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ABSTRACT 
Network security has now become one of the most important aspects in computer systems and the Internet. 
Apart from strong encryption, there is no definite method of truly securing network, thus they must be pro-
tected at different levels of the OSI model. At the physical layer they can be protected by lock-and-key, and 
at the data link they can be protected within VLANS (Virtual LANs). With the network and transport layers, 
networks can be secured by firewalls, which monitor source and destination network addresses, and source 
and destination ports, respectively. At the session level user names and passwords can be used. Unfortu-
nately all these methods can be prone to methods which can overcome the protection used. This can be over-
come by software which tries to detect the malicious moves of users, and try to inform the system adminis-
trators when this happen. Unfortunately there are too many factors involved in these systems. An important 
one is the human operator itself. Many security monitoring systems are also too complicated to run and 
maintain, and they generate big report lists that take weeks or months to be analysed. This paper expands the 
research previously undertaken on a misuse system based on intelligent agent software technology. 
 The system monitors user actions in real-time and take appropriate actions if necessary. Along with this 
our system used short-term prediction to predict the user behaviour and advise the system administrator ac-
cordingly, before the actual actions take place. This paper presents new results which are based on an in-
creased number of users. 

 

1  Introduction 
At present computer security is a major worry for organiza-
tions, and this will continue as long as there is information, 
which can be stolen or damaged. The laws, which related to 
this type of crime are still being developed, and will take 
some time to implement. Many individuals think that the 
main problem relating to security is caused by external users 
(often known as hackers), but Carter and Catz [1] have shown 
that the primary threat come from individuals inside and or-
ganisation. Hence more emphasis should be placed on inter-
nal control mechanisms, such as audit log analysis. 

In many cases, people that call themselves hackers [4] cre-
ate security breaches. In the early days of computer hacking, 
these hackers did it for self-projection and not to improve 
their finances. Nowadays, there is a great deal of gain to be 
made from breaching system security, and these individuals 
tend to be: 

 
1. Professional programmers and IT specialists. These 

individuals typically have extensive knowledge of the 
protocols and hardware that are used by organisations, 
work in teams, and have some inside knowledge of the 
organisational systems. 

2. Government agents. These are typically ex-military 
using advanced information warfare methods (such as 
CIA software agents [3]). 

 
However, no security measure guarantees a risk free envi-
ronment, but increased security normally makes a system less 
easy-to-use. Many businesses must give access to parts of 
their system and make it easy to use, thus increasing potential 
exposure. Proper security controls require planning and care-
ful implementation. Forestalling potential security breaches 

requires careful monitoring and management, and it is critical 
that these controls deter real problems. Unfortunately threats 
change as fast as both technology and business, thus adapta-
tion and improvisation are key features of a security system. 

No hardware or software element can ever be immune 
from security weaknesses. Many organisations will typically 
rely on a networking operating system for system security. 
To provide a measure of how secure a system is the US Gov-
ernment defines certain security levels: D, C1, C2, B1, B2, 
B3 and A1, which are published in the Trusted Computer 
Security Evaluation Criteria books (each of which has a dif-
ferent coloured cover to define their function). These include: 

 
1. Orange book. Describes system security. 
2. Red book. Interpretation of the Orange book in a net-

work context. 
3. Blue book. Application of Orange book to systems not 

covered in the original book. 
 
Three techniques for illegal behaviour detection are com-
monly used in computer network security programs [5]: sta-
tistical anomaly detection, rule based detection, and hybrid 
detection, an amalgam of statistical anomaly detection and 
rule based detection. In most cases, the implementation of 
these techniques has been achieved by installing the security 
enhancement software on a centralized server. When this 
software crashes or is breeched, the complete network is at 
risk. 

An alternative solution is to use agents to disperse network 
security management around the network. If the intrusion 
detection system is real time, it can detect the intrusion after 
the action, but never before. To address this problem we in-
troduced a real time monitoring environment base on intelli-
gent agent technology. For this we have constructed a soft-
ware environment, that monitors the user behaviour and acts 
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accordingly. We found that the real time monitoring had 
some limitations. The basic limitation to our initial system 
was that the system could detect a system anomaly, when the 
anomaly itself where started. That sometimes is not accept-
able. So we started to research in ways to predict the actions 
of the user before they actually happen. For this a model was 
created with a new statistical model, which predicts the user 
future behaviour, or the system recourses. This statistical 
model is based on Bayesian statistics, and performs predic-
tion on the same system resources that our agents are moni-
toring in real time. 

The statistical model based on Bayesian multivariate re-
gression proposed by Pikoulas and Triantafyllopoulos [8] 
takes user data behaviour and generates a predicted profile, 
so our intrusion system has sufficient information to foresee 
the future user actions. 

2 Illegal Behaviour Detection Methods 

2.1 Statistical Anomaly Detection 

Statistical anomaly detection systems analyse audit-log data 
to detect abnormal behaviour. A profile of expected online 
behaviour for a normal user is predefined and derived from 
how an organisation expects a user to behave and from a sys-
tem administrator’s experience of the way a user is expected 
to use system resources. Typically, the audit logs are ana-
lysed and processed for statistical patterns of events for typi-
cal operations for which to determine usage patterns. These 
patterns are compared to the user’s profile. With this, the 
administrator sets the expected user profile that is based on a 
model of how a user is expected to behave. The audit log is 
then analysed to look for statistical patterns of events to es-
tablish a typical operating pattern for a user; these are then 
compared with the user’s profile. 

The Safeguard project [6] adapted the NIDES statistical 
anomaly-detection subsystem to profile the behaviour of in-
dividual applications. Statistical measures were used to de-
termine the proper usage of an application, and what 
differentiates this from inappropriate usage. A statistical 
score was assigned to the operation of applications and 
represented the degree to which current behaviour of the 
application corresponds to its established operational pattern. 
This system demonstrated the ability of statistical profiling 
tools and clearly differentiated the scope of execution among 
general-purpose applications. It showed that statistical 
analysis could be effective in analysing activities other than 
individual users, such as the system monitoring applications 
rather than users. The system warns administrators that there has been a pos-
sible intrusion when a profile is different to a usage pattern. 
A major drawback with statistical anomaly detection is that 
this technique cannot predict extreme changes in user behav-
iours. 

2.2 Rule Based Detection 

Rule-based detection systems use a set of rules that define 
typical illegal user behaviour. These rules are formed by ana-
lyzing previous different patterns of attack, and analyses the 
audit-log data of a particular user and comparing the user’s 
pattern with the rules. The drawback of this system is that the 
basic rules are predefined by system administrators, and can-

not detect any new attack techniques. If a user exhibits 
behaviour that is not prescribed by the existing rules, the user 
can harm the system without being detected. The IDES sys-
tem [7] is security enhancement software that stores knowl-
edge about a system’s known vulnerabilities, its security 
policies and information on previous intrusions. The informa-
tion it uses to determine the network state is limited to the 
data packet header. As it does not examine the contents of the 
data packet, it may miss critical information about the nature 
of the data that goes throughout the network. It also scales 
very poorly where many machines are on a high-speed net-
work. 

Kumar and Spafford’s model [9] uses pattern matching, as 
attacks can be classified as patterns, which match against 
occurrences (status of the system at that moment) in the sys-
tem. These patterns can encode dependencies between system 
conditions and temporal conditions. Crosbie and Spafford’s 
use autonomous agents [10], which are trained to detect 
anomalous activity in network system traffic. A drawback of 
this approach is that the system requires considerable training 
by a human operator before it becomes effective. 

2.3 Hybrid Detection 

Hybrid detection systems are a combination of statistical 
anomaly detection and rule-based detection systems. These, 
typically, use rules to detect known methods of intrusion and 
statistical based methods to detect new methods of intrusion. 

CMDS (Computer Misuse Detection System) [11] is a se-
curity- monitoring package that provides a method to watch 
for intrusions. It detects and thwarts attempted logins, file 
modifications, Trojan horse installation, changes in adminis-
trative configurations and many other signs of intrusion. In 
addition, it constantly monitors for difficult detection prob-
lems like socially engineered passwords, trusted user file 
browsing and data theft that might indicate industrial espio-
nage. CMDS supports a wide variety of operating systems 
and application programs. The drawback of this system is 
that it uses statistical analysis to make additional rules for the 
system. This is a drawback, as it can only detect attack pat-
terns that have been used in the past and being identified as 
attack patterns, or predefined by the system operators. It also 
generates long reports and graphs of the system performance 
that requires to be interpreted by a security expert. 

3 Forecasting methods 
There are many forecasting methods for short to intermediate 
term analysis-forecasting [12] including multiple regression 
analysis, non-linear regression, trend analysis and 
decomposition analysis. 

3.1 Bayes and empirical Bayes methods 

Bayes and empirical Bayes (EB) [14] methods combine in-
formation from similar components of information and pro-
duce efficient inferences for both individual components and 
shared model characteristics. Many complex applied investi-
gations are ideal settings for this type of synthesis. Recent 
advances in computing and the consequent ability to evaluate 
complex models have increased the popularity and applicabil-
ity of Bayesian methods. Bayes and EB methods can be im-
plemented using modern Markov chain Monte Carlo 
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(MCMC) computational methods. Properly structured Bayes 
and EB procedures typically have good frequentist and 
Bayesian performance, both in theory and in practice. This in 
turn motivates their use in advanced high-dimensional model 
settings (for example in longitudinal data or spatial-temporal 
mapping models), where a Bayesian model implemented via 
MCMC often provides the only feasible approach that 
incorporates all relevant model features. 

4 Bayesian Intrusion Detection System 
The proposed system is a hybrid intrusion detection system 
and was first described in Pikoulas, et al [15]. The system 
uses a hybrid detection technique. Invalid behaviour is de-
termined by comparing a user’s current behaviour with their 
typical behaviour and by comparing their current behaviour 
with a set of general rules governing valid behaviour formed 
by systems administrators. Typical behaviour is contained in 
a user historical profile. Prediction is computed using a 
Bayesian multivariate statistical model. The novelty of the 
approach is that the system uses a distributed architecture 
using intelligent software agent technology. 

A user agent resides in a user workstation, and there is a 
core agent that resides on the system server. Each user agent 
has a variety of functions. When a user logs onto a work-
station, the user agent retrieves the user login name and con-
tacts the core agent. The user end agent gets the users profile 
from the core agent. After the user end agent retrieves the 
specified user profile starts to monitor the user behaviour. 

The user profile file contains data describing the predicted 
specified user behaviour which the system administrators can 
create using the generic profiles of a group of users and add-
ing rules drawn from individual behaviour patterns. Hence a 
user profile contains rules that describe the legal past behav-
iour of the user and the statistical predictions from these 
rules, up to the last time that the used logged on to the sys-
tem. User behaviour is a collection of data from system vari-
ables including: 

 
1. Information about software applications that have been 

used during a login session. 
2. The path that these applications are running from. 
3. The directory in which the user is currently working in. 

 
The user agent monitors user behaviour until the user logs 
off. Ten seconds has been found to be a satisfactory interval 
because it gives an accurate description of user behaviour 
without compromising the performance of the system. Moni-
toring user behaviour is achieved using a C++ DLL within 
the user end agent. The DLL is called through a thread, which 
is set to run with the lowest priority, so the effect in the per-
formance of the system will be at minimum. After the user 
end agent takes the user behaviour snapshot, it compares it 
with the historical profile (acquired from the core agent at the 
beginning of the user session). If any behaviour differences 
are found, it generates warning alerts to the user and also 
sends an alert signal to the core agent in order to inform the 
system administrators. If the system administrator accepts 
this change in the user behaviour, it is added to the user pro-
file as a permitted rule, so the next time that the user tries to 
perform the same operation, no alerts will be generated. The 

rule is added instantly and not from the next time that the 
user is logged in to the system. When a user logs off, the user 
end agent sends a message to the core agent that this user is 
going to log off so it will update its user profile file with the 
prediction data, and store the new prediction data that gener-
ated for further process. 

These data are then taken from our prediction model and 
processed, and stored to the system as prediction rules. These 
prediction rules are loaded from the user end agent, every 
time that the user logs to the system, so that the user end 
agent will be able to take appropriate actions if needed. We 
used a Bayesian multivariate statistical model because our 
problem is a linear multivariate problem and it is faster and 
more accurate to use a linear model than a non-linear model 
like neural networks [16]. 

5 Implementation 
We built intelligent agent security enhancement software 
system, in which a core software agent resides on one server 
in a Windows NT network system and user end software 
agents reside in each user workstation. The software for each 
type of agent was written in SUN Java JDK Version 1.2 on a 
Microsoft Windows NT Version 4 environment running over 
a 10/100 Mbps network. There was one server and 10 clients. 
Figure 1 shows a core agent communicating with many user 
agents. A communication thread is a unique process that the 
core agent creates to transmit data to the user end agent in 
response to message transmitted from the user end agent. 
Unique processes enable the core agent to communicate with 
each user agent effectively and efficiently thereby enabling a 
fast response to network monitoring. Once the core agent has 
responded to a user agent, the process is killed. Figure 1 
shows that a user agent implemented as four components: 
 
1. A sensor. The sensor monitors the various software ap-

plications (for example, a word processor, a spreadsheet) 
that are currently being run by the user on that work-
station. When a user logs in the sensor polls the user’s 
activity every ten seconds and records the user’s identi-
fier and each application’s name and process identifier. 
(The frequency of the sensor can be modified from the 
system administrator.) 

2. A transmitter. After the first polling by the sensor, the 
transmitter sends this information to the core agent. The 
core agent then responds by sending a user historical 
profile. With an audit-log file for a period of one month, 
we observed that the size of an average user profile was 
between 400KB and 600KB, with a download time of 
between three and five seconds. 

3. A profile reader. The profile-reader reads the user’s 
historical profile. 

4. A comparator. The comparator compares the user’s 
historical profile with the information read by the sensor. 
If the current behaviour profile does not fall within the 
accepted behaviour pattern defined by the user historical 
profile, the comparator provides the transmitter with the 
following information that is then sent to the core agent: 
user identifier, invalid behaviour type and corresponding 
invalid behaviour type data. For example, if the invalid 
behaviour type were an unauthorised directory access 
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then the invalid behaviour type data would be the name 
of the directory attempting to be accessed. When invalid 
behaviour occurs, several courses of action are available, 
such as: 

 
1.  Warning message to the system administrator or end 

user. 
2.  Kill the specific application that has caused invalid 

behaviour. 
3.  Prevent the end user from running any further appli-

cations. In Case 1, the user agent informs the core 
agent and the core agent informs the systems admin-
istrator. The user agent terminates when a user logs 
off. Cases 2 and 3 can be achieved locally at the cli-
ent workstation. 
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Figure 1 Agent Environment Topology 

 

6 Experiments and Results 
In our previous experiments, there was only one user with a 
limited observation of 10 times. This time the experiments 
are more generic. A previous paper [15] illustrated that the 
model worked. This has now been expanded to three users 
and with 100 observations. With this the prediction model 
makes 50 observations and adapt to the user behaviour, and 
then apply the prediction model to the next 50 observations. 

In the results, a graph is constructed of the last 50 real ob-
servation values and the predictions, and in the y-axis plots 
time. Users used the typical applications, such as MS Word, 
MS Excel, MS Outlook, MS Internet Explorer and Borland 
C++. The users were free to use other applications and sys-
tem recourses if they wanted to, but our system only moni-
tored the above applications. There were no restrictions on 
when they use it, or how much time. 

For these experiments, it is assumed that only the first ap-
plication was legal to be used by all the users, and the rest 
were available to the system but restricted from the users. 

As with previous experiments the time period of one hour 
is used to make the prediction. Thus, observation values for 
prediction are taken every one-hour, but real time monitoring 
system was still getting observations in real time. 

We can observe the results of our experiments from the 
three graphs that follow. The first two graphs show the results 
without any sort of intervention. It can also be seen that our 
model is capturing all the different anomalies, with some-
times, luck of capturing the length of the high peaks of the 
real data graphs. Let’s see first what the graphs represent. As 
we mentioned before we measured some user behaviour over 
a period of time. That is, when the user uses a specific system 

resource like using an application or using a system resource.  
That is what the graphs represent. In the ‘x’ axis we have the 
number of observations represented with a purple dotted line. 
This is the number of how many times we monitored the user 
to see what exactly he or she was doing in the monitored 
computer environment. And in the ‘y’ axis of the graphs we 
have the amount of time that the user is using the particular 
monitored recourse, for this observation, and it is represented 
with a dashed dark blue line. The value that the ‘y’ axis can 
take are between zero and one, since we explained that in this 
set of our experiments we are monitoring the users every one 
hour in order to see what they are using. This observation is 
different than the one that the agent is doing for the real time 
monitoring of the remote system. This timing of the user be-
haviour is every five seconds. 

The graphs show prediction results that are taken from our 
agent environment. In Figure 2 and Figure 3 we can see that 
our model is able to follow the real user behaviour. In the 
graphs the dotted purple line is the real user behaviour and in 
dashed dark blue is our prediction. In Figure 2 we can see 
that even if our prediction (line in dashed dark blue) is not 
exactly matching the real user behaviour, our system could 
predict the spikes of the user behaviour, up to an extent. Ex-
amining Figure 2 we can see that the length of the spike is not 
very important to predict as to when it is going to occur. That 
is what proving that our model works. Although our predic-
tion is accurate, as we evaluated Figure 2 above, we have 
introduced the notion of the intervention that we apply in our 
last result figure (Figure 4). The purpose of introducing inter-
vention if we require more accuracy and more information on 
our prediction, like if we want to know exactly not only when 
it is going to occur, but even how long is going to take. 

We can observe that the two trends are following each 
other. That means that our model is very accurately predict-
ing future user behaviour. 

In all of our examples we can see that our model is able to 
detect the deviations in the user behaviour, with maximum 
effects in the case of the use of intervention (see Figure 4). 

In other words, the results of the experiments show that 
our model works. We can see that be following the two re-
sults lines on Figure 4. By how close they are, we can deter-
mine how good our model followed the real values, which are 
the real behaviour that the user followed. This is very impor-
tant for our prediction system; because it can not only protect 
vital resources of the computer system, but also provide accu-
rate help to the user, by knowing or predicting correct what 
are the next steps that the user will take. 

7 Conclusions and Future Work 
As we can observe from the graphs of the experiments, that 
our model applied on the observations of application five, 
with intervention, is very close to the actual user observa-
tions. We can observe the similarities of our results with the 
actual data. After applying our intervention mechanism, our 
prediction values are getting very close to the actual user be-
haviour (Figure 4). Short-term prediction is very difficult and 
there is large extend in research, trying to perfect it, espe-
cially financial institutions, weather prediction stations, stock 
exchange organizations, the army. Most prediction tech-
niques are very inaccurate in short-term prediction or too 
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slow or complicated to be used. Our proposed model can 
produce accurate results with a minimum amount of observa-
tions. 
 In future work are planning to perform more extensive ex-
periments that will involve more users and larger number of 
applications. Our aim is to demonstrate that the model works 
in most cases, and also to refine the model. 
 There are aspects of the model that needs further research; 
especially in the way that intervention is applied, as this is 
not very practical. Also the values that are use to populate the 
values that are used in the intervention model are generic 
values that do not have the best results for all observed val-
ues. 
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Figure 2 Application one Prediction and real values 
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Figure 3 Application two Prediction and real values 
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Figure 4  Application five Prediction and real values (with inter-

vention) 
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