains the potential future work.

7.1 Summary of Work Conducted

The research was divided into five chapters. In Chapter 2, a literature review was

conducted, exploring conceptual design, planar mechanisms, evolutionary computing and

representations, and furthermore, the area of shape representations, generative design

tools, and evolving mechanisms. The literature showed that there is a shortage of research

targeting the early conceptual design stages, additionally, that tools suggesting a broader

range of solutions might be beneficial for engineers to reduce their bias and workload.

It was found that there is no specific area concentrating upon the generative design of

planar mechanisms, which considers the shape and interaction of components, including

attributes such as mass, friction, and restitution. The work in mechanical optimisation to

date focused on the movement of components and did not investigate linked mechanical

systems, including collisions in a dynamic environment. Considering upon these allows

a closer approximation of real-world mechanisms and contribution towards innovative

generative design system.

The field of engineering optimisation was reviewed; every area has its unique way to

describe its problem domain. However, these often focused on the control patterns and

behaviour of mechanisms.

Looking at problems solved with evolutionary computing showed that an indirect

encoding is most suitable for shape representations. This work provides a way to define

complex shapes with a low number of genes. A method to evaluate shape representations

able to create target shapes was identified, which is a computationally inexpensive

process to develop and evaluate representations’ ability to be applied within evolutionary

algorithms to create shapes for a specific problem domain.

In Chapter 3, the focus was placed on the design of a shape representation capable of

generating mechanical shapes, guided by an evolutionary algorithm using the target shape

matching technique instead of working directly in a physics environment. Several

representations were developed and evaluated, which gave insight into the underlying

mechanisms of the evolutionary process and to design and improve the representations in

137

a fast and systematic way, capable of producing relevant shapes. The results showed that

the implemented rectangle-based representation worked best for reproducing mechanical

shapes in an evolutionary computing context.

In Chapter 4, a simulator was employed, capable of simulating a virtual world based on

a physics engine, which was necessary to create and compute design scenarios

considering interaction and collisions, including attributes such as mass, friction, and

restitution. Usually, these types of scenarios are simulated with a computer using multi-

body dynamics solvers, which produce a close approximation of reality. However, they

are computationally expensive and are often the bottleneck in an evolutionary design

system, as those systems require a large number of evaluations to be conducted.

A simulator, based on the game physics engine Box2D, was developed to address this

issue. It is capable of resolving collisions and of performing at a fast pace, recording every

simulation frame in an output file, providing visual feedback, and was used as the basis

for the performance evaluation of potential design solutions. It was validated using unit

and acceptance tests and tested together with the generative system.

Experiments were conducted with the focus on developing an evolutionary representation

for single shaped components. Three representations were designed, based on the initial

well-performing representation for shape matching. Their performances were compared,

according to their ability to produce physics components capable of traversing a virtual

landscape, with two different evolutionary settings. The evolutionary settings applied

different size changes to the genotype. It was found that one of the three tested

representations performed well with both evolutionary settings and evolved solutions

within the physics environment that fulfilled the design aim.

In Chapter 5, a framework was proposed based on real-world mechanisms focusing on

lever mechanisms and linkages. A scripting language was designed that allows the

specification of various design problems. An interpreter translates a problem file into a

physics scenario for the simulator, which computes the locomotion. The results are used

for performance evaluation of a potential design. This approach made the real-world

problem understandable for the computer and enabled applying evolutionary computing

techniques to evolving design solutions. The ability to evolve mechanisms consisting of

multiple components, attached to a bearing plate with joints, was evaluated. Through

comparison to random sampling, the results showed that the algorithm is capable of

evolving mechanical design solutions, successful in traversing several landscapes with

different complexity. Furthermore, the limitations of the simulator were discussed.

138

In Chapter 6, the simulator and framework were employed to evolve mechanical linkages.

They were used to evolve four-bar mechanisms with the same design aim as previously,

although, traversing different landscapes. In previous research, the area of four-bar

mechanisms was mostly focusing on evolving the kinematic behaviour of mechanisms to

follow a specific path without considering further attributes such as mass, friction,

restitution, and gravity. The contribution of this research was to consider those

parameters, and further, including collisions between components as well. The results

have shown that the framework and generative system performed well in finding design

solutions even for complex problems.

The overall outcomes of this work showed that evolutionary algorithms can be

successfully applied to evolve mechanisms and that the chosen approach performed well

in experiments. The developed representation performs in a satisfactory manner with

different evolutionary operators and is capable of producing well-performing results

irrespective to the size of applied mutations. It showed that it could produce mechanical

shapes, also within a physics environment. Furthermore, it could evolve mechanisms

consisting of multiple components, including linkages which fulfilled the design

objective.

The implemented simulator was validated and tested throughout the experiments and

performed successfully. Its limitations were investigated, and issues were resolved.

However, further work is necessary to turn this research into a usable application for the

industry to support designers in the preliminary stage of mechanisms design. Especially,

the design objective definition needs to be developed further as this work used a

simplified objective of traversing different landscapes. It was appropriate for conducting

experiments and analysing comparable results. However, an industrial application would

need a more practical way to specify design aims.

This work provides an entry point for evolutionary computing researchers and a stepping

stone towards a generative design system for planar mechanism design, capable of

providing engineers with prototypes for specific design tasks. It contributes towards an

understanding of generative design systems, focused on industrial applications.

7.2 Summary of Contribution

The following research questions were addressed:

RQ1 (Chapter 3): Which evolutionary representation can be used to efficiently represent

and evolve the shape of planar mechanical components?

139

The first question was addressed by implementing an experimental tool and method to

evolve target shapes. Different shape representations were developed and compared in

order to evaluate their capability to produce defined target shapes of the problem domain.

Target shapes were taken from an automotive closure system and generated with the

experimental tool. This approach provided insight into the working principles of the

representation and evolutionary algorithm, and also into the representation’s search space

coverage, which helped to design and refine the representation. A rectangle-based

representation was developed and evaluated, which performed well compared to other

tested approaches.

RQ2 (Chapter 4): Which evolutionary representation and evolutionary operators can be

efficiently used to represent and evolve mechanical components in a physics

environment?

The second question was addressed by implementing a simulator capable of computing

the locomotion of mechanical components and linking it to a generative design system

capable of evolving design solutions. The initially designed, best-performing shape

representation was embedded in the application using physics simulation. It was

compared to two similar representations with minor changes, with the purpose of

improving the performance. Different evolutionary settings were tested. The experiments

investigated the capability to evolve the shape of a component that adapts to its

environment, in order to traverse several landscapes with different complexity.

Furthermore, the simulator was validated with unit and acceptance tests. One outstanding

rectangle-based representation performed well with different evolutionary operators,

applying larger and smaller mutations.

RQ3 (Chapter 5): To what extent are the evolutionary representation and evolutionary

operators able to evolve mechanisms consisting of multiple components with the aim of

traversing different landscapes?

The third question was answered by providing a description of the problem domain and

creating a framework for planar mechanism design. A scripting language was developed

that provides a way to define mechanical problems. The simulator and generative system

were tested and evaluated with a set of landscapes, which were defined using the scripting

language. An evolutionary algorithm was employed to evolve mechanisms with multiple

components, joints, and actuators attached to a bearing plate. The framework was

validated through experiments. Mechanisms were evolved for different problems, and the

140

experiments showed that the algorithm performed evolution by outperforming random

sampling.

RQ4 (Chapter 6): To what extent are the evolutionary representation and evolutionary

operators able to evolve four-bar mechanisms that are capable of efficiently traversing a

landscape?

The last question was addressed by applying the framework and simulator in the domain

of four-bar linkages. The evolutionary operators were analysed in depth. Furthermore, the

evolutionary algorithm was investigated, and the framework additionally validated by

showing its capability to evolve a variation of solutions for a set of problems with

different complexity. Furthermore, it was found that both evolutionary operators,

mutation and recombination, contributed towards finding better solutions.

This research contributes to knowledge by providing a method, including framework,

evolutionary representation, and evaluation using a simulator, to evolve planar

mechanisms with evolutionary computing techniques. The generative system was tested

and validated. In future, the findings may lead to innovative generative design

applications. They can facilitate further research and initiate new applications in design

automation in order to increase the efficiency of the early mechanism design stage in the

industry context.

7.3 Discussion

In this section, the research is discussed. It explains challenges encountered during this

research, summarises the limitations of the simulator and the generative design system,

and presents other implementations which were tested but not included in this work.

Furthermore, it discusses the limitations of experiments and provides ideas for other

potential approaches which could have been employed to address the topic.

7.3.1 Challenging Issues

This research encountered several challenges and issues which needed to be addressed.

The first was the choice of the programming language to implement the necessary

software. Different languages were tested, such as Python, Java, C++, and JavaScript,

which all provided implementations of Box2D. However, these had some limitations,

mostly a time needed to implement software, for instance, creating user interfaces or

debugging code. Subsequently, C# was identified as an appropriate choice. The

implementations progressed quicker, due to already existing C# skills. These still needed

to be widened to produce an extendable piece of software with a modular architecture.

141

C# provided a large toolset that allowed designing the user interface and generative

system, necessary for conducting the experiments.

Retrospectively the architecture could have been implemented on a server-side basis.

Running the software on a server would have allowed conducting experiments on a

computer cluster that may have shortened the time of development, and could allow a

web-based interface to be published. However, the work had different priorities, and it

was found not relevant. With some adjustments, the current architecture could allow

extending the software to run on server-side in future.

The experimental results had a size of over 100GB, which could not be analysed by hand.

Tools and scripts were needed instead. For that reason, several scripts were developed

using Python, R, and Octave; each took additional time to objective learn.

A further challenging task was to find a general design in mechanical design. It was found

difficult to produce experiments using a specific design case. Instead, general cases were

selected as they provide enough freedom for an evolutionary algorithm to evolve a variety

of solutions. It took time to realise that measuring the travel distance was a suitable

objective general enough to be used for validation, especially because it was commonly

used in other fields but not used in mechanical design.

Another challenge was the extensive experimental runtime. Although a single

experimental run did not take long, many iterations of experiments resulted in over 5,000

hours of computational runtime. Hardware was needed to shorten the time. A setup of

five computers was configured to solve that issue. These gave feedback on the

experimental state and progress via Email, which increased productivity.

7.3.2 Simulator

In general, the simulator, based on the physics engine Box2D, performed well and was a

suitable choice. The software was implemented in a way that allows exchanging Box2D

with other physics engines with a low programming effort, which may be interesting for

future research. It also provides a way to exchange it with a different type of simulation,

e.g. particle simulation to optimise designs for aerodynamics. In general, it was found

that the simulator resolved movements and collisions accurately. However, it needs

testing and fine-tuning whilst applied to different kinds of problems such as evolving

multi-component mechanisms, linkages, or problems beyond this research, to reduce

simulation errors. As shown, different frame rate settings were used for each problem

type. Setting the frame rate requires performing several simulations and investigation of

142

the results for visible errors. It is not possible to recommend a specific setting as it is

highly dependent on the design problem and employed representation.

The simulator works in combination with an evolutionary algorithm which performs a

large number of evaluations in a short time. It means that it eventually exploits

implementation errors and instabilities of the physics engine, such as jittering and

jumping. A filter was implemented to address these. However, it does not fix the

implementations itself. It is a workaround that spots errors and acts accordingly upon

them. Otherwise, changes in the physics engine code may require additional effort.

7.3.3 Generative System

The generative system was based on an evolutionary algorithm. The algorithm included

the basic principles of computational evolution and was able to evolve solutions. The

implemented algorithm can be considered as state of the art and was tested with different

configurations. However, the focus of this research was not on a comparison of different

algorithms, but rather, on the representation, as it has a larger impact on the performance

of the algorithm, instead of changing the algorithm’s routine or investigating its

parameters, such as mutation or recombination rate.

The analysis of specific industrial design problems and solving them with the generative

system was out of the scope of this work. The system was designed specifically with the

travel distance objective in mind. A specific industrial design case would have required

additional implementations.

7.3.4 Experiments

The software was designed iteratively and went through numerous iterations, in which

implementation errors were corrected, representations developed, and evolutionary

configurations tested. In total, there were 17 different representations developed, four

different mutation operators, and four different recombination operators. Many of these

did not perform well and were not used in experiments.

Furthermore, several scripts in Python, R, and Octave were developed that allowed

analysing results and plotting figures.

Experiments were conducted on multiple computers for a total computation time of over

5,000 hours which equals to nearly 210 days of computation on a single computer. A

setup of five computers was used, which lowered the time to produce results.

143

7.3.5 Locomotion-based fitness function

This work shows how to use an Evolutionary Computing approach to evolve mechanical

systems. A design objective of traversing landscapes was chosen to produce comparable

results throughout this work. It was found general enough to give the algorithm design

freedom. However, for industrial application objectives need to be defined in a very

specific way which requires in-depth research of methods to define design problems in

different engineering domains in future. Instead of measuring the travel distance, another

approach to define a design objective could be to define a path instead. The fitness

function would evaluate how close the centre of the machine follows the path.

This work showed that design solutions can be evolved using a locomotion-based fitness

function. This can be further developed into a mechanical design application for evolving

components during the early design stage, e.g. as a CAD support tool. One would need

to exchange the objective of traversing a landscape with e.g. rotating a lever component

in a certain way. It would allow evolving mechanical components able to rotate another

component within a system without human intervention.

7.3.6 Different Approaches

The literature review showed that there are many approaches to implement generative

design systems. In this work, evolutionary computing was used, which has shown to

perform well. Evolutionary computing is usually a blind approach; often, it does not

include knowledge about the design problem or past problems. However, there are other

methods such as machine learning, and neural networks, which have the ability to identify

patterns and correlate them to the fitness of the design, which may be an advantage.

Evolutionary computing was selected due to the priority being given to the representation,

as there was none available and the working principles are easier to observe than other

approaches. However, the representation may also be usable in the variety of fields, and

other researchers and practitioners may try to apply different methods using the finding

from this work.

Another interesting approach would be to focus on evolving design and behaviour at the

same time, such as in artificial life. Using the proposed representation would allow

evolving far more complex designs compared to those used before, which focused solely

on the behaviour.

The implemented software can also be extended by adding another physics simulator such

as particle simulation to evolve, e.g. for aerodynamics or compliant mechanisms.

144

7.3.7 Potential Improvements

The way the genotype maps to the phenotype space can be further improved. Currently,

genes can take values between zero and one with seven digits of precision. However, the

coordinates in the phenotype space are many orders of magnitude less (240 pixels). The

disproportion was not spotted until all experiments were conducted. As all experiments

used the same configuration, it should not have any influence on the results as such. A

lower precision in the genotype representation may increase the speed of finding better

solutions.

7.4 Future Work

Mechanism design has a large number of different application areas. These range from

industrial applications, such as production systems, to design conveyor systems, through

sorting machines, to automotive design, e.g. for wiper mechanisms, or mechanical

redundant devices such as closure systems. The proposed framework can be further

developed with a focus on other design problems and types of mechanisms. Different

mechanical components can be implemented, such as translation joints, springs, and

mechanical stops. It could lead to mechanisms with more complex behaviour and

including additional automatisation, such as spring design and optimisation.

Also, the actuator control pattern could be evolved to produce more complex input

movement. It would open the door to evolving actuator behaviour, and the shape and

configuration of components simultaneously, which is closer to biological evolution.

Another focus could be on the design interface for engineers, to allow them to specify a

general design problem graphically. In this work, it is done by using input files containing

the bespoke scripting language. In future, the generative system can be a part of a design

tool. It may support the conceptual design process for mechanism design, able to propose

design solutions to engineers for general, or even specific problems related to planar

mechanisms. It could be run as an addition to traditional CAD. Furthermore, the ability

to extend the generative system to 3D mechanism design should be investigated which

would make it even more suitable to be used in a CAD scenario.

The software is designed in a modular way. It allows to exchange the evolutionary

algorithm with other search heuristics, to add other representations, and also the physics

engine can be exchanged with another, e.g. 3D physics engine.

The representation and evolutionary algorithm could be used in a different context such

as evolving aerodynamic shapes, such as turbine blades, using particle physics simulation.

145

This work could be used to implement a design system for a specific engineering domain

and test it with engineering designers. Solutions evolved by the algorithm could be

compared to human designs to investigate if innovative solutions could be identified or

at least solutions of which no human thought of.

7.5 Conclusion

Generative design aims to produce a set of solutions, which can be analysed and selected

by engineers for further development, in order to increase the output of the preliminary

design stage. This work addressed the area of generative design and presented a method

of evolving planar mechanisms for the preliminary stage of mechanical design, using

evolutionary computing techniques, which has not been done before in this specific

domain. The main contributions of this work are:

• A software tool to run experiments, visualise, and record the process of evolving

shapes for mechanical components

• Implementation of bespoke software to run experiments; including visualising,

simulating and evolving design solutions

• Development and evaluation of a number of evolutionary representations for

shapes and mechanisms

• The validation of a framework through the evolution of mechanisms

• Empirical data, and analysis of the experimental results focusing on evolving

planar mechanisms

In future, this work has the potential to be developed into an industry tool for assisting

engineers in the early stage of planar mechanism design.

146

Bibliography

Alexandersen, J., Sigmund, O., & Aage, N. (2016). Large scale three-dimensional

topology optimisation of heat sinks cooled by natural convection. International

Journal of Heat and Mass Transfer, 100, 876–891.

https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.013

Ambrose, E., Ma, W., Hubicki, C., & Ames, A. D. (2017). Toward Benchmarking

Locomotion Economy Across Design Configurations on the Modular Robot :

AMBER-3M. IEEE Conference on Control Technology and Applications, 1270–

1276.

Ames, A. D., Tabuada, P., Jones, A., Ma, W. L., Rungger, M., Schürmann, B., … Grizzle,

J. W. (2017). First steps toward formal controller synthesis for bipedal robots with

experimental implementation. Nonlinear Analysis: Hybrid Systems, 25, 155–173.

https://doi.org/10.1016/j.nahs.2017.01.002

angusj. (2010). Clipper - Polygon and line clipping and offsetting library (C++, C#,

Delphi). Retrieved June 15, 2019, from

https://sourceforge.net/projects/polyclipping/

Arias-Montaño, A., Coello Coello, C. A., & Mezura-Montes, E. (2011). Evolutionary

Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization.

Computational Optimization, Methods and Algorithms: Studies in Computational

Intelligence, Volume 356, 211–240. https://doi.org/10.1007/978-3-642-20859-1_10

Artobolevsky, I. I. (1975). Mechanisms in Modern Engineering Design. Moscow: Mir

Publishers.

Baron, P., Fisher, R., Tuson, A., Mill, F., & Sherlock, A. (1999). A voxel-based

representation for evolutionary shape optimization. Ai Edam, 13(03), 145–156.

https://doi.org/10.1017/S0890060499133031

Belter, D., & Walas, K. (2014). A Compact Walking Robot – Flexible Research and

Development Platform. Advances in Intelligent Systems and Computing, 267, 343–

352. https://doi.org/10.1007/978-3-319-05353-0

Bendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design

using a homogenization method. Computer Methods in Applied Mechanics and

147

Engineering, 71(2), 197–224. https://doi.org/10.1016/0045-7825(88)90086-2

Bentley, P. (1999). Evolutionary Design by Computers. Morgan Kaufman Publishers.

Bentley, P., & Kumar, S. (1999). Three ways to grow designs: A comparison of

embryogenies for an evolutionary design problem. In GECCO’99 Proceedings of

the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1

(pp. 35–43). Orlando, Florida: Morgan Kaufmann Publishers Inc. Retrieved from

http://discovery.ucl.ac.uk/171657/

Bentley, P., & Wakefield, J. (1997). Conceptual evolutionary design by a genetic

algorithm. Engineering Design and Automation, 1–13. Retrieved from

http://www.cs.ucl.ac.uk/staff/ucacpjb/BEWAJ2.pdf

Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2009). A survey on

metaheuristics for stochastic combinatorial optimization. Natural Computing, 8(2),

239–287. https://doi.org/10.1007/s11047-008-9098-4

Bose, A., Gini, M., & Riley, D. (1997). A case-based approach to planar linkage design.

Artificial Intelligence in Engineering, 11(2), 107–119.

Box2D: Overview. (n.d.). Retrieved May 10, 2020, from

https://box2d.org/documentation/index.html

BoxCar2D. (2015). Retrieved February 26, 2016, from http://boxcar2d.com/),

Byung Gun Choi, & Bo Suk Yang. (2000). Optimum Shape Design of Rotor Shafts Using

Genetic Algorithm. Journal of Vibration and Control, 6(2), 207–222.

https://doi.org/10.1177/107754630000600203

Cabrera, J. a., Simon, a., & Prado, M. (2002). Optimal synthesis of mechanisms with

genetic algorithms. Mechanism and Machine Theory, 37(10), 1165–1177.

https://doi.org/10.1016/S0094-114X(02)00051-4

Catto, E. (n.d.). Box2D - A 2D Physics Engine for Games. Retrieved March 31, 2018,

from http://box2d.org/

Chang, W.-W., Chung, C.-J., & Sendhoff, B. (2003). Target Shape Design Optimization

with Evolutionary Computation. Proceedings of the Congress on Evolutionary

Computation 2003 (CEC’2003), 3, 1864–1870.

Chen, C. H., & Chou, J. H. (2016). Evolutionary design of adjustable six-linkage bar

manufacturing mechanisms using niche genetic algorithms. IEEE Access, 4, 4809–

148

4822. https://doi.org/10.1109/ACCESS.2016.2597869

Cheney, N., MacCurdy, R., Clune, J., & Lipson, H. (2013). Unshackling Evolution:

Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding.

Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary

Computation - GECCO ’13, 167. https://doi.org/10.1145/2463372.2463404

Colombo, G., Mosca, A., & Sartori, F. (2007). Towards the design of intelligent CAD

systems: An ontological approach. Advanced Engineering Informatics, 21, 153–168.

https://doi.org/10.1016/j.aei.2006.11.003

Cully, A., & Mouret, J.-B. (2016). Evolving a Behavioral Repertoire for a Walking Robot.

Evolutionary Computation, 24(1), 59–88. https://doi.org/10.1162/EVCO_a_00143

Cvetkovi, D., & Parmee, I. C. (1999). Genetic Algorithms Based Systems For Conceptual

Engineering Design. In INTERNATIONAL CONFERENCE ON ENGINEERING

DESIGN, ICED 99. Munich.

Deb, K., & Goel, T. (2001). A hybrid multi-objective evolutionary approach to

engineering shape design. Lecture Notes in Computer Science, 1993, 385–399.

Digumarti, K. M., Gehring, C., Coros, S., Hwangbo, J., & Siegwart, R. (2014).

Concurrent Optimization of Mechanical Design and Locomotion Control of a

Legged Robot. 17th International Conference on Climbing and Walking Robots,

315–323. https://doi.org/10.1142/9789814623353_0037

Dryden, I. L., & Mardia, K. V. (2016). Statistical Shape Analysis : with applications in R

(2nd.). Wiley.

Eby, D., Averill, R. C., Punch, W. F., & Goodman, E. D. (1999). Optimal design of

flywheels using an injection island genetic algorithm. Ai Edam, 13(05), 327–340.

https://doi.org/10.1017/S0890060499135066

Eggenberger-Hotz, P. (2004). Comparing Direct and Developmental Encoding Schemes

in Artificial Evolution a Case Study in Evolving Lens Shapes. Proceedings of the

2004 Congress on Evolutionary Computation, 752–757.

https://doi.org/10.1109/CEC.2004.1330934

Eiben, A. E., & Smith, J. (2015a). From evolutionary computation to the evolution of

things. Nature, 521(7553), 476–482. https://doi.org/10.1038/nature14544

Eiben, A. E., & Smith, J. E. (2015b). Introduction to Evolutionary Computing (2nd ed.).

149

Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-662-44874-8

Ertas, A., & Jones, J. (1996). The Engineering Design Process (2nd ed.). New York: John

Wiley & Sons, Inc.

Gaier, A., Asteroth, A., & Mouret, J. (2018). Data-Efficient Design Exploration through

Surrogate-Assisted Illumination. Evolutionary Computation, 26(3), 381–410.

https://doi.org/10.1162/evco_a_00231

Genge, O., & Roosen, P. (2000). Simultaneous experimental optimization of conflicting

injection nozzle properties by an evolution pareto set determination. In ILASS-

Europe (Vol. 1, pp. 1–6). Darmstadt.

Ghassaei, A., & Ming, J. (2015). Evolutionary Design of Mechanical Linkages. Retrieved

from https://canvas.harvard.edu/files/4287562/download

Hoeltzel, D. a, & Chieng, W.-H. (1990). Pattern matching synthesis as an automated

approach to mechanism design. Journal of Mechanical Design, 112(2), 190–199.

Hotz, P. E. (2004). Comparing direct and developmental encoding schemes in artificial

evolution: A case study in evolving lens shapes. In Proceedings of the 2004

Congress on Evolutionary Computation, CEC2004 (Vol. 1, pp. 752–757).

https://doi.org/10.1109/CEC.2004.1330934

Jitsukawa, T., Adachi, H., Abe, T., Yamakawa, H., & Umezu, S. (2017). Bio-inspired

wing-folding mechanism of micro air vehicle (MAV). Artificial Life and Robotics,

22(2), 203–208. https://doi.org/10.1007/s10015-016-0339-9

Joskowicz, L. (1999). Computer-Aided Mechanical Design Using Configuration Spaces.

Science, 14–21. https://doi.org/10.1109/5992.805133

Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., & Kokaji, S. (2005).

Automatic locomotion design and experiments for a modular robotic system.

IEEE/ASME Transactions on Mechatronics, 10(3), 314–325.

https://doi.org/10.1109/TMECH.2005.848299

Khan, M. S., Ayob, A. F. M., Isaacs, A., & Ray, T. (2011). A novel evolutionary approach

for 2D shape matching based on B-spline modeling. 2011 IEEE Congress of

Evolutionary Computation, CEC 2011, 655–661.

https://doi.org/10.1109/CEC.2011.5949681

Khan, M. S., & Ray, T. (2012). A Memetic Algorithm for Efficient Solution of 2D and

150

3D Shape Matching Problems (pp. 362–372). https://doi.org/10.1007/978-3-642-

35101-3_31

Kohl, A. M., Kelasidi, E., Mohammadi, A., Maggiore, M., & Pettersen, K. Y. (2016).

Planar maneuvering control of underwater snake robots using virtual holonomic

constraints. Bioinspiration and Biomimetics, 11(6), 884–899.

https://doi.org/10.1088/1748-3190/11/6/065005

Krish, S. (2011). A practical generative design method. CAD Computer Aided Design,

43(1), 88–100. https://doi.org/10.1016/j.cad.2010.09.009

Kyung, M. H., & Sacks, E. (2006). Robust parameter synthesis for planar higher pair

mechanical systems. CAD Computer Aided Design, 38(5), 518–530.

https://doi.org/10.1016/j.cad.2006.01.004

Lampinen, J. (2003). Cam shape optimisation by genetic algorithm. CAD Computer

Aided Design, 35(8 SPEC.), 727–737. https://doi.org/10.1016/S0010-

4485(03)00004-6

Lampinen, Jouni. (1997). Choosing a shape representation method for optimization of 2D

shapes by genetic algorithms. In Proceedings of the Third Nordic Workshop on

Genetic Algorithms and their Applications (3NWGA) (pp. 305–319). Helsinki,

Finland.

Lapok, P., Lawson, A., & Paechter, B. (2017). Evaluation of a genetic representation for

outline shapes. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion on - GECCO ’17 (pp. 1419–1422). New York, New York,

USA: ACM Press. https://doi.org/10.1145/3067695.3082501

Lapok, P., Lawson, A., & Paechter, B. (2019). 2-Dimensional Outline Shape

Representation for Generative Design with Evolutionary Algorithms. In EngOpt

2018 Proceedings of the 6th International Conference on Engineering Optimization

(pp. 926–937). Springer International Publishing. https://doi.org/10.1007/978-3-

319-97773-7

Lawati, M. Al, & Yousef, H. (2016). Stability analysis and trajectory design of a 2-D.O.F.

bipedal walker. In 2016 IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE) (pp. 1–5). IEEE.

https://doi.org/10.1109/CCECE.2016.7726617

Lee, P., & Nagao, T. (1995). Hierarchical Description of Two Dimensional Shapes Using

151

a Genetic Algorithm. Proceedings of 1995 IEEE International Conference on

Evolutionary Computation, 2, 1–4. https://doi.org/10.1109/ICEC.1995.487458

Li, D., Zigoneanu, L., Popa, B.-I., & Cummer, S. a. (2012). Design of an acoustic

metamaterial lens using genetic algorithms. The Journal of the Acoustical Society of

America, 132(November 2011), 2823. https://doi.org/10.1121/1.4744942

Liu, J., & Ma, Y. (2017). Truss-like structure design with local geometry control.

Computer-Aided Design and Applications, 14(3), 324–330.

https://doi.org/10.1080/16864360.2016.1240453

Liu, Y., & McCarthy, J. M. (2017). Synthesis of a linkage to draw a plane algebraic curve.

Mechanism and Machine Theory, 111, 10–20.

https://doi.org/10.1016/j.mechmachtheory.2016.12.005

Mariappan, J., & Krishnamurty, S. (1996). A generalized exact gradient method for

mechanism synthesis. Mechanism and Machine Theory, 31(4), 413–421.

https://doi.org/10.1016/0094-114X(95)00077-C

Matsunaga, R. (2015). Genetic Algorithm Walkers. Retrieved February 26, 2016, from

http://rednuht.org/genetic_walkers/

McKay, R. I., Hoai, N. X., Whigham, P. A., Shan, Y., & O’neill, M. (2010). Grammar-

based Genetic programming: A survey. Genetic Programming and Evolvable

Machines, 11(3–4), 365–396. https://doi.org/10.1007/s10710-010-9109-y

Muller, M. E. (1958). An Inverse Method for The Generation of Random Normal

Deviates on Large-Scale Computers. Mathematical Tables and Other Aids to

Computation, 12(63), 167. https://doi.org/10.2307/2002017

Mundo, D., Liu, J. Y., & Yan, H. S. (2006). Optimal Synthesis of Cam-Linkage

Mechanisms for Precise Path Generation. Journal of Mechanical Design, 128(6),

1253. https://doi.org/10.1115/1.2337317

Myszka, D. H. (2012). Machines and mechanisms: applied kinematic analysis. Pearson

Higher Ed USA.

Nashvili, M., Olhofer, M., & Sendhoff, B. (2005). Morphing methods in evolutionary

design optimization. Proceedings of the 2005 Conference on Genetic and

Evolutionary Computation GECCO 05, 897–904.

https://doi.org/10.1145/1068009.1068159

152

Olhofer, M., Jin, Y., & Sendhoff, B. (2001). Adaptive encoding for aerodynamic shape

optimization using evolution strategies. Evolutionary Computation, 2001.

Proceedings of the 2001 Congress On, 1, 576–583.

https://doi.org/10.1109/CEC.2001.934443

Padmanabhan, S., Chandrasekaran, M., Ganesan, S., Patan, M. N. K., & Navakanth, P.

(2017). Optimal Solution for an Engineering Applications Using Modified Artificial

Immune System. In IOP Conf. Series: Materials Science and Engineering (Vol.

183). IOP Publishing. https://doi.org/10.1088/1757-899X/183/1/012025

Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering Design: A

Systematic Approach. Springer London. Retrieved from

https://books.google.de/books?id=57aWTCE3gE0C

Pandey, A., Datta, R., & Bhattacharya, B. (2017). Topology optimization of compliant

structures and mechanisms using constructive solid geometry for 2-d and 3-d

applications. Soft Computing, 21(5), 1157–1179. https://doi.org/10.1007/s00500-

015-1845-8

Parrish, B., McCarthy, J., & Eppstein, D. (2015). Automated Generation of Linkage Loop

Equations for Planar One Degree-of-Freedom Linkages, Demonstrated up to 8-Bar.

In Proceedings of the ASME Design Engineering Technical Conference (Vol. 7).

https://doi.org/10.1016/j.cognition.2008.05.007

Pham, D. T., & Yang, Y. (1993). A genetic algorithm based preliminary design system.

ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part D: Journal

of Automobile Engineering 1989-1996 (Vols 203-210), 207(24), 127–133.

https://doi.org/10.1243/PIME_PROC_1993_207_170_02

Raibert, M. (2008). BigDog, the rough-terrain quadruped robot. IFAC Proceedings

Volumes (IFAC-PapersOnline) (Vol. 17). IFAC. https://doi.org/10.3182/20080706-

5-KR-1001.4278

Ratanamahatana, C., & Keogh, E. (2004). Everything you know about dynamic time

warping is wrong. Third Workshop on Mining Temporal and Sequential Data, 22–

25. https://doi.org/10.1097/01.CCM.0000279204.24648.44

Renner, G., & Ekárt, A. (2003a). Genetic algorithms in computer aided design.

Computer-Aided Design, 35(8), 709–726. https://doi.org/10.1016/S0010-

4485(03)00003-4

153

Renner, G., & Ekárt, A. (2003b). Genetic algorithms in computer aided design.

Computer-Aided Design, 35(8), 709–726. https://doi.org/10.1016/S0010-

4485(03)00003-4

Reyes, F., & Ma, S. (2014). On planar grasping with snake robots: Form-closure with

enveloping grasps. 2014 IEEE International Conference on Robotics and

Biomimetics, IEEE ROBIO 2014, 556–561.

https://doi.org/10.1109/ROBIO.2014.7090389

Robertson, B. F., & Radcliffe, D. F. (2009). Impact of CAD tools on creative problem

solving in engineering design. Computer-Aided Design, 41(3), 136–146.

https://doi.org/10.1016/j.cad.2008.06.007

Roennau, A., Heppner, G., Nowicki, M., & Dillmann, R. (2014). LAURON V : A

Versatile Six - Legged Walking Robot with Advanced Maneuverability.

https://doi.org/10.1109/AIM.2014.6878051

Roston, G. P., & Sturges, R. H. (1996). Genetic algorithm synthesis of four-bar

mechanisms. Artificial Intelligence for Engineering, Design, Analysis and

Manufacturing, 10(05), 371. https://doi.org/10.1017/S0890060400001700

Ruan, Q., Wu, J. X., Zhou, S. H., & Yao, Y. A. (2015). Fluctuation Compensation of a

Multi-legged Walking Platform Using Cam Mechanism. In Proceedings of the 14th

IFToMM World Congress (pp. 294–298).

https://doi.org/10.6567/IFToMM.14TH.WC.OS13.104

Ryan, C., Collins, J., & Neill, M. O. (1998). Grammatical evolution: Evolving programs

for an arbitrary language. In F. T. C. Banzhaf W., Poli R., Schoenauer M. (Ed.),

Genetic Programming. EuroGP 1998. Lecture Notes in Computer Science, vol 1391

(pp. 83–96). Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055930

Sandgren, E., & West, R. L. (1989). Shape Optimization of Cam Profiles Using a B-

Spline Representation. Journal of Mechanisms, Transmissions, and Automation in

Design, 111(2), 195–201. https://doi.org/10.1115/1.3258983

Sharma, D., Deb, K., & Kishore, N. N. (2008). An Improved Initial Population Strategy

for Compliant Mechanism Designs Using Evolutionary Optimization. In Volume 1:

34th Design Automation Conference, Parts A and B (pp. 1175–1184). ASMEDC.

https://doi.org/10.1115/DETC2008-49187

Shea, K., Aish, R., & Gourtovaia, M. (2005). Towards integrated performance-driven

154

generative design tools. Automation in Construction, 14(2), 253–264.

https://doi.org/10.1016/j.autcon.2004.07.002

Sims, K. (1994). Evolving virtual creatures. Proceedings of the 21st Annual Conference

on Computer Graphics and Interactive Techniques - SIGGRAPH ’94, 15–22.

https://doi.org/10.1145/192161.192167

Tai, K., Wang, N. F., & Yang, Y. W. (2008). Target geometry matching problem with

conflicting objectives for multiobjective topology design optimization using GA.

2008 IEEE Congress on Evolutionary Computation, CEC 2008, 1873–1878.

https://doi.org/10.1109/CEC.2008.4631044

Takahashi, T., Nakamoto, K., Matsumoto, T., Isakari, H., & Kitabayashi, T. (2018). A

multi-objective topology optimisation for 2D electro-magnetic wave problems with

the level set method and BEM. European Journal of Computational Mechanics,

25(1–2), 165–193. https://doi.org/10.1080/17797179.2016.1181042

Tsuge, B., Plecnik, M., & McCarthy, J. (2016). Homotopy directed optimization to design

a six-bar linkage for a lower limb with a natural ankle trajectory. Journal of

Mechanisms and Robotics, 8. https://doi.org/10.1016/j.cognition.2008.05.007

Uicker, J. J., Pennock, G. R., & Shigley, J. E. (2003). Theory of Machines and

Mechanisms. Oxford University Press. Retrieved from

https://books.google.co.in/books?id=KE6HMtnXE_0C

Ullman, D. G. (2009). The mechanical design process (4th ed.). New York: McGraw-Hill

Higher Education.

Vargha, A., & Delaney, H. D. (2017). A Critique and Improvement of the " CL " Common

Language Effect Size Statistics of McGraw and Wong Author (s): András Vargha

and Harold D . Delaney Source : Journal of Educational and Behavioral Statistics ,

Vol . 25 , No . 2 (Summer , 2000), pp . Pub, 25(2), 101–132.

Vicini, A., & Quagliarella, D. (1999). Airfoil and Wing Design Through Hybrid

Optimization Strategies. AIAA Journal, 37(5), 634–641.

https://doi.org/10.2514/2.764

Vishal, D., & Manivannan, P. V. (2016). Multi-body dynamics simulation and gait pattern

analysis of a bio-inspired quadruped robot for unstructured terrains using adaptive

stroke length. Artificial Life and Robotics, 21(4), 493–499.

https://doi.org/10.1007/s10015-016-0304-7

155

Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing Smart Factory of Industrie

4.0: An Outlook. International Journal of Distributed Sensor Networks, 2016.

https://doi.org/10.1155/2016/3159805

Weber, R. (2015). BoxCar2D. Retrieved March 31, 2018, from http://boxcar2d.com

Zboinska, M. a. (2015). Computer-Aided Design Hybrid CAD / E platform supporting

exploratory architectural design. Computer-Aided Design, 59, 64–84.

https://doi.org/10.1016/j.cad.2014.08.029

Zhang, P., Yao, X., Jia, L., Sendhoff, B., & Schnier, T. (2007). Target shape design

optimization by evolving splines. 2007 IEEE Congress on Evolutionary

Computation.

Zhang, Y. (2003). Introduction to Mechanisms. Retrieved June 6, 2017, from

https://www.cs.cmu.edu/~rapidproto/mechanisms/tablecontents.html#top

156

Appendices

Appendix 1 Supplementing Tables for Chapter 3

Table 4: Shape Experiment Results part 1

Problem Method ymin lower middle upper ymax outliers

R1 3753 6163 13779 17332 27761

R2 1509 2129 2371 3930 5663 12193, 11449, 8415

R3 1311 1780 2259 3481 4926 7690, 6880, 8926

R4 0 2072 2463 3608 4730 8992, 12647

R1 2871 7348 8692 10442 13576 489, 19294

R2 1051 1734 2324 2666 3473 6215, 6175

R3 1612 2051 2602 3313 4831 5958, 6709

R4 360 1606 2310 3585 5846 7350, 6895, 6929

R1 4277 5701 7789 13065 21558

R2 4123 5573 6095 6562 7326

R3 4272 5195 5972 7122 7478

R4 768 2585 3094 3832 5053 5838

R1 1263 7105 9378 11138 14209

R2 761 1389 1889 2426 3438

R3 463 1196 1622 2046 2794 3398, 3440

R4 0 1004 1237 2224 2365 5886, 5205, 7448

R1 5035 7267 8076 9943 11720 1239, 1696, 1869, 14111

R2 1267 1754 1861 2091 2525 1201, 3135, 2957

R3 1490 1665 1804 1963 2399 4137

R4 1806 2768 3398 4215 5656

R1 495 1300 1518 2815 4778 7642, 6795

R2 115 205 286 356 524

R3 78 173 257 318 411 559

R4 142 195 292 436 726 1200

R1 1787 4493 6419 8566 10986

R2 818 1071 1299 1940 2224

R3 968 1194 1503 1813 2402

R4 1126 1800 2241 2566 2793 3718, 4546

R1 134 2990 4053 5423 7600 10060, 10440, 10242

R2 418 627 694 900 1265 1313

R3 239 373 496 576 716

R4 610 814 1024 1155 1576 1836, 90

p07

p08

p01

p02

p03

p04

p05

p06

157

Table 5: Shape Experiment Results part 2

Problem Method ymin lower middle upper ymax outliers

R1 2514 5644 6962 12112 16361 22065

R2 1920 2244 2504 2803 3585 6368

R3 2345 2776 3043 3580 3816 7068, 6447, 5682, 6950

R4 1292 1563 1710 1982 2305 4150, 3510, 840

R1 899 5050 6693 8121 12421 17631, 12812

R2 1291 1862 2253 2489 3186

R3 1762 2254 2581 2860 3748 4463, 4514

R4 1747 2639 2796 3578 3887 6085, 7308

R1 7390 10196 12286 12796 16491 16867

R2 3385 3506 3924 4039 4314 5454

R3 3081 3537 3834 4192 5148 6712, 6438

R4 1592 2850 3929 4739 6618 8921, 8033

R1 4439 6884 10877 14428 18244

R2 5016 5797 6059 6408 7324

R3 4878 5646 6133 6541 7771

R4 470 2837 3286 6316 8592

R1 429 1272 1570 1868 2290 3134, 2938

R2 275 352 475 646 841

R3 183 300 384 454 617 689, 704

R4 442 709 771 1003 1284

R1 3 933 1185 1804 2670 7011

R2 195 446 500 619 775 957

R3 228 294 333 391 440 1166, 616, 602

R4 438 527 676 988 1376

R1 499 4402 5458 7963 12474 16752

R2 772 1039 1252 1903 3155 4118

R3 652 1357 2092 2347 3235

R4 976 1695 2240 3189 4838 6614

R1 182 1349 2191 2963 5367

R2 284 422 495 564 704 919, 849, 1006, 835

R3 227 376 462 521 696

R4 512 686 815 1030 1466 1642

p15

p16

p09

p10

p11

p12

p13

p14

158

Table 6: Shape Experiment Results part 3

Problem Method ymin lower middle upper ymax outliers

R1 1164 2015 2234 2719 3142 6320, 644

R2 60 204 372 582 884

R3 125 327 413 576 888 956, 1716, 1211

R4 67 343 848 1544 1859

R1 16 1595 2072 3287 5434

R2 44 160 254 336 380 820, 799

R3 76 161 213 268 374 460, 545

R4 50 206 249 475 878 1066, 974, 2278

R1 0 2203 3949 5988 11641

R2 495 711 829 1433 2003

R3 337 678 829 1522 2442

R4 574 862 1084 1510 2407 3807, 3747

R1 27 1433 3573 5798 8099

R2 201 490 623 806 1174

R3 184 324 367 420 501 595, 166, 618

R4 192 306 433 748 958 4526, 1584, 2247

R1 3794 4955 6188 7103 8963 670, 538

R2 357 533 618 703 911 203, 1001, 188

R3 179 495 637 717 841

R4 647 1335 1959 2152 3011 4778

R1 112 1149 2419 3771 5706

R2 6 119 201 338 517 674, 671

R3 0 9 54 108 223 336, 313

R4 1 114 627 1210 2276

R1 2092 4798 6028 8253 10818

R2 416 700 1154 1536 2280 3824

R3 262 619 1077 1375 1986 3206

R4 347 730 1173 1810 3282 4055

R1 5542 9854 13786 22673 31440

R2 9270 11304 12950 13904 16429

R3 10064 11056 12574 14071 16961

R4 863 1678 2088 3422 5886 7002, 9250, 10115, 9113

p21

p22

p23

p24

p17

p18

p19

p20

159

Appendix 2 Simulator Acceptance Tests

This section summarises the acceptance tests used to validate the physics part of the

simulator implementation.

Appendix 2.1 Collision Tests on One Layer

This section describes different collision tests on one layer which were used to validate

the simulator.

The tests validate the collision between a dynamic body consisting of different shape

types, such as polygon shapes and circle shapes with environment objects. Each scene

contains a bearing plate with walls on which a dynamic object is dropped. The bearing

plate has a static position and has static walls. The gravity is set to 9.81 in the negative y-

direction, and the frame rate is set to 60fps. The material parameters for friction are set to

0.2, for restitution 0.6, and density 1.0. The setup is shown in Figure 68.

Figure 68: Collision

Test a validates the circle shape type; b the polygon shape type; c two circle shapes in

one scene which should act as one component; d two polygon shapes which should act as

160

one component; and e which combines the polygon shape type with a circle shape, both

should act as one component.

Expected

It is expected that the dynamic body falls, without colliding with the bearing plate.

However, it needs to collide with the walls which are placed on the same layer. The shape

component should bounce off and either roll or slide down the contour of the walls.

Outcome

In all cases, the shaped component falls, collides, and behaves as expected.

Appendix 2.2 Collision Test with Different Dynamic Components

The test validates the collision between a dynamic component made of multiple shapes

and a bearing plate with walls. The plate has a static position and contains static walls

which work as obstacles. Both shapes should collide with the outer wall. The shapes of

the dynamic component and the walls get different layers assigned. Both components

should collide with the outer wall of the bearing plate. Besides, the circle shape should

collide with the wall 2, 4, and 6. The polygon shape should collide with wall 1, 3, and 5.

The gravity is set to 9.81 in the negative y-direction, and the frame rate is set to 60fps.

The material parameters for friction are set to 0.2, for restitution 0.6, and density 1.0. The

setup is shown in Figure 69.

Figure 69: Collision Multi-layer

Expected

It is expected that the shape component falls, without colliding with the bearing plate.

Then the polygon shape collides with wall 1, and the circle shape should go right through

161

it, still connected to the polygon. The component should slide with both shapes towards

wall 2, and the circle shape should collide with it. The polygon shape should not collide

and fall through. Both components should then slide further down.

Outcome

The shapes fall, collides, and behaves as expected.

Appendix 2.3 Collision Test with Different Static Components

The test is similar to the previous test, however, in this case, the layers of the static

components are changed, and the dynamic component is placed on one layer. The setup

is similar to Figure 69.

Expected

The dynamic component should only collide with wall 1, 3, 4, and 6.

Outcome

The body falls, collides, and behaves as expected.

Appendix 2.4 Parameter Tests

In this section, the tests are focusing on the gravity, density, friction, and restitution

parameter.

Appendix 2.4.1 Gravity

The gravity parameter is tested by assigning a low gravity value of 2.0 in one scene, and

then a high gravity value of 18.0 in another. A similar scenario is used as represented in

Figure 69. The gravity is set in the negative y-direction, and the frame rate is set to 60fps.

The material parameters for friction are set to 0.2, for restitution 0.6, and density 1.0.

Expected

It is expected that the body in the first scene falls slow, and the one in the second faster.

Outcome

Everything behaves as expected when changing the gravity in the simulator.

Appendix 2.4.2 Density

The density parameter is tested by assigning a low-density value of 0.1 in one scene, and

then a high-density value of 2.0 in another. A similar scenario is used as represented in

162

Figure 69. The gravity is set to 9.81 in the negative y-direction, and the frame rate is set

to 60fps. The material parameters for friction are set to 0.2 and for restitution 0.6.

Expected

It is expected that the body in scene one behaves lighter compared to the one in scene

two.

Outcome

Everything behaves as expected.

Appendix 2.4.3 Friction

The friction parameter is tested with a polygon shape as it has more surface in contact

with the wall. The restitution is set to 0 for all bodies to reduce the bouncing behaviour.

Each wall segment from 1 to 6 has a different friction value assigned, increasing from 0.0

to 1.0. Each step increases the value by 0.2. The dynamic component has friction set to

0.1. The gravity is set to 9.81 in the negative y-direction, and the frame rate is set to 60fps.

Expected

It is expected that the body slides down the walls and slows down on each step because

of the increase of the friction between the dynamic component and the wall.

Outcome

Friction increases and component slows down as expected.

Appendix 2.4.4 Restitution

The restitution parameter is tested with a circle shape as the bouncing behaviour should

be better visible. The restitution of the dynamic component was set to 0. The walls 1 to

6, have an increasing restitution parameter from 0.0 to 1.0. Each step increases the value

by 0.2. All bodies have the friction set to 0.2. The gravity is set to 9.81 in the negative y-

direction, and the frame rate is set to 60fps.

Expected

It is expected that the body starts to bounce more on every step-down.

Outcome

The bouncing behaviour increases on the way down, which is as expected.

163

Appendix 2.5 Single Joint Test

This section focuses on testing the revolution joint. It is positioned in the centre of a

polygon shape and connects the polygon shape with a bearing plate. The setup is shown

in Figure 70. The gravity is set to 9.81 in the negative y-direction, and the frame rate is

set to 60fps.

Figure 70: Revolution Joint

Expected

It is expected that the joint is placed in the correct position and act as the centre point of

the rotation. The component should start to seesaw around the revolution joint.

Outcome

The joint is placed correctly, and the polygon shape rotates around the revolution joint.

Appendix 2.6 Linkage Test

A chain of three components is used to test the correct implementation of the simulator.

The bodies are connected with revolution joints. The first body is connected to the bearing

plate. The second body is connected to the first, and the third is connected to the second

body. The gravity is set to 9.81 in the negative y-direction, and the frame rate is set to

60fps. The setup is shown in Figure 71.

Figure 71: Revolution Joint Chain

Expected

It is expected that the components behave like a chain. Connected components should not

collide with each other.

164

Outcome

The components behave as expected. Connected components are not colliding.

Appendix 2.7 Actuator Tests

This section focuses on testing the actuator functionality of the simulator. The actuator is

tested by using the scenario seen in Figure 70 and setting the isMotor variable to true.

The speed is set to 60rpm.

 Expected

It is expected that the body rotates with a speed of one rotation per second.

Outcome

The body rotates with one rotation per second as expected.

165

Appendix 3 Problem-file Format

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" version="1.1" baseProfile="full"
width="1000px" height="500px" viewBox="0 0 1000 500">

 <style>@import url(style.css);</style>
 <desc fileID="0">Example Problem</desc>

 <!-- Grid Background -->
 <g id="background_grid">
 <defs>

<pattern id="grid20" width="20" height="20" patternUnits="userSpaceOnUse">
 <path d="M 100 0 L 0 0 0 100" />

</pattern>
 </defs>
 <rect id="bgcolor" height="500" width="1000" y="0"></rect>
 <rect fill="url(#grid20)" height="500" width="1000" y="0"></rect>
 </g>

 <!-- Environment Configuration -->

 <!-- Ground -->
 <g id="ground">

<g id="1" predefined="true" transform="translate(0, 300) rotate(0) scale(1)" type="static">
<polyline type="polygon" points="-1000,200,-1000,0,10000,0,10000,200" friction="0.5"
restitution="0.6" density="1.0" plane="0"/>

 </g>
 </g>

 <!-- Environment element -->
 <g id="env_element"></g>

 <!-- Housing -->

 <g id="housing">
<g id="2" predefined="true" transform="translate(250, 170) rotate(0) scale(1)" type="dynamic">

 <!-- Housing Background -->
 <polyline type="polygon" isSolutionSpace="true" points="-150,25, -150,

-25, 150,-25, 150,25" friction="0.2" restitution="0.6" density="1.0" plane="1"/>
 </g>
 </g>

 <!-- Drive -->
 <g id="mech_config">
 <g id="levers">
 <!-- potential solution -->
 </g>

 <!-- transform needs to be similar to transform of bodyB -->
 <g id="joints">
 </g>
 </g>

 <!-- Parameter definition -->
 <parameter>

<optimisationcfg populationSize="40" childrenNumber="10" solutionsToProduce="20000"
trackDirectionX="1" trackDirectionY="0" mutationMethod="4" crossoverMethod="2"
mappingVer="15">

 <weight name="actuatorrotation" value="0" />

 <weight name="walkingdistance" value="1" />
 <weight name="areapenalty" value="0" />
 <weight name="jumppenalty" value="0" />
 </optimisationcfg>

<constraints noOfPlanes="1" shapeSizeMin="10" shapeSizeMax="80" nodesPerShape="6"
shapesPerLever="1" allowedShapeTypes="0" noOfLevers="1" noOfJointsPerLever="1"
allowedJointTypes="0" />

<simulation gravity_x="0" gravity_y="9.81" simulation_frames="600" collideConnected="False"
frameRate="60" pixelWorldRatio="100" />

 </parameter>

 <!-- Results -->
<results user="empty" machine="empty" date="empty" time="empty" processingTime="empty"
solutionsProduced="0" totalscore="0" chromosome=""></results>

 <!-- Simulation Data -->
 <errors></errors>

 <!-- Simulation Data -->
 <simulation_frames valid="false"></simulation_frames>

</svg>

