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ABSTRACT
Queen pheromones are chemical signals produced by reproductive individuals in
social insect colonies. In many species they are key to the maintenance of
reproductive division of labor, with workers beginning to reproduce individually
once the queen pheromone disappears. Recently, a queen pheromone that nega-
tively affects worker fecundity was discovered in the bumblebee Bombus terrestris,
presenting an exciting opportunity for comparisons with analogous queen
pheromones in independently-evolved eusocial lineages such as honey bees, ants,
wasps and termites. I set out to replicate this discovery and verify its reproducibility.
Using blind, controlled experiments, I found that n-pentacosane (C25) does indeed
negatively affect worker ovary development. Moreover, the pheromone affects both
large and small workers, and applies to workers from large, mature colonies as well as
young colonies. Given that C25 is readily available and that bumblebees are popular
study organisms, I hope that this replication will encourage other researchers to
tackle the many research questions enabled by the discovery of a queen pheromone.

Subjects Animal Behavior, Evolutionary Studies, Zoology
Keywords Bombus terrestris, Eusociality, Fertility signal, Reproducible research, Social insects

INTRODUCTION
Queen pheromones are chemical signals produced by queens (or other fertile females) to

communicate with conspecifics, typically other colony members such as workers. They

have been implicated in a great many worker responses to queens, including a negative

effect on worker ovary development or reproduction (Hoover et al., 2003; Matsuura et

al., 2010; Holman et al., 2010; Van Oystaeyen et al., 2014), aggregation around the queen

(Keeling et al., 2003), differential behavioral development (Hoover et al., 2003; Vergoz,

Schreurs & Mercer, 2007; Matsuura et al., 2010; Holman et al., 2010; Van Oystaeyen et al.,

2014), and a wealth of upstream genetic and physiological effects (Kaatz, Hildebrandt &

Engels, 1992; Keeling et al., 2003; Grozinger et al., 2003; Malka et al., 2014). Until recently,

experimental evidence linking specific queen-produced chemicals to worker responses was

largely limited to the well-studied honeybee (Apis mellifera), though there is a wealth of

non-experimental evidence that queen pheromones are widespread (reviewed in Kocher

& Grozinger, 2011; Van Oystaeyen et al., 2014). In the last four years, additional queen

pheromones were experimentally isolated in a few ant species (Smith, Hölldobler &

Liebig, 2009; Holman et al., 2010; Smith et al., 2012; Holman, Lanfear & d’Ettorre, 2013;

Van Oystaeyen et al., 2014), a wasp and a bumblebee (Van Oystaeyen et al., 2014), and a
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termite (Matsuura et al., 2010; Matsuura, 2012). It is thus an exciting time to study queen

pheromones, since their discovery in these diverse, independently evolved eusocial lineages

poses many new questions.

As well as pressing on with queen pheromone research, e.g., by unraveling their full

diversity, documenting their effects, and determining their evolutionary significance,

I believe it is worthwhile to replicate and validate initial reports of newly discovered

pheromones. Replication of empirical work remains somewhat rare throughout the life

sciences, likely because novel results are perceived as more valuable (Ioannidis, 2005; Kelly,

2006). Experiments can generate false positives for many reasons, and the false positive rate

is probably substantially higher than the 5% implied by the familiar p < 0.05 threshold due

to the combined influence of many forms of experimental and statistical bias (Ioannidis,

2005; Simonsohn, Nelson & Simmons, 2014), making replication essential to scientific

progress.

I set out to replicate a recent finding that the cuticular hydrocarbon n-pentacosane

(hereafter C25) is a queen pheromone that causes sterility in workers of the bumblebee

Bombus terrestris. Van Oystaeyen et al. (2014) exposed queenless bumblebee workers to this

hydrocarbon or one of four different esters (these five compounds were previously found

to be characteristic of queens and fertile workers; Sramkova et al., 2008), then dissected

them to determine whether the workers’ ovaries had remained comparatively inactive

relative to those of control workers (which were expected to develop their ovaries after the

removal of their queen). The four esters had no effect, but C25 significantly reduced worker

ovary development relative to the control. Although I was an author on this study, I did

not participate in the design or execution of the bumblebee experiment, and I deliberately

remained ignorant of the methods used beyond what is written in the paper. Thus, a

replication by me is likely to be as similar to the original study as a replication by any other

researcher. Due to practical constraints, I opted to test only whether C25 affects worker

ovaries, and not to re-test whether the four esters have no effect.

Repeating the experiment also provided the opportunity to gather additional data

and try revised methods. In order to test whether previous findings generalize to

different colony stages, I used large (c. 300 workers), mature bumblebee colonies, unlike

Van Oystaeyen et al. (2014), who used small, developing colonies containing about 20

workers each. Testing the effects of queen pheromones in mature colonies is interesting,

because large bumblebee colonies reach the so-called “competition point”, at which many

workers begin to reproduce, often while the queen is still present (Van Doorn & Heringa,

1986; Duchateau & Velthuis, 1989; Alaux, Jaisson & Hefetz, 2004). This implies that the

response of workers to queen pheromone may decline following the competition point.

Additionally, bumblebee colonies naturally produce workers which vary as much as

10-fold in body size, likely because different sized workers are better at different tasks

(reviewed in Couvillon et al., 2010), which affects their fecundity (Foster et al., 2004). By

recording body size in my experiment, I was able to test whether the effects of C25 differ

for large (highly fecund) and small (weakly fecund) workers. Next, I did not use the same

ovary scoring system as Van Oystaeyen et al. (2014), since I found it difficult to use during
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preliminary trials (in particular, I could not reliably identify “regressed” ovaries, if any were

indeed present in my sample). Instead, I simply counted developing oocytes. Finally, I used

a lower dose of pheromone. Van Oystaeyen et al. (2014) applied 467 µg of C25 per day to

each colony, which they estimated to be approximately twice the amount present on the

cuticle of a mature B. terrestris queen. To test whether C25 is also efficacious at lower doses

(which might more closely mimic the traces of C25 deposited by the queen on the nest

substrate as she moves around, though this remains to be measured), I arbitrarily selected

a dose of 2 µg per day, or approximately 1/100th of a queen equivalent. In sum, my study is

a “partial replication” (reviewed in Kelly, 2006), since it replicates the majority of the design

of the original experiment, but studies a later colony stage, adds a measure of worker size,

uses a different dose of queen pheromone and an alternative measure of worker ovarian

development.

METHODS
Ten queenright bumblebee colonies (worker number: 300 ± 20) were obtained from

Borregaard BioPlant (Denmark), and kept in the plastic cages provided by that company.

These colonies had presumably passed the competition point (or would soon do), since

they had many more workers than colonies in which worker egg laying has been observed

previously (e.g., Van Doorn & Heringa, 1986). The colonies had constant access to sugar

water via a feeder and were given pollen ad libitum (the sugar feeder and pollen were

obtained from Borregaard BioPlant), and were kept at room temperature. Feeding and

pheromone application was performed under red light.

I first removed the queens, using red light illumination to sort through the colonies

without anesthesia. Half of the colonies were randomly assigned to the C25 (286931,

Sigma-Aldrich) treatment (0.01 µg µl−1 solution in hexane), and half to the hexane-only

control (HPLC-grade hexane was used throughout; 34859, Sigma-Aldrich). Every 24 h for

14 days, I added a total of 200 µl of hydrocarbon solution (C25 or hexane; i.e., 2 µg of C25 in

the C25 treatment) to the colony by pipetting it through the cage lids onto multiple areas of

the cotton wool that lined the nests, taking care to avoid the bees.

After 14 days, colonies were freeze-killed. I then dissected a randomly selected sample

of 50–51 workers per colony to determine ovary development. This was accomplished by

counting the number of developing oocytes present in the ovaries. Prior to dissection, I

scored workers as “Small”, “Medium”, or “Large”, based on whether I estimated them to be

in the lower, middle, or upper third of the size range for B. terrestris workers. Dissections

and size classifications were performed blind to treatment, and workers were processed in

small batches (c. 15) taken from a randomly chosen colony to prevent order effects biasing

the results. Since size classification was performed prior to dissection, it was blind with

respect to ovary status.

The oocyte count data contained many zeros (394/502 workers had no oocytes in their

ovaries), precluding the use of Poisson-based models. I therefore analysed the data with

a generalized linear mixed model (GLMM) with negative binomial errors and colony as a

random factor (using the function glmer.nb in the lme4 package for R).
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Figure 1 Ovaries by treatment and size. Treatment with n-pentacosane (C25) reduced the number of
oocytes in the ovaries of queenless workers, and there was a strong positive effect of worker body size
(note different y axes). The effect of C25 did not differ significantly between Large, Medium and Small
workers. The violin plots show the kernel density estimate (i.e., estimated frequency: wide areas contain
more data), and the scatter plot shows the raw data. The x coordinates of the raw data are arbitrary: the
points were randomly “jittered” horizontally to make overlapping points visible.
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RESULTS
C25-treated workers had fewer oocytes in their ovaries than controls (Fig. 1; GLMM:

z = −3.04, p = 0.0024, n = 502), and larger workers had more oocytes (Medium vs Large

workers: z = −3.30, p = 0.0010; Medium vs Small workers: z = 3.63, p = 0.00029). There

was no evidence that workers of different sizes responded differentially to C25 treatment

(likelihood ratio test of models with and without the Treatment × Size interaction:

p = 0.75; ΔAIC = 3.4; the interaction term was removed when estimating the main effects

in the above statistics). The random effect “colony” explained very little variation in oocyte

number (variance associated with colony: 1.4 × 10−10, residual variance: 0.55), though

I left the colony effect in the model in order to be conservative (the results of a negative

binomial generalized linear model lacking colony were near-identical).

The negative effect of C25 treatment on oocytes number might theoretically be

explained by a higher frequency of larger-bodied (i.e., more fertile) workers being sampled

in the hexane-treated colonies due to chance. In fact, the frequency of “Large” workers

was non-significantly higher in the C25 treatment than in the hexane treatment (91 vs

65; binomial GLMM with colony as a random factor: z = 1.68, p = 0.093, n = 502). The

sampled workers in the hexane-treated colonies were “Medium”-sized more often than

in the C25-treated colonies (126 vs 105), but this difference was not significant (z = 1.17,

p = 0.24). Thus, there was no evidence that a chance overabundance of larger-bodied

workers in the hexane treatment might explain the observed negative effect of C25 on

worker oocyte number.

DISCUSSION
The study replicated Van Oystaeyen et al. (2014)’s finding that C25 is a queen pheromone

that negatively affects ovarian development in B. terrestris workers. Furthermore, I found

that although larger workers were more fecund, the effect of the pheromone appeared to be

consistent across the range of worker sizes.

Because Van Oystaeyen et al. (2014)’s experiment used young bumblebee colonies with

few workers while the present study used larger, older colonies, the present results also

provide some evidence that the effect of queen pheromone is constant across colony

life stages. In turn, this implies that the en masse development of worker ovaries which

occurs after the “competition point” cannot be explained by a loss of sensitivity to

queen pheromone (since bees from both young and old colonies appear sensitive to

the pheromone). Alternative explanations for the onset of worker reproduction (e.g.,

Van Doorn & Heringa, 1986), such as a reduction in the quantity of pheromone produced

by the ageing queen, the declining frequency of queen contact per worker as the colony

grows, or the involvement of other signals and cues (e.g., an additional chemical signal, or

simply the frequency of worker–worker contacts), thus seem more likely given the present

results.

Previous work on bumblebees has suggested that workers signal their fecundity

and position in the colony’s dominance hierarchy via their chemical profile, following

the competition point. The egg-laying “elite” workers are highly active and aggressive
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towards other workers (Van Doorn & Heringa, 1986) and are hypothesized to advertise

their high fecundity to their nestmates, inducing them to remain sterile or face reprisals

in the form of aggression or destruction of their eggs (Amsalem et al., 2009). Given

this evidence, and the fact that a constant dose of pheromone might represent a

proportionately higher dose for small individuals, one might have expected the pheromone

to have a stronger effect on smaller workers. However, I found no evidence that the effect of

C25 on ovarian development is size dependent.

Given the consistency of the result that C25 is involved in regulating reproductive

division of labor in B. terrestris (namely two independent, blind experiments), it is

my hope that other research groups will begin experimenting with this system. Unlike

some of the other recently-discovered queen pheromones (e.g., 3-MeC31 in ants and

n-butyl-n-butyrate and 2-methyl-1-butanol in termites; Matsuura et al., 2010; Holman,

Lanfear & d’Ettorre, 2013), this chemical does not need to be synthesized to order: it can

be easily purchased, making it just as readily available as the well-studied honey bee queen

pheromone. Though currently unstudied, it is possible that C25 is as multi-functional as

other queen pheromones (Le Conte & Hefetz, 2008; Holman, 2010; Kocher & Grozinger,

2011; Matsuura, 2012), and the proximate mechanisms by which it affects worker ovarian

development have yet to be discovered.
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