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 2 

Abstract 20 

Polycystic ovary syndrome (PCOS), affecting over 10% of women, is associated with insulin 21 

resistance, obesity, dyslipidaemia, fatty liver and adipose tissue dysfunction. Its 22 

pathogenesis is poorly understood and consequently treatment remains suboptimal. 23 

Prenatally androgenized (PA) sheep, a clinically realistic model of PCOS, recapitulate the 24 

metabolic problems associated with PCOS. Fibroblast Growth Factor 21 (FGF21) is a 25 

metabolic hormone regulating lipid homeostasis, insulin sensitivity, energy balance and 26 

adipose tissue function. We therefore investigated the role of FGF21 in the metabolic 27 

phenotype of PA sheep. In adolescence PA sheep had decreased hepatic expression and 28 

circulating concentrations of FGF21. Adolescent PA sheep show decreased FGF21 29 

signalling in subcutaneous adipose tissue, increased hepatic triglyceride content, trend 30 

towards reduced fatty acid oxidation capacity and increased hepatic expression of 31 

inflammatory markers. These data parallel studies on FGF21 deficiency, suggesting that 32 

FGF21 therapy during adolescence may represent a treatment strategy to mitigate 33 

metabolic problems associated with PCOS. 34 

 35 

Keywords: polycystic ovary syndrome, Fibroblast Growth Factor 21 (FGF21), metabolism, 36 

prenatal programming, androgens 37 
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1. Introduction 39 

Polycystic ovary syndrome (PCOS), affecting over 10% of women, is associated with 40 

increased risk of hyperinsulinemia, insulin resistance, obesity, dyslipidemia and non-41 

alcoholic fatty liver disease (NAFLD) (Fauser et al., 2012; Moran et al., 2015; Teede et al., 42 

2010). In addition, PCOS women have enlarged subcutaneous adipose tissue (SAT) 43 

(Echiburú et al., 2018; Manneras-Holm et al., 2010), lower levels of circulating adiponectin 44 

(Escobar-Morreale et al., 2006; Maliqueo et al., 2012) and increased abdominal adiposity 45 

independent of BMI. Taken together, these indicate adipose tissue dysfunction, which 46 

further correlates with an adverse metabolic profile (Puder et al., 2005; Yildirim et al., 2003). 47 

Metabolic comorbidities associated with the syndrome worsen with age, negatively 48 

impacting health and wellbeing of women, and health service resources (Jason, 2011; 49 

Teede et al., 2010). The pathogenesis of PCOS remains poorly understood, and, in the 50 

absence of mechanistic understanding, treatment remains suboptimal.  51 

 52 

Hepatic-derived Fibroblast Growth Factor 21 (FGF21) is a metabolic hormone, regulating 53 

glucose and lipid homeostasis, insulin sensitivity, energy balance and adipose tissue 54 

function (Fisher and Maratos-Flier, 2016; Lewis et al., 2019). Animals overexpressing 55 

FGF21 in the liver have improved insulin sensitivity, reduced triglyceride (TG) 56 

concentrations and are resistant to diet-induced obesity (Jimenez et al., 2018; 57 

Kharitonenkov et al., 2005). FGF21 knockout (FGF21-KO) mice have hyperinsulinemia with 58 

increased proliferation of pancreatic beta cells (So et al., 2015), increased hepatic fat 59 

content (Badman et al., 2009; Tanaka et al., 2015), and display delayed weight gain with 60 

mild obesity after 24 weeks on standard diet (Badman et al., 2009).  FGF21 regulates the 61 

activity of PPARG (Dutchak et al., 2012), the master regulator of adipogenesis. FGF21 62 

deficient mice have defects in PPARG signalling and decreased body fat (Dutchak et al., 63 
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2012). In rodents and monkeys, FGF21 treatment improved insulin sensitivity, reduced 64 

serum lipids and attenuated hepatic fat accumulation and inflammation (Kharitonenkov et 65 

al., 2007; Xu et al., 2009a; 2009b; Zhu et al., 2014). In human clinical trials, though 66 

treatment with FGF21 showed only modest improvement in glycaemic control, it 67 

consistently improved plasma lipid profiles and decreased hepatic fat content and serum 68 

markers of liver fibrosis in patients with NASH (Lewis et al., 2019; Sanyal et al., 2019). 69 

 70 

Prenatal androgen overexposure is associated with a PCOS-phenotype in adult life (Risal 71 

et al., 2019). Daughters of women with PCOS have increased cord blood testosterone 72 

(Daan et al., 2017) and longer anogenital distance (Barrett et al., 2018) indicating increased 73 

in utero androgen exposure. Prenatally androgenized sheep is a clinically realistic model of 74 

PCOS (Padmanabhan and Veiga-Lopez, 2013), manifesting ovarian, hormonal and 75 

metabolic phenotypes reminiscent of PCOS (Connolly et al., 2014; Hogg et al., 2011, 2012; 76 

Rae et al., 2013; Ramaswamy et al., 2016), used to provide insights into the molecular 77 

pathophysiology of PCOS and to examine therapeutic paradigms (Connolly et al., 2014).  78 

We have previously shown, using ovine models of PCOS, that adolescent prenatally 79 

androgenized (PA) sheep had hyperinsulinaemia, increased pancreatic beta cell content, 80 

fatty liver, diminished adipogenesis in SAT accompanied by decreased levels of leptin and 81 

adiponectin, and increased circulating free fatty acids (FFAs), independent of obesity and 82 

adiposity (Hogg et al., 2011; Rae et al., 2013; Siemienowicz et al., 2021). Adult PA sheep 83 

had decreased postprandial thermogenesis, increased body weight and insulin resistance 84 

(Siemienowicz et al., 2020). Decreased adipocyte differentiation during adolescence in PA 85 

sheep resulted in hypertrophy and inflammation of adult SAT, paralleled by elevated FFAs 86 

concentrations of and increased expression of genes linked to fat accumulation in visceral 87 

adipose tissue (VAT) (Siemienowicz et al., 2021). In view of the clinically relevant metabolic 88 
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perturbations present in adolescent and adult prenatally androgenized sheep, and intriguing 89 

parallels to models of FGF21 manipulation, we hypothesised that dysregulated FGF21 90 

action had a role in the metabolic phenotype in PA sheep. Herein, supporting our 91 

hypothesis, we report FGF21 expression, as well adipose tissue and hepatic changes 92 

related to FGF21, during the development of metabolic disturbances seen in an ovine 93 

model of PCOS. 94 

  95 
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2. Materials and Methods 96 

2. 1 Ethics statement 97 

All studies were approved by the UK Home Office and conducted under approved Project 98 

Licence PPL60/4401. The Animal Research Ethics Committee of The University of 99 

Edinburgh approved this study. The study was carried out in accordance with the relevant 100 

guidelines.   101 

2.2 Animals 102 

Animal husbandry, experimental protocols and tissue collection were performed as 103 

previously described (Hogg et al., 2011; 2012; Rae et al., 2013; Ramaswamy et al., 2016). 104 

Scottish Greyface ewes were housed in groups in spacious enclosures and fed hay ad 105 

libitum. Ewes with a healthy body condition score (2.75-3) were synchronised with 106 

Chronogest (flugestone) sponges (Intervet Ltd, UK) and Estrumate (cloprostenol) injection 107 

(Schering Plough Animal Health, UK) then mated with Texel rams. Pregnancy was 108 

suggested by lack of estrous, then confirmed by ultrasound scanning.  109 

In the maternal injection cohort (MI) pregnant ewes were randomised to twice weekly IM 110 

100mg testosterone propionate (TP) in 1ml vegetable oil from day (D)62 to D102 of D147 111 

pregnancy or 1ml vegetable oil (control (C)). In pregnancies where fetal tissue was 112 

collected (D112: C=9; PA=4), ewes were sacrificed on D112 of gestation via barbiturate 113 

overdose.  The gravid uterus was immediately removed, fetal sex and weight recorded, and 114 

tissue of interest snap frozen and stored at -80C. In pregnancies carried to term, lambs 115 

were weaned at 3 months and fed hay and grass ad libitum until sacrifice at 11 weeks 116 

[juvenile (C=8; PA=8)]; 11 months, [adolescent (C=5; PA=9)] or 30 months [adult (C=11; 117 

PA=4)].  118 

To further examine the effects of androgen we developed a further cohort where the fetuses 119 

were directly injected. In the fetal injection cohort (FI), on day 62 and day 82 of gestation, 120 
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mothers were randomised and anesthetised by initial sedation with 10 mg Xylazine (i.m. 121 

Rompun; Bayer PLC Animal Health Division, UK), followed by 2mg/kg Ketamine (i.v, 122 

Keteset; Fort Dodge Animal Health, UK).  All subsequent procedures were conducted under 123 

surgical aseptic conditions. Fetuses were injected via ultrasound guidance into the fetal 124 

flank with 20G Quinke spinal needle (BD Biosciences, UK) with following according to the 125 

treatment group: control (C; n=12), 0.2ml vehicle (vegetable oil); testosterone propionate 126 

(PA; n=15), 20mg TP in 0.2ml vehicle; diethylsilbesterol (DES; n=8), 4mg DES in 0.2ml 127 

vehicle. In this study we maintained the males until adolescence and could investigate a 128 

cohort of males, controls (C; n=14) and testosterone propionate (PA; n=14). Justification of 129 

the rationale, timing and treatment doses have been published previously (Siemienowicz et 130 

al., 2019). Immediately after surgical procedure completion all pregnant ewes were given 131 

prophylactic antibiotics (Streptacare, Animalcare Ltd., UK, 1 ml/25 kg) and were then 132 

monitored during recovery; no adverse effects of these procedures were observed. Lambs 133 

were weaned at 3 months and fed hay and grass ad libitum and sacrificed in adolescence 134 

(11 months of age for females and 6 months of age for males).  135 

2.3 Tissue collection 136 

Fasting blood samples were collected just prior to sacrifice and plasma was separated and 137 

stored at -20oC. For adult ewes an additional blood sample was collected at 22 months of 138 

age. Liver sampling occurred from the same lobe (right posterior), in approximately the 139 

same area. Liver samples from MI cohort were collected from fetuses at D112 of gestation, 140 

and from females at 11 weeks, 11 months and 30 months of age. From FI cohort livers 141 

were collected from females at 11 months of age and from males at 6 months of age.  142 

Subcutaneous adipose tissue (SAT) was collected from the groin region and visceral 143 

adipose tissue (VAT) from omentum. Adipose tissue was collected from females from MI 144 



 8 

cohort at 11 months and 30 months of age.Tissues were immediately snap frozen, then 145 

stored at −80oC until further processing. 146 

2.4 Plasma analyte determination 147 

Concentrations of fasting plasma free fatty acids (FFAs) and triglycerides (TGs) were 148 

obtained using commercial assay kits (Alpha Laboratories Ltd., UK) as per manufacturer’s 149 

instruction, using a Cobas Mira automated analyser (Roche Diagnostics Ltd, UK). Assay 150 

intra and inter-assay CV’s were < 4% and < 5% respectively. Plasma FGF21 was 151 

measured using human FGF21 ELISA kit (ab125966; Abcam Cambridge, UK) as per 152 

manufacturer’s instructions. All samples were assayed in duplicate. The assay sensitivity 153 

was 0.03 ng/ml; intra and inter-assay CVs were 4.7% and 7.2% respectively. 154 

2.5 Hepatic triglyceride determination 155 

Hepatic triglyceride content was measured using Triglyceride Determination Kit (TR0100, 156 

Sigma-Aldrich, Merck, UK). Briefly, liver tissue was cut on dry ice, weighed and 157 

homogenized in PBS. Next, samples were centrifuged at room temperature for 30 seconds 158 

at 16000g, lipid phase was removed, and all samples were assayed in duplicate, following 159 

manufacturer’s instructions. 160 

2.6 Quantitative (q)RT-PCR 161 

RNA was extracted from adipose tissue with TRI Reagent combined with the RNeasy Mini 162 

Kit (Qiagen Ltd.), and from liver using RNeasy Mini Kit following manufacturer’s 163 

instructions. On-column DNase digestion was performed using RNase-Free DNase set 164 

(Qiagen Ltd.), and RNA concentration and purity assessed using a NanoDrop One 165 

spectrometer (ThermoFisher Scientific, UK). Complimentary DNA was synthesised using 166 

TaqMan Reverse Transcription Kit (Applied Biosystems, UK) as described previously (Hogg 167 

et al., 2012). To select the most stable housekeeping genes the geNorm Reference Gene 168 
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Selection Kit (Primerdesign Ltd., UK) was used, identifying the suitability of the geometric 169 

mean of ACTB and MDH1 for liver and SAT, and RPS26 and 18S for VAT. 170 

Primers (Supplementary Table 1) were designed and synthesised as described previously 171 

(Siemienowicz et al., 2020). Quantitative  RT-PCR was performed on 384-well plate format 172 

(Applied Biosystems) with all samples assayed in duplicate and housekeeping control 173 

genes included in each run, as well as template, RNA and RT-negative controls, using the 174 

ABI 7900HT Fast Real Time PCR system (Applied Biosystems) as described previously 175 

(Hogg et al., 2012). The transcript abundance of target gene relative to the housekeeping 176 

genes was quantified using the Ct method (Livak and Schmittgen, 2001). 177 

2.7 RNA sequencing transcriptomic analyses  178 

RNA sequencing experiment was previously described in detail (Siemienowicz et al., 2019). 179 

Briefly, libraries were prepared with the Illumina TruSeq Stranded mRNA kit. Sequencing 180 

was performed on the NextSeq 500 High Output v2 kit (75 cycles) on the Illumina NextSeq 181 

500 platform. To assess quality of sequencing data, reads were analysed with FastQC. To 182 

remove any lower quality and adapter sequences, TrimGalore! was used. To remove the 183 

ERCC reads, all reads were aligned to the ERCC reference genome using HISAT2. These 184 

alignments were processed using SAMtools, reads were counted using featureCounts and 185 

analysed using the R package erccdashboard. Reads were aligned to reference genome 186 

using HISAT2. SAMtools was used to process the alignments and reads were counted at 187 

gene locations using featureCounts. Pairwise gene comparisons were carried out using 188 

edgeR on all genes with CPM (count per million) value of more than one in six, the 189 

remainder removed as low count genes. 190 

2.8 Statistical analysis 191 

All data sets were normality tested prior to further analysis (Shapiro-Wilk test), and 192 

logarithmically transformed if necessary.  For comparing means of two treatment groups 193 
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with equal variances, unpaired, two-tailed Student’s t test was used accepting P<0.05 as 194 

significant. Correlation was assessed by calculation of Pearson product-moment co-195 

efficient. Statistical analysis was performed using GraphPad Prism 8.0 software (GraphPad 196 

Prism Software, San Diego, CA, USA).  Asterisks were used to indicate level of significance 197 

based on the following criteria: *P<0.05, **P<0.01. 198 

  199 
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3. Results 200 

3.1 FGF21 is reduced during adolescence in PA sheep 201 

To determine whether the metabolic disturbances previously reported (Hogg et al., 2011; 202 

Rae et al., 2013; Siemienowicz et al., 2020; 2021) in PA sheep from MI cohort were 203 

associated with altered FGF21 production, hepatic expression, and circulating 204 

concentrations, of FGF21 were assessed. There was no difference in hepatic FGF21 205 

expression in fetal (Fig. 1A), juvenile (pre-pubertal) (Fig. 1B) or in adult life (Fig. 1D). 206 

Hepatic FGF21 was reduced in adolescent PA sheep at 11 months of age by 79% as 207 

compared with controls (Fig. 1C; P<0.01). The changes in the hepatic FGF21 expression 208 

were mirrored by circulating FGF21, with reduced levels in adolescence (C; 0.9 ± 0.29 209 

ng/ml vs PA; 0.57 ± 0.25 ng/ml) and in the early adulthood at 22 months of age (C; 0.76 ± 210 

0.26 ng/ml vs PA; 0.45 ± 0.13 ng/ml), that normalised in adulthood at 30 months of age (C; 211 

0.87 ± 0.39 ng/ml vs PA; 0.63 ± 0.45 ng/ml) (Fig. 1E; P<0.05). Since FGF21 induces 212 

PPARGC1A (Potthoff et al., 2009; Ye et al., 2014) we examined hepatic PPARGC1A 213 

expression and observed that adolescent PA sheep showed a strong trend for decreased 214 

PPARGC1A (Fig. 1F; P=0.054). There was no difference in the expression of PPARGC1A 215 

between controls and PA sheep in adulthood (Fig. 1G). In addition, we noted a significant 216 

correlation between hepatic FGF21 and PPARGC1A expression in the adolescent liver 217 

(Fig. 1H; P<0.001). There is a window in adolescence in PA sheep where there is reduced 218 

FGF21. 219 

 220 

3.2 There is decreased FGF21 signalling in the SAT of adolescent PA sheep 221 

Adipose tissue is the primary target of FGF21 action (Véniant et al., 2012) where it 222 

upregulates the activity of PPARG  (Dutchak et al., 2012), the master regulator of 223 

adipogenesis, and results in increased adiponectin expression (Lin et al., 2013). As we 224 
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have previously shown that both PPARG and ADIPOQ were significantly downregulated in 225 

SAT of adolescent PA sheep (Siemienowicz et al., 2021) we examined the expression of 226 

FGFR1 and its KLB co-receptor, which regulate FGF21 action, in adipose tissue. 227 

In adolescence, in SAT there was a reduction of KLB with similar levels of FGFR1 (Fig. 2A; 228 

P<0.05) while there was no difference in the expression of KLB and FGFR1 in VAT (Fig. 229 

2B). Conversely, in adulthood there was no differences in KLB and FGFR1 in SAT (Fig. 2C) 230 

however, both KLB and FGFR1 were increased in the VAT of PA sheep when compared to 231 

controls (Fig. 2D; P<0.05). In addition, apart from PPARG in adult VAT, there was a 232 

positive correlation between KLB and PPARG expression (Fig. 2E; P<0.01-0.0001) and 233 

ADIPOQ expression (Fig. 2E; P<0.05-0.0001) in both VAT and SAT, in adolescence (11M) 234 

and adulthood (30M) (Fig. 2E).  235 

 236 

3.3 Reduction in FGF21 and PPARGC1A expression is androgen and sex specific 237 

Maternal androgen injection during gestation increases fetal androgen concentrations as 238 

well as estrogen concentrations as a result of placental aromatisation (Rae et al., 2013). To 239 

further investigate the direct role of prenatal androgens in the ‘programming’ of these 240 

metabolic alterations, we assessed hepatic FGF21 expression in animals directly injected 241 

with steroid hormones during fetal life. Adolescent female sheep directly injected with 242 

testosterone in fetal life have a closely comparable metabolic profile to sheep exposed to 243 

increased androgens in utero through maternal injections (Hogg et al., 2011; Ramaswamy 244 

et al., 2016; Siemienowicz et al., 2021). Expression of FGF21 was reduced in adolescent 245 

prenatally androgenised females when assessed through RNAseq (Fig. 3A; P<0.05) and 246 

qRT-PCR (Fig. 3B; P<0.05), and there was a positive correlation between RNAseq and 247 

qRT-PCR results (Fig. 5C; P<0.0001), extending confidence in parallels between both 248 

models and technical assays.  Comparable to maternal injection model, adolescent females 249 
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directly treated with testosterone in utero had decreased hepatic expression of PPARGC1A 250 

(Fig. 3D; P<0.01). Hepatic expression of FGF21 (Fig. 3E) and PPARGC1A (Fig. 3F) was no 251 

different in adolescent females exposed to prenatal estrogens in utero, suggesting direct 252 

androgenic programming. There was and no difference in FGF21 (Fig. 3. G) and 253 

PPARGC1A (Fig. 3H) adolescent males directly exposed to elevated levels of androgens in 254 

fetal life, suggesting sex-specificity of this prenatal in utero androgen excess model.  255 

 256 

3.4 Adolescent PA sheep have decreased hepatic lipid oxidation and increased 257 

hepatic lipid content and inflammation 258 

As FGF21 can improve lipid profiles and reduce hepatic fat content we investigated the liver 259 

in detail in the PA female animals during adolescence using the FI model. In these sheep 260 

there was a trend for increased circulating free fatty acids (Fig. 4A; P=0.07). We assessed 261 

fatty acid oxidation in the liver in different cellular compartments. In the mitochondrial 262 

compartment prenatally androgenized sheep had decreased expression of hepatic CPT1B 263 

(Fig. 4B; P<0.05) with a trend towards reduced expression of SLC25A20 (Fig. 4B; P=0.07) 264 

and CPT2 (Fig 4B; P=0.06) that are rate-limiting factors, with regards to getting fatty acids 265 

into the mitochondria for beta oxidation (Fig. 4B). There was no difference in the expression 266 

of genes associated with mitochondrial beta oxidation (Fig.4C).  267 

With regards to beta oxidation in the peroxisomes, there was decreased expression of 268 

ABCD3 (Fig. 4D; P<0.05) and ACAA1 (Fig. 4D; P<0.05), genes involved in the initial 269 

peroxisomal beta oxidation of larger fatty acids. The endoplasmic reticulum is responsible 270 

for omega oxidation and prenatally androgenized sheep had decreased expression of 271 

CYP4F11 (Fig. 4E; P<0.05) and a trend towards decreased CYP4F3 (Fig.4E; P=0.058) and 272 

CYP4A11 (Fig. 4E; P=0.06), which are key genes involved in omega oxidation. Overall 273 

there was a consistent trend for reduced fatty acid oxidation and this is associated with 274 
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increased hepatic triglyceride content (Fig. 4F). There was a positive correlation between 275 

hepatic PPARGC1A expression and genes involved in lipid oxidation (Table 1; P<0.05-276 

0.0001). 277 

Dysregulated immune response play a central role in the development and progression of 278 

NAFLD (Gao and Tsukamoto, 2016; Oates et al., 2019). Adolescent PA sheep had 279 

increased expression of molecular markers of classically activated, pro-inflammatory (M1) 280 

macrophages, CD68, ADGRE1, TLR2 and TLR4 (Fig. 5A; P<0.05-0.01), a trend for 281 

increased CD86 (Fig. 5A; P=0.054) and IL1R (Fig. 5A; P=0.07). In addition, there was 282 

increased expression of proinflammatory cytokines IL1B and IL18 (Fig. 5B; P<0.05), and 283 

chemokines CXCL9, CXCL10 and CCL5 (Fig. 5C; P<0.05). Overall the PA female 284 

adolescent ewes with reduced FGF21 show reduced fatty acid usage in the liver as well as 285 

increased liver fat and increased liver inflammation. 286 

  287 
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4. Discussion 288 

Prenatally androgenized sheep had decreased hepatic expression and circulating 289 

concentrations of FGF21 in adolescence (11M) and during the transition from adolescence 290 

to adulthood (22M). FGF21 is a primarily hepatic hormone, which regulates glucose 291 

metabolism, insulin sensitivity, lipid homeostasis and energy balance (Lewis et al., 2019). 292 

FGF21 knockout (FGF21-KO) mice are hyperinsulinemic. These animals exhibit increased 293 

pancreatic beta cell proliferation (So et al., 2015), increased hepatic fat content (Badman et 294 

al., 2009; Tanaka et al., 2015), decreased expression of hepatic PGC1 (encoded by 295 

PPARGC1A) involved in fatty acid β-oxidation (Badman et al., 2009), increased hepatic 296 

macrophage infiltration and pro-inflammatory cytokines (Liu et al., 2016). As a result, they 297 

display delayed weight gain with mild obesity after 24 weeks on standard diet (Badman et 298 

al., 2009). Taken together with our data showing  decreased expression of FGF21 and 299 

altered associated receptor and metabolic systems in prenatally androgenized sheep, we 300 

conclude that lowered FGF21 in adolescence contributes to the perturbed metabolic 301 

phenotype in PCOS. 302 

 303 

Our adolescent sheep, from both models employed in the current study (indirect and direct 304 

exposure to increased androgens in utero), have hyperinsulinemia and increased 305 

pancreatic beta cell content (Rae et al., 2013; Ramaswamy et al., 2016), fatty liver (Hogg et 306 

al., 2011), and decreased energy expenditure with increased body weight in adulthood 307 

(Siemienowicz et al., 2020). We have now confirmed increased hepatic triglyceride content 308 

in adolescent sheep directly treated with androgens in utero, and further demonstrated 309 

decreased hepatic PPARGC1A expression, reduced fatty acid oxidation capacity and 310 

increased hepatic expression of inflammatory markers in adolescent PA sheep. This series 311 

of parallels between models of FGF21 manipulation, and prenatal androgen exposure, 312 
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direct us to conclude that FGF21 reduction during adolescence is a critical component 313 

underpinning the metabolic profile which develops in adulthood in such PA models. 314 

 315 

Adipose tissue is the primary target of FGF21 action (Véniant et al., 2012), in which it 316 

preferentially binds to FGFR1 linked to KLB co-receptor (Yang et al., 2012), a key 317 

component of FGF21 signalling (Ding et al., 2012). Consequently, beneficial effects of 318 

FGF21 treatment as regards decreasing fat mass, restoring insulin sensitivity and reducing 319 

blood lipids are compromised in mice with adipocyte-selective ablation of FGFR1 (Adams et 320 

al., 2012b) or KLB (Adams et al., 2012a). FGF21 functions in a feed-forward loop in 321 

adipose tissue, regulating PPARG activity, considered to be the ‘master regulator’ of 322 

adipogenesis (Dutchak et al., 2012). Evidentially, FGF21 deficient mice have defects in 323 

PPARG signalling and decreased body fat (Dutchak et al., 2012), with selective SAT 324 

volume reduction, but no changes in VAT (H. Li et al., 2018).  325 

 326 

FGF21 treatment promotes SAT expansion, through adipocyte hyperplasia, and reverses 327 

insulin resistance in FGF21-KO mice (H. Li et al., 2018). Hepatic overexpression of FGF21 328 

in obese mice reverses adipocyte hypertrophy and inflammation (Jimenez et al., 2018). 329 

SAT is considered a healthy fat depot and is thought to be protective while increased VAT 330 

volume correlated with pathologic inflammation and insulin resistance (Booth et al., 2014). 331 

In humans, serum FGF21 concentration and KLB expression in SAT positively correlate 332 

with the SAT volume and maintenance of insulin sensitivity (H. Li et al., 2018). Collectively 333 

this indicates that FGF21 acts as selective regulator of the SAT storage capacity, and SAT 334 

is an important component as regards positive effects of FGF21 on insulin sensitivity. 335 

FGF21-KO mice have decreased expression of KLB, PPARG, CEBPA, INSR, IRS1, and 336 

SLC2A4 in adipose tissue, particularly in SAT (Badman et al., 2009; Dutchak et al., 2012; 337 
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H. Li et al., 2018) and when fed high-fat diet, they have elevated circulating FFA, increased 338 

hepatic fat accumulation and enlarged adipocytes (Dutchak et al., 2012). These metabolic 339 

phenotypes parallel our ovine model of PCOS, with adolescent PA sheep having decreased 340 

FGF21 concentration, decreased expression of KLB, adipogenesis markers (PPARG, 341 

CEBPA and CEBPB) and reduced insulin signalling potential in SAT, but not VAT, while 342 

adult PA sheep present with obesity, elevated circulating FA and adipocyte hypertrophy and 343 

reduced adipogenesis in SAT, but not VAT (Siemienowicz et al., 2021). This data provides 344 

a compelling case for targeting SAT expansion in adolescence through FGF21 treatment, 345 

representing a novel therapeutic strategy to combat metabolic problems associated with 346 

PCOS. 347 

 348 

Adiponectin, an insulin sensitizing, anti-inflammatory and hepatoprotective factor 349 

synthesized by adipocytes, is a critical downstream effector of FGF21 (Lin et al., 2013). 350 

FGF21 induces adiponectin gene expression and secretion from adipocytes through a 351 

PPARG dependent mechanism (Lin et al., 2013). The effects of FGF21 treatment on 352 

regulating insulin sensitivity, alleviation of dyslipidaemia, NAFLD and NASH are dependent 353 

on the presence of adiponectin (Bao et al., 2018; Holland et al., 2013; Lin et al., 2013). We 354 

recently demonstrated that adolescent PA sheep have decreased adiponectin levels 355 

paralleled by decreased ADIPOQ expression in SAT (Siemienowicz et al., 2021), which is 356 

mirrored in adolescent and adult women with PCOS (Cankaya et al., 2014; Escobar-357 

Morreale et al., 2006; Maliqueo et al., 2012). FGF21-KO mice have low levels of circulating 358 

adiponectin, while treatment with recombinant FGF21 increases serum adiponectin in those 359 

animals (Lin et al., 2013). This link between FGF21 and adiponectin is further emphasized 360 

by clinical trials, where administration of an FGF21 analogue to patients with NAFLD or 361 

type 2 diabetes and non-human primates resulted in increased circulating adiponectin 362 
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levels in dose-dependent manner (Gaich et al., 2013; Sanyal et al., 2019; Talukdar et al., 363 

2016). Furthermore, in age 6-18 humans FGF21 concentration is positively correlated with 364 

adiponectin concentration, and an overall healthier metabolic profile, whereas children with 365 

diminished FGF21 had highest proportion of insulin resistance and metabolic syndrome (G. 366 

Li et al., 2017).  367 

 368 

In the pediatric population, FGF21 deficiency is considered to play a role in the 369 

pathogenesis of insulin resistance, components of metabolic syndrome, fatty liver and low 370 

levels of adiponectin, independent of BMI (Alisi et al., 2013; G. Li et al., 2017). Interestingly, 371 

males have lower levels of FGF21 than females during puberty (Bisgaard et al., 2014; G. Li 372 

et al., 2017) and adulthood (Hanssen et al., 2015). Therefore, it is possible that sex 373 

hormones might have a role in regulation of FGF21 expression. There are no studies 374 

investigating FGF21 levels in adolescent girls with PCOS. Adult women with PCOS were 375 

reported to have comparable FGF21 levels with BMI-matched controls (Gorar et al., 2010; 376 

Sahin et al., 2014), again, matching our observations, in that there was no difference in 377 

FGF21 levels between adult controls and PCOS-like sheep.  378 

 379 

The metabolic consequences of PCOS can be extremely serious.  NAFLD describes a 380 

spectrum of liver pathologies, from simple hepatic steatosis, characterized by more than 5% 381 

fat infiltration to non-alcoholic steatohepatitis (NASH), a combination of hepatocellular 382 

injury, inflammation, and an increased risk of liver fibrosis (Fazel et al., 2016). PCOS 383 

sufferers are at increased risk of developing NAFLD and are likely to have more severe 384 

forms of NAFLD (Sarkar et al., 2020). The estimated prevalence of NAFLD in women with 385 

PCOS varies between 34 to 70%, compared to 25 to 30% in the general population 386 

(Paschou et al., 2020); during adolescence, there is more than double the incidence of 387 
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NAFLD as when compared with non-PCOS girls (Ayonrinde et al., 2016). FGF21 deficiency 388 

promotes the development of steatosis, hepatic inflammation, hepatocyte damage, and 389 

fibrosis, whereas FGF21 treatment ameliorates NASH by attenuating these processes 390 

(Zarei et al., 2020). Likewise, genetic polymorphism that reduce PGC1α expression 391 

correlates with the development of NAFLD in children and adults (Lin et al., 2013;Yoneda et 392 

al. 2008), while in NAFLD patients expression of PGC1α is decreased (Westerbacka et al., 393 

2007). In the paediatric population hepatic FGF21 is inversely correlated with non-alcoholic 394 

fatty liver progression (Alisi et al., 2013). In adult population however the opposite is true, 395 

with higher levels of FGF21 in patients with NAFLD and NASH, positively corelating with 396 

the disease progression (Barb et al., 2019; Dushay et al., 2010), suggesting FGF21 397 

resistance (Fisher et al., 2010).  FGF21-null mice are more prone to developing NASH, 398 

have decreased PGC1α expression, reduced hepatic FA activation and beta-oxidation 399 

(Fisher et al., 2014; Liu et al., 2016; Potthoff et al., 2009).  400 

 401 

Pharmacological administration of FGF21 analogues reduces hepatic fat content, 402 

inflammation and fibrosis in mice and humans (Coskun et al., 2008; Sanyal et al., 2019), by 403 

inducing PGC1α and its downstream genes, CPT1A, CPT1B, and promoting hepatic FA 404 

oxidation (Fisher et al., 2014; Keinicke et al., 2020). PGC1α regulates energy homeostasis 405 

and mitochondrial number and function (Piccini et al. 2018). PGC1α overexpression results 406 

in increased fatty acid oxidation and decreased haptic triglyceride content (Morris et al., 407 

2012) while PGC1α deficienty results in decreased lipid oxidation and hepatic steatosis 408 

(Estall et al., 2009; Leone et al. 2005). Decreased expression of genes involved in rate 409 

limiting mitochondrial transport of FA for beta oxidation, peroxisomal beta oxidation and 410 

omega oxidation combined with increased hepatic triglycerides in adolescent female PA 411 

sheep may therefore be a consequence of decreased expression of FGF21 and 412 
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PPARGC1A, further supported by our observation of  positive correlation between hepatic 413 

PPARGC1A expression and genes involved in lipid oxidation.  414 

 415 

In addition to its metabolic function, PGC1α protects against inflammation, decreasesing 416 

expression of pro-inflammatory cytokines and stimulating expression of anti-inflammatory 417 

factors (Leveille et al., 2020). In animal models reduced levels of PGC1α potentiate 418 

progression of NAFLD to NASH and increase pro-inflammatory environment in liver tissue 419 

(Besse-Patin et al., 2017) while FGF21 deficiency results in increased hepatic macrophage 420 

infiltration, augmented inflammation with elevated expression of pro-inflammatory and pro-421 

fibrotic cytokines (Liu et al., 2016; Zheng et al., 2020), whilst gene therapy increasing 422 

hepatic FGF21 synthesis inhibits macrophage infiltration, inflammation and fibrosis 423 

(Jimenez et al., 2018). Pharmacological administration of FGF21 in animal models of 424 

hepatic injury, alcoholic and non-alcoholic steatosis decreases hepatic expression of 425 

molecular markers of pro-inflammatory macrophages, CD68, F4/80 (encoded by ADGRE1), 426 

and pro-inflammatory cytokines, including IL1B and TNF (Bao et al., 2018; Cui et al., 2020; 427 

Lee et al., 2016). We have observed herein that adolescent PA sheep had increased 428 

mRNA expression of markers of pro-inflammatory macrophages, CD68, ADGRE1 (coding 429 

for F4/80), TLR2 and TLR4, pro-inflammatory cytokines IL1B and IL18 and chemokines 430 

CXCL9, CXCL10 and CCL5. Again, our data appears in agreement with studies on FGF21 431 

and PGC1α deficiency animal models. 432 

 433 

In conclusion, based on evidence presented using realistic clinical model of PCOS, 434 

targeting FGF21 expression during adolescence may be a potential therapeutic option to 435 

prevent onset of adipocyte and liver dysfunction, and thus sidestep the subsequent serious 436 

health relevant consequences associated with PCOS. 437 
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Figure legends 842 

 843 

Figure 1.  FGF21 and PPARGC1A expression in controls (C) and prenatally androgenised 844 

sheep (PA) from maternal injection cohort. There was no difference in expression of FGF21 845 

in (A) fetal, (B) pre-pubertal and (D) adult life. (C) Hepatic FGF21 was reduced in 846 

adolescent PA sheep. (E) The changes in the hepatic FGF21 expression were mirrored by 847 
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circulating FGF21, with reduced levels in adolescence and in the early adulthood, that 848 

normalised in adulthood at 30 months of age. FGF21 induces PPARGC1A expression. (F) 849 

Adolescent PA sheep showed a strong trend for decreased PPARGC1A. (G) There was no 850 

difference in the expression of PPARGC1A in adulthood. (H) There was a correlation 851 

between hepatic FGF21 and PPARGC1A expression in the adolescent liver. Box plot 852 

whiskers are lowest and highest observed values, box is the upper and lower quartile, with 853 

median represented by line in box. Unpaired, two-tailed Student’s t test was used for 854 

comparing means of two treatment groups with equal variances accepting P<0.05 as 855 

significant. Correlation was assessed by calculation of Pearson product-moment co-856 

efficient. (*P<0.05; ** P<0.01). 857 

  858 
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 859 

     E 860 
 861 

Correlation Tissue Animals Age  Pearson r P value 

KLB with PPARG SAT Adolescent (11M) 0.93 <0.0001 

 VAT Adolescent (11M) 0.90 <0.0001 
 SAT Adult (30M) 0.75 0.0012 

 VAT Adult (30M) 0.21 n.s. 

KLB with ADIPOQ SAT Adolescent (11M) 0.80 0.0006 
 VAT Adolescent (11M) 0.65 0.013 

 SAT Adult (30M) 0.55 0.033 
 VAT Adult (30M) 0.92 <0.0001 

 862 

Figure 2. FGF21 signalling in adipose tissue in controls (C) and prenatally androgenised 863 

sheep (PA) from maternal injection cohort (androgens reached the fetuses via 864 

transplacental transfer from the mother). (A) In adolescence, PA sheep had reduced 865 

expression of in KLB in SAT, with no difference in the expression of FGFR1. (B) There was 866 

no difference in the expression of KLB and FGFR1 in VAT. (C) In adulthood, there was no 867 

differences in KLB and FGFR1 in SAT, but (D) both KLB and FGFR1 were increased in the 868 
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VAT of PA sheep. (E) There was a positive correlation between KLB and PPARG 869 

expression and ADIPOQ expression in both VAT and SAT, in adolescence (11 months) and 870 

adulthood (30 months), with exception of PPARG in adult VAT. Box plot whiskers are 871 

lowest and highest observed values, box is the upper and lower quartile, with median 872 

represented by line in box. Unpaired, two-tailed Student’s t test was used for comparing 873 

means of two treatment groups with equal variances accepting P<0.05 as significant. 874 

Correlation was assessed by calculation of Pearson product-moment co-efficient. 875 

(*P<0.05). 876 

 877 

 878 

 879 

Figure 3. Hepatic FGF21 and PPARGC1A expression in controls (C) and prenatally 880 

androgenised sheep (PA) from fetal injection cohort (fetuses directly injected with androgen 881 

during fetal life (day 62 and 82)). Adolescent female PA sheep had reduced hepatic 882 

expression of FGF21 when assessed through (A) RNAseq and (B) qRT-PCR, and (C) there 883 
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was a positive correlation between RNAseq and qRT-PCR results.  (D) Adolescent PA 884 

females had decreased hepatic expression of PPARGC1A. (E) There was no difference in 885 

the hepatic expression of FGF21 and (F) PPARGC1A in adolescent females exposed to 886 

prenatal estrogens (DES). (G) There was and no difference in FGF21 and (H) PPARGC1A 887 

adolescent PA males. Box plot whiskers are lowest and highest observed values, box is the 888 

upper and lower quartile, with median represented by line in box. Unpaired, two-tailed 889 

Student’s t test was used for comparing means of two treatment groups with equal 890 

variances accepting P<0.05 as significant. Correlation was assessed by calculation of 891 

Pearson product-moment co-efficient. (*P<0.05; ** P<0.01). 892 
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 893 

 894 

Figure 4. FFAs, hepatic oxidation and liver triglycerides in controls (C) and prenatally 895 

androgenised sheep (PA) from fetal injection cohort. (A) Adolescent PA sheep had a trend 896 

for increased circulating FFAs. (B) Adolescent PA sheep had decreased expression of 897 

hepatic CPT1B, with a trend towards reduced expression of SLC25A20 and CPT2, genes 898 
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involved in rate limiting mitochondrial transport of FFAs for beta oxidation. (C) There was no 899 

difference in the expression of genes associated with mitochondrial beta oxidation. (D) 900 

There was decreased expression of genes involved in the peroxisomal beta oxidation, 901 

ABCD3 and ACAA1, in adolescent PA sheep. (E) Adolescent PA sheep had decreased 902 

expression of CYP4F11 and a trend towards decreased CYP4F3 and CYP4A11 (Fig. 4E; 903 

P=0.06), key genes involved in omega oxidation. (F) Decreased oxidative potential in 904 

adolescent PA sheep resulted in increased hepatic triglyceride content. Box plot whiskers 905 

are lowest and highest observed values, box is the upper and lower quartile, with median 906 

represented by line in box. Unpaired, two-tailed Student’s t test was used for comparing 907 

means of two treatment groups with equal variances accepting P<0.05 as significant. 908 

(*P<0.05). 909 

 910 
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 911 

Figure 5. Molecular markers of pro-inflammatory macrophages, cytokines and chemokines 912 

in liver of controls (C) and prenatally androgenised sheep (PA) from fetal injection cohort. 913 

(A) Adolescent PA sheep had increased expression of molecular markers of classically 914 

activated, pro-inflammatory (M1) macrophages, CD68, ADGRE1, TLR2 and TLR4 and a 915 

trend for increased CD86 and IL1R. (B) There was increased expression of 916 

proinflammatory cytokines IL1B and IL18 and (C) chemokines CXCL9, CXCL10 and CCL5 917 

in PA female adolescent ewes. Box plot whiskers are lowest and highest observed values, 918 
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box is the upper and lower quartile, with median represented by line in box. Unpaired, two-919 

tailed Student’s t test was used for comparing means of two treatment groups with equal 920 

variances accepting P<0.05 as significant. (*P<0.05; ** P<0.01). 921 

 922 

Table 1 923 

Correlation with hepatic PPARGC1A expression 
Gene Pearson r P value 

CPT1B 0.56 0.002 
CPT2 0.49 0.011 

ACADL 0.41 0.004 

HADH 0.45 0.021 
HADHA 0.40 0.042 

HADHB 0.39 0.045 

ABCD3 0.74 <0.0001 

ACOX1 0.45 0.021 
ACOX2 0.46 0.017 

CYP4F3 0.41 0.040 

CYP4A11 0.54 0.004 
 924 

Table 1 925 

There was a positive correlation between hepatic expression of PPARGC1A and genes 926 

involved in lipid oxidation in adolescent control and PA female sheep from fetal injection 927 

cohort. Correlation was assessed by calculation of Pearson product-moment co-efficient. 928 

  929 
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Supplementary Table 1 930 

 931 

 932 

 933 

 934 

 935 

 936 

Supplementary Table 1. Primers for real-time RT-PCR analysis. Forward and reverse 937 

primers were designed using Primer3 Input version 0.4 online software 938 

(http://frodo.wi.mit.edu) with DNA sequences obtained at Ensembl Genome Browser. To 939 

confirm the validity of the gene product in the sheep, both conventional PCR and amplicon 940 

sequencing were performed. Primer specificity and efficacy for qRT-PCR was evaluated 941 

through the generation of standard curves with serial dilutions of cDNA; a standard curve 942 

slope of approximately -3.3 was accepted as efficient, and a melt-curve analysis was also 943 

performed. 944 

 945 

Gene Forward Primer Reverse Primer 

18S CAACTTTCGATGGTAGTCG CCTTCCTTGGATGTGGTA 

ACTB ATCGAGGACAGGATGCAGAA CCAATCCACACGGAGTACTTG 

FGF21 TCCCGAAAGTCTCTTGGAGC  CGATCCATACAGCTTCCCATCT 

FGFR1 TCAGAGACCCACCTTCAAGC GAAGCTGGGGGAGTATTGGT 

KLB CAGAGGATACCACAGCCATCT CCAGGCTGTGTAACCAAACA 

MDH1 TTATCTCCGATGGCAACTCC GGGAGACCTTCAACAACTTTCC 

PPARGC1A ATGAGTCAGGCCACTGCAGAC CTCTGCGGTATTCTTCCCTCT 

RPS26 CAAGGTAGTCAGGAATCGCTCT TTACATGGGCTTTGGTGGAG 


