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Abstract

Background: Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains
some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium
falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse
and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly
modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an
anaerobic host-gut environment and represent the known exception, having completely lost their plastid while
retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing
have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid
retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine
mitochondria.

Results: Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined
these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their
mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of
apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico
predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria.
These data show that the electron transport chain has been independently lost three times across the phylum, twice
within gregarines.

Conclusions: Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears
to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife
with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.
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Background
The phylum Apicomplexa is a lineage comprised primarily
of unicellular endobiotic parasites of animals and includes
pathogens of agriculturally important livestock (e.g.,
Eimeria spp. causing coccidiosis) and humans (e.g., Plas-
modium falciparum and Toxoplasma gondii, the causative
agents of malaria and toxoplasmosis, respectively) [1–3].
Due to public health implications, medically important
apicomplexans were an early focus for genome sequencing
efforts and remain as some of the most well-studied mi-
crobial eukaryotes [1, 2, 4]. Apicomplexan organelles were
identified as possible targets for drug therapy development
and, accordingly, have been the subject of detailed mo-
lecular characterization [5–11]. Although most apicom-
plexans (e.g., Toxoplasma, Babesia, and Plasmodium spp.)
retain mitochondria akin to aerobic eukaryotes, they have
undergone some restructuring. For example, pyruvate
dehydrogenase (PDH) has been replaced by branched
chain ketoacid dehydrogenase (BCKDH) and the canon-
ical electron transport chain complex I has been replaced
by a single protein that encodes an alternative NADH de-
hydrogenase (NDH2) [12–14]. Cryptosporidium spp. rep-
resent the exception, as their adaptation to parasitism and
hypoxia within the digestive tract has produced a range of
functionally reduced mitochondria, including the
complete loss of their mitochondrial genomes [13, 15].
Cryptosporidium muris and C. andersoni use a common
anaerobic pathway to convert pyruvate into acetyl-CoA
which is then shuttled to the tricarboxylic acid (TCA)
cycle [13]. At the extreme, the mitochondrion-related or-
ganelles (MROs) of C. hominis and C. parvum represent
some of the most highly reduced mitochondria known
and are no longer capable of ATP generation [13, 16]. The
observation of such modifications established interest in
the apicomplexan mitochondrion as a model for under-
standing fundamental questions regarding eukaryotic evo-
lution and organellar retention.
Although apicomplexans comprise some of the most

well-studied microbial eukaryotes, the gregarines repre-
sent an important exception. Genomic-scale data are
scarce from gregarines, despite the importance of their
phylogenetic placement for interpretations of evolution-
ary events within the phylum [17, 18]. Since most of our
knowledge on gregarines is derived from microscopic
studies and 18S rRNA sequencing [17–21], little is
known about the evolution or metabolic potential of
gregarine organelles. Recent technical advances in
single-cell methods have reduced the barriers to data
generation and enabled broad genome-scale explorations
of gregarines. In 2019, Janouškovec et al. [22] and
Mathur et al. [23] independently published data demon-
strating that a “gregarine-type” morphology (conspicu-
ously large single-celled symbionts which infect the
intestine, coelom, or reproductive vesicles of invertebrate

hosts and possess an attachment apparatus that contains
the apical complex at least in the infective stages) has
evolved at least three times, highlighting the importance
of these understudied lineages to the accurate interpret-
ation of apicomplexan evolution. The only targeted in-
vestigation into the mitochondrial metabolism of
gregarines was largely speculative, as it was based on the
incomplete and highly fragmented Ascogregarina taiwa-
nensis genome [24]. As close relatives to the MRO-
containing Cryptosporidium, gregarines provide an ideal
model for exploring mitochondrial functional reduction.
Interestingly, phylogenomic analyses performed by

Mathur et al. [23] and Janouškovec et al. [22] produced
conflicting topologies for the relationships between greg-
arines and other apicomplexans. Mathur et al. added
data from newly sequenced transcriptomes to a dataset
generated by Burki et al. [25], producing a tree that
placed gregarines as a sister lineage to Cryptosporidium
and the other apicomplexans [23]. Using a different set
of taxa and an independently derived phylogenomic
dataset, the analysis conducted by Janouškovec et al. [22]
supports a clade containing Cryptosporidium and grega-
rines as sister to other apicomplexans. These conflicting
evolutionary histories have significant impacts on our in-
terpretations of the evolutionary events that include
patterns of organellar reduction and transitions to intra-
cellularity. Therefore, these relationships must be re-
solved before meaningful conclusions on organelle and
life history evolution can be made.
In this study, we explored the impact of adaptations to

the host environment and parasitism on apicomplexan
mitochondrial metabolism, with a particular focus on
gregarines. We expanded the available genome-scale
data for understudied apicomplexans by generating tran-
scriptomes for five gregarines isolated from terrestrial
hosts. These data were combined with all publicly avail-
able gregarine data to conduct the most taxonomically
rich phylogenomic analyses of Apicomplexa to date. We
robustly placed Cryptosporidium as the earliest diverging
apicomplexan lineage. Within this evolutionary frame-
work, we characterized the previously unknown mito-
chondrial metabolism of gregarines and provide
evidence for multiple independent mitochondrial func-
tional reductions and electron transport chain losses
within the Apicomplexa.

Results and discussion
Transcriptomes were generated for gregarines isolated
from five species of cockroaches (Additional file 1: Table
S1). Small subunit rRNA (SSU) sequences from the
newly sequenced transcriptomes were searched against
the NCBI nr database to confirm species identifications
of isolated gregarines from different cockroach species.
SSU sequences from Blabericola migrator (isolated from
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Gromphadorhina portentosa) and Protomagalhaensia
wolfi (isolated from Nauphoeta cinerea) were each >
99.9% similar to published data for these species. The
SSU sequence similarity of gregarines from Poly-
phaga aegyptiaca (from here on Gregarina sp. Poly) and
those from Pseudoderopeltis sp. (from here on Gregarina
sp. Pseudo) were each ~ 96% similar to Gregarina blat-
tarum (FJ459741.1). The SSU from gregarines isolated
from Gyna caffrorum (from here on Protomagalhaensia
sp. Gyna) was ~ 92% similar to the published SSU from
Protomagalhaensia wolfi (FJ459758.1).
To explore the evolutionary relationships within the

apicomplexans, we reconstructed phylogenies using two
different phylogenomic datasets, based on those from
previously published studies with conflicting results [22,
23]. Mathur et al. [23] used 39 taxa and 198 genes (out
of a possible 248 genes [26]), compared to 74 taxa and
246 genes in our version of the dataset (from here for-
ward called dataset A). Janouškovec et al. [22] utilized
50 taxa and 296 genes (based on original dataset of 339
genes [27]), while we have retained 299 genes and 74
taxa (from here forward called dataset B). Overall, our
dataset A (246 genes) and dataset B (299 genes) had
27.72% and 32.02% missing data, respectively.
Both datasets recovered identical topologies for the re-

lationships between apicomplexans under maximum
likelihood (ML) and Bayesian inference (BI) analyses:
Cryptosporidium is the earliest diverging lineage, with
gregarines branching sister to a clade containing Agamo-
coccidiorida, Coccidia, Nephromycida, Haemospororida,
and Piroplasmorida (from here on referred to as “core”
apicomplexans) (Fig. 1; see Additional file 2: Fig S1,
Additional file 3: Fig S2, Additional file 4: Fig S3, Add-
itional file 5: Fig S4, Additional file 6: Fig. S5, Add-
itional file 7: Fig. S6 for individual ML and BI trees). The
relationship of gregarines with core apicomplexans was
strongly supported by dataset B (99 ML bootstrap (BS),
1.0 BI posterior probability (PP)); however, this clade re-
ceived lower support from dataset A (81 BS, 0.51 PP).
Interestingly, this topology was not recovered by Janouš-
kovec et al. [22] or by Mathur et al. [23] and therefore
was the subject of further investigation (see below). The
archigregarine Selenidium pygospionis and the blastogre-
garine Siedleckia nematoides form a clade branching sis-
ter to eugregarines. However, with sequence data
available for only one member of each group, this
branching pattern may change with additional data. Dis-
tinct and fully supported clades of eugregarines
branched in correlation to their host organisms, habitat,
and the localization of infection within the host (Fig. 2).
Although Actinocephaloidea is represented by only a
single transcriptomic dataset here, the relationship of
Actinocephaloidea and Gregarinoidea has been repeat-
edly supported with the use of more taxa in phylogenetic

analyses of 18S [20], complete rRNA operon [28], and
phylogenomic datasets [23]. Janouškovec et al. [22] simi-
larly recovered these groups as sister lineages using three
individual actinocephaloids merged into one hybrid
dataset in their phylogenomic analysis, but also recov-
ered the similar relationship using all three separately,
but with each containing a high amount of missing data.
Rather than incorporate numerous fragmented actinoce-
phaloid datasets (e.g., the Ascogregarina taiwanensis gen-
ome data contains 2.5% complete BUSCO genes) to
evaluate this repeatedly established relationship, we se-
lected the highly complete Monocystis agilis dataset
(86.5% complete or partial BUSCO genes; Additional
file 1: Table S1) to represent Actinocephaloidea. In our
analyses, we are still able to confidently reconfirm the
relationship of Actinocephaloidea and Gregarinoidea as
sister groups. The long branches of many of these line-
ages, combined with a lack of data from numerous fam-
ilies, indicate the need for an increased sampling effort
for gregarines from diverse hosts to test whether these
co-evolutionary patterns will hold up. However, based
on currently available data, it appears that gregarines
have transitioned at least twice between marine and ter-
restrial hosts. Co-evolution of gregarines and their hosts
is exemplified in the monophyly of cockroach-infesting
gregarines branching as sister to G. niphandrodes (from
the beetle Tenebrio molitor). Furthermore, gregarines
originating from Blaberidae cockroaches (B. migrator, P.
wolfi, Protomagalhaensia sp. Gyna) form a clade, exclud-
ing those from other cockroach families Blattidae and
Corydiidae (Gregarina sp. Poly, Gregarina sp. Pseudo).
However, more data are needed to draw meaningful
conclusions.
There are three possible relationships between grega-

rines, Cryptosporidium, and the core apicomplexan
clade: (1) monophyly of gregarines and core Apicom-
plexa (A+G topology; Fig. 3a), (2) monophyly of Crypto-
sporidium and core Apicomplexa (A+C topology;
Fig. 3a), and (3) monophyly of gregarines and Crypto-
sporidium (G+C topology; Fig. 3a). Interestingly, Mathur
et al. [23] recovered A+C topology and Janouškovec
et al. [22] recovered G+C topology, while we recover the
A+G topology.
To further explore the support and robustness of the

three topologies, we performed several additional ana-
lyses on each dataset: (1) gene concordance factors
(gCF) based on single genes and on the partitioning
scheme, (2) approximately unbiased (AU) topology test,
(3) random gene resampling, and (4) identification and
removal of genes that could strongly influence a particu-
lar topology. The gCF scores for all three topologies
were below 10% based on individual genes and below
20% based on the partitioning scheme but were highest
for the A+G topology with a score of 15.5% (dataset A)
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and 18.6% (dataset B) based on the partitioning scheme
(Additional file 8: Table S2). However, Minh et al. [29]
suggest that nodes with low gCF scores should be the
focus of further scrutiny. The AU topology test only
rejected the G+C topology based on dataset B (PG + C =
0.0313) (Additional file 9: Table S3), further highlighting

the difficulty in placing the root of the Apicomplexa.
Random gene resampling unsurprisingly showed the
highest variability for the smallest datasets (20%)
(Fig. 3b). Similar to the gCF and AU tests, support for
the G+C topology was lowest in all randomly subsam-
pled gene sets for both datasets A and B. Support for the
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Fig. 1 Phylogeny of Apicomplexa. Maximum likelihood phylogeny of apicomplexans as recovered from two independently developed phylogenomic
datasets, which both recovered identical topologies. Branch lengths shown are from dataset A. Dataset A was comprised of 246 genes and 63,201
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A+G and A+C topologies were similar across all levels
of gene subsampling within dataset A, and support for
the A+G topology was dominant in dataset B (Fig. 3b).
Genes that strongly influence a particular topology were
identified in each dataset by averaging the absolute dif-
ference in gene-wise log-likelihood for each pair of the
three possible topologies, according to the protocol de-
scribed by Shen et al. [30]. After removing outlier genes

from dataset A (11 genes), the topology switched to the
A+C with 86 BS support (100 PMSF bootstrap repli-
cates) while dataset B (13 genes) topology remained the
same with 96 BS support.
To further investigate the differences between datasets

A and B, we have identified overlapping and unique gene
sets. There are 153 genes shared between the two data-
sets, with 93 genes being unique to dataset A and 146

Fig. 2 Evolution of apicomplexan mitochondrial metabolism. a Cartoon phylogeny of apicomplexans and their close relatives with Coulson plots
representing the presence and absence of the tricarboxylic acid cycle (TCA), electron transport chain complexes (ETC), and other genes important
for apicomplexan mitochondrial metabolism. The “#” symbol and lighter coloration for MQO in chrompodellids are to signify that they retain
malate dehydrogenase rather than malate:quinone oxidoreductase for their TCA cycle. Genes encoded on the mitochondrial genome are
indicated with an asterisk. If mitochondrion genome data are absent for a lineage, the corresponding piece of the Coulson plot is colored gray
where the gene is presumed to exist due to retention of other genes in the associated complex. Branch names include taxonomy, host
information, localization of parasites within the host (DS, digestive system; RS, reproductive system; C, coelom), and the number of genomes and
transcriptomes included in each lineage. Gold stars on nodes indicate transitions to an intracellular lifestyle with the star next to the name for
Chrompodellids representing an independent event within the clade giving rise to Piridium sociable. Branches on the phylogeny are colored
according to in silico predictions for mitochondrial metabolism that are similarly colored and shown as b representing regular aerobic
apicomplexan mitochondria which is depicted in blue and c representing an anaerobic mitochondrial metabolism. The functional role of the ETC
complex V (ATP synthase) in Cryptosporidium muris and C. andersoni is shown in gray
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genes being unique to dataset B (Additional file 10:
Table S4). Maximum likelihood trees were reconstructed
based on subsets of the shared and unique genes. The
trees generated based on the shared genes for both data-
sets, as well as from genes unique to dataset B, all re-
sulted in the A+G topology (Additional file 11: Table

S5). In contrast, the genes unique to dataset A produced
a tree with the A+C topology (Additional file 11: Table
S5) and are likely the cause of lower support for the A+
G topology observed in dataset A.
Since many lineages within the apicomplexans formed

relatively long branches, we also tested the possible
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impact of systematic error (e.g., long branch attraction
(LBA) or non-optimal model usage) driving support for
any of the topologies. We performed serial fast evolving
site removal (FSR) [31, 32] and heterotacheous site re-
moval (HSR) [33], with the 6000 fastest or most hetero-
tacheous sites being removed at each step (Fig. 3c). For
dataset A, there is a short rise of support for the A+C
topology, which then disappears in favor of the A+G
topology in both FSR and HSR analyses (Fig. 3c). There
is little support for the G+C topology throughout the
FSR and HSR analyses of dataset A (Fig. 3c). For dataset
B, support for the A+G topology remains > 99 for both
FSR and HSR analyses, while the other two topologies
are barely supported (Fig. 3c). Given the switch to the
A+C topology support in the concatenation of dataset A
unique genes, we conducted fast site removal, removing
3000 sites at each step from this dataset as well. In this
analysis, after removing 9000 sites, the topology switched
from A+C to A+G (Additional file 12: Fig. S7). To fur-
ther investigate the role of systematic errors contributing
to the observed topologies, we ran phylogenomic ana-
lyses using the less complex LG model to strengthen a
possible artifactual result (compared to the partitioned
LG+C60+F+G used in our previous analyses), followed
by FSR analysis under this model. Both datasets A and B
received higher support for the A+C topology using the
LG model. The FSR analyses on both datasets partially
rescued the A+G topology that we recovered under the
LG+C60+F+G model (Additional file 13: Fig. S8). These
findings strongly suggest that the A+C topology recov-
ered by Mathur et al. [23] was likely influenced by a sys-
tematic error. It is very likely that the combination of
partitioning with mixture models [34], and significantly
increased taxon sampling helped to suppress systematic
errors in this study. We were unable to assess the driv-
ing force behind the topology recovered by Janouškovec
et al. [22]; however, we hypothesize that the differences
may lie in our increased taxon sampling and use of data
partitioning with complex models [34]. It is also possible
that the extended taxon sampling improved our reso-
lution of orthologs [35].
The above results show that dataset A cannot strongly

distinguish between the A+G and A+C topologies as the
topology switches from A+G with bootstrap support 81
to A+C with bootstrap support 86 after the removal of
11 outlier genes (out of 246). Interestingly, these 11
genes do not strictly prefer A+C topology (Add-
itional file 14: Fig. S9). Both FSR and HSR analyses sug-
gest that the support for the A+C topology in dataset A
is at least partially driven by systematic errors. The sup-
port for the A+C topology declines as fast evolving sites
are removed from dataset A (Fig. 3), the LG model ana-
lysis of dataset A (Additional file 13:Fig. S8), and in
genes unique to dataset A (Additional file 12: Fig. S7).

We conclude that the A+C topology may be an artifact
resulting from systematic error; however, we cannot en-
tirely rule out this relationship. The G+C topology was
rejected by an AU test for dataset A and received very
low support in the absolute majority of our analyses.
Based on these results, we consider that A+G topology
is most likely correct, given the currently available data.
However, it remains possible that improved taxon sam-
pling, especially of novel close relatives of Cryptosporid-
ium, or the development of evolutionary models better
suited for resolving deep evolutionary radiations could
alter support for this topology.

Implications for apicomplexan evolution
Our topology indicates that evolutionary adaptations to
different host environments are ubiquitous throughout
the Apicomplexa. Within the gregarines, we observe ei-
ther two independent transitions from infecting a marine
host to a terrestrial host, or a switch from marine hosts
to terrestrial, and then back to marine (Fig. 2). Addition-
ally, while the majority of gregarines are described from
the digestive system of diverse invertebrate hosts, some
Actinocephaloidea reside within the reproductive system
of their hosts, requiring adaptation to different host tis-
sues (Fig. 2). Despite the contention between the A+C
and A+G relationships observed in our analyses, either
topology demonstrates that apicomplexans are prone to
transitions between intracellular and extracellular life-
styles. Based on our phylogeny (Fig. 1), we suspect that
the apicomplexan ancestor was an extracellular endo-
biont with intracellularity arising independently on at
least three occasions: once in Cryptosporidium, again in
the ancestor of Coccidia, and a third time in the shared
ancestor of Haemospororida and Piroplasmorida. It is
important to note that Cryptosporidium spp. form a
parasitophorous vacuole in the plasma membrane of the
host, remaining extracytoplasmic [36], unlike more de-
rived apicomplexan parasites like Toxoplasma and Plas-
modium which invade the cytoplasm of the host cell [37,
38], supporting independent origins of intracellularity.
However, alternative scenarios remain possible: the api-
complexan ancestor may have been an intracellular
parasite with gregarines and Agamococcidioroida
independently becoming extracellular parasites, or a
transition to an extracellular lifestyle occurred after
Cryptosporidium diverged and then returned again to
intracellularity in the ancestor of Eimeriorina. Interest-
ingly, Piridium sociabile, a parasite that infects the sube-
pithelial connective tissue of whelks [39], was recently
placed within the chrompodellids [23]. This placement,
which is confirmed here, further demonstrates the pro-
pensity of apicomplexans and their close relatives to be-
come intracellular parasites.
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Apicomplexan mitochondrial metabolism
To explore how parasitism and adaption to an endobiotic
lifestyle impacted gregarine mitochondrial functionality,
we searched for metabolically important mitochondrial
proteins in a database comprised of 53 transcriptomes and
genomes from apicomplexans, chrompodellids, and Squir-
midea (Additional file 1: Table S1). We identified 146 pro-
teins involved in mitochondrial metabolism present in
these lineages (Additional file 15: Table S6, Add-
itional file 16: Fig. S10). When data were available, pro-
teins encoded on the mitochondrial genomes were
included in our mitochondrial metabolic reconstruction
(Fig. 2). These data revealed striking diversity of metabolic
capacity among gregarine lineages and support three inde-
pendent losses of the electron transport chain within
Apicomplexa.

Pyruvate metabolism
In typical aerobic mitochondrion, pyruvate dehydrogenase
(PDH) converts pyruvate into acetyl-CoA that is then oxi-
dized into CO2 in the TCA cycle, while also reducing
NAD+ to NADH. NADH is then utilized by the electron
transport chain to generate ATP by oxidative phosphoryl-
ation. In more reduced anaerobic MROs, the conversion of
pyruvate into acetyl-CoA is commonly facilitated by pyru-
vate:ferredoxin oxidoreductase (PFO), pyruvate:NADP oxi-
doreductase (PNO), and/or pyruvate formate lyase (PFL)
[40]. Acetyl-CoA can then be metabolized to acetate, while
generating ATP from ADP by substrate-level phosphoryl-
ation. Cryptosporidium hominis and C. parvum both lack
most genes involved in the TCA cycle and the ETC and
can only produce ATP via substrate-level phosphorylation,
for example during glycolysis or metabolism of acetyl-CoA
to acetate. Although PDH can be found in many apicom-
plexan lineages, previous studies demonstrated that api-
complexan PDH is localized to the apicoplast rather than
the mitochondrion [41]. Instead, most apicomplexans im-
port pyruvate into the mitochondrion via the mitochondrial
pyruvate carrier (MPC) where it is converted to acetyl-CoA
by the BCKDH complex which is then shuttled into the
TCA cycle (Fig. 2b). In C. muris, the enzyme PNO converts
pyruvate to acetyl-CoA in the cytosol which is presumably
then shuttled into the mitochondrion via the acetyl-CoA
transporter [42, 43]. Once in the mitochondrion, acetyl-
CoA is utilized by the TCA cycle (Fig. 2c), producing
NAD(P)H that is ultimately oxidized by a reduced respira-
tory chain consisting of NDH2 and alternative oxidase
(AOX) [43]. Archigregarines, blastogregarines, and the
eugregarine superfamily Actinocephaloidea all maintain the
pathway of BCKDH converting pyruvate to acetyl-CoA akin
to the aerobically functioning mitochondria in core apicom-
plexans (Fig. 2b). In contrast, the other three eugregarine
lineages lost BCKDH and instead use a PNO-based pyru-
vate metabolism pathway, akin to MROs described from

other anaerobes (Fig. 2c) [44]. PNO is conspicuously miss-
ing in the G. niphandrodes data. Since no other enzyme
that metabolizes pyruvate has been identified in G. niphan-
drodes, the absence of PNO may reflect an incomplete na-
ture of this genome.
Substrate-level phosphorylation generating ATP via ADP-

forming acetyl-CoA synthetase (ACS) has been characterized
in anaerobic lineages across the eukaryotic tree of life with
functionally reduced mitochondria [44, 45]. Investigations
into apicomplexan acetyl-CoA synthetase have focused pri-
marily on the AMP-forming ACS found in all well-
characterized lineages. This AMP-forming ACS has been de-
scribed to function in fatty acid transport and the production
of acetyl-CoA for protein acetylation and fatty acid elong-
ation [14, 43, 46, 47]. Acetyl-CoA synthetase has also been
suggested to function in substrate-level phosphorylation in
C. muris, but not in any other apicomplexan [13, 44]. Here,
in addition to the AMP-forming ACS, we identified an ADP-
forming ACS found in all eugregarines as well as with patchy
distribution throughout Apicomplexa (Additional file 17: Fig.
S11). This ADP-forming ACS has been previously shown to
have originated in diverse eukaryotic lineages through mul-
tiple lateral gene transfer (LGT) events [48–51] and is known
to produce ATP via substrate-level phosphorylation in the
cytosol [52, 53]. Known exceptions include Mastigamoeba
balamuthi (Amoebozoa: Archamoebae) and Spironucleus
salmonicida (Metamonada: Fornicata), which both have ACS
localized to their MROs [49, 50]. In silico predictions of the
ADP-forming ACS identified in some apicomplexan lineages
suggest it is localized into cytosol, where it can convert
acetyl-CoA into acetate while generating ATP [13].
We recovered a complete or near complete TCA cycle

for all lineages in this study, with the exception of several
Cryptosporidium species (Fig. 2a; Additional file 15: Table
S6). It has been reported that apicomplexans have re-
placed malate dehydrogenase (MDH) with malate:quinone
oxidoreductase (MQO) [13]. We found that Platyproteum,
a sister taxon to Apicomplexa and chrompodellids, has
both MDH and MQO and Chrompodellids retain solely
MDH, suggesting acquisition of MQO by an ancestor of
Squirmidea, followed by the retention of MDH in Chrom-
podellids and MQO in Apicomplexans.

Multiple independent losses of the electron transport
chain
One of the most striking findings is the independent loss
of multiple ETC complexes in at least three apicom-
plexan lineages. Functional reduction of Cryptosporid-
ium MROs has been well characterized over the past
few decades [13, 16, 54, 55]. Here, we report additional
losses in three eugregarine lineages. Although archigre-
garines and blastogregarines are each represented by
only one single-cell transcriptome, we recover a nearly
complete electron transport chains for these early
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branching gregarines, with the few missing genes likely
resulting from partial datasets (Fig. 2a). Inferring gene
loss from transcriptomic data can be problematic, espe-
cially considering that life-stage-specific metabolic fluxes
have been characterized for some apicomplexans like
Toxoplasma and Plasmodium, which could cause genes
to be absent from the transcriptomes [56–58]. However,
given that gregarine life cycles are much less complex
than that of the “core Apicomplexa,” and all analyzed
datasets are based on sampling of the same life stage
(trophozoites), differences between gregarine lineages
are very unlikely to result from life-stage-specific meta-
bolic fluxes. Even with these considerations, we observe
strong patterns of ETC loss in eugregarines as not a sin-
gle protein from ETC complexes III–V is recovered from
Urosporoidea (n = 5), Porosporoidea (n = 2), or Gregari-
noidea (n = 5, plus one genome), which all infect the
host digestive system or coelom (Fig. 2a). However, this
pattern is rendered non-monophyletic by Actinocepha-
loidea, which appears to maintain a fully functioning
ETC (again, the few unrecovered genes are attributed to
partial data). Monocystis agilis (Actinocephaloidea) in-
fects the reproductive system of terrestrial worms and
may have greater exposure to oxygen allowing it to gen-
erate ATP through oxidative phosphorylation, unlike the
digestive tract-infecting eugregarines. Accordingly, we
suspect the differential ETC loss in Urosporoidea, Poros-
poroidea, and Gregarinoidea is likely a result of ad-
vanced adaptation to the hypoxic conditions found
within the digestive tract of their respective hosts. Fur-
thermore, the lack of cytochrome b, cytochrome c oxi-
dase subunit 1, or cytochrome c oxidase subunit 3 from
Urosporoidea, Porosporoidea, and Gregarinoidea se-
quence data suggests a possible loss of the mitochondrial
genome in these lineages. Similar patterns of mitochon-
drial genome loss and adaptation to anaerobiosis have
been observed in Cryptosporidium and other eukaryotic
gut endobionts throughout the tree of life [44, 45, 59–
62]. Interestingly, the distribution of prokaryotes within
the intestinal tract of the polychaete Neanthes glandi-
cincta has shown increased density of aerobic species in
the anterior, with anaerobes representing the majority in
the posterior of the gut [63]. Accordingly, the retention
of a complete ETC capable of oxidative phosphorylation
in archigregarines and blastogregarines may be explained
by their localization within the host digestive system;
however, more data is necessary to test this hypothesis.
In most eukaryotes, ubiquinol (UQ) serves as an elec-

tron carrier through the electron transport chain. Curi-
ously, we were unable to identify the majority of the
enzymes involved in ubiquinol synthesis in eugregarines
(transcriptomes from 13 species and the G. niphan-
drodes genome), with the exception of COQ3 which is
conserved in all groups, and COQ6 which is found only

in Actinocephaloidea. In few, but varied exceptions, an-
aerobes will instead use rhodoquinone (RQ) as an elec-
tron carrier [45, 64–66]. In aerobic conditions, complex
II oxidizes succinate to fumarate, thereby transferring
electrons for the reduction of ubiquinone to ubiquinol,
while in anaerobic conditions complex II functions in
the reverse, regenerating UQ by utilizing electrons from
ubiquinol to reduce fumarate to succinate [67]. The
lower redox potential of RQ over UQ enables rhodoqui-
none to transfer electrons via complex II and more fa-
vorably reduce fumarate to succinate [67]. However,
endogenous production of RQ necessitates a source of
UQ [68–70]. Utilization of exogenous UQ has been
demonstrated in mice [71], and UQ obtained from bac-
terial prey has been proposed as the source of UQ which
is then converted into RQ by the laterally acquired
methyltransferase rquA in Pygsuia [66]. We were unable
to identify rquA in any apicomplexans in this study neg-
ating this as a possibility for eugregarines (data not
shown).
The conservation of COQ3 in eugregarines suggests its

involvement in ubiquinol (UQ) production, but its synthe-
sis otherwise remains a mystery. It is possible that eugre-
garines are utilizing COQ3 for alternative functions or
that they may have lost the ability to fully synthesize ubi-
quinol like Cryptosporidium ubiquitum [43] and the pres-
ence of COQ3 may represent a final vestige of a fading
UQ synthesis pathway. We can think of four possibilities
to explain the absence of UQ biosynthesis proteins in
eugregarines. (1) Either these proteins have become ex-
tremely divergent in eugregarines and were unable to be
recovered in our searches; (2) eugregarines have replaced
ubiquinol with another Q source, for which the synthesis
pathway remains unknown (like RQ in the ciliate Nyc-
totherus ovalis [64]); (3) eugregarines are utilizing COQ3
to methylate exogenously acquired 3-demethylubiquinol-n
for the final step of UQ production; or (4) exogenous Q
could satisfy the UQ requirement for the complete ETC
retained by Actinocephaloidea as shown in UQ-deficient
mice [71], although the mechanism for its acquisition re-
mains unclear [72]. The absence of dihydroorotate de-
hydrogenase (DHOD) in other eugregarines with a
reduced ETC, and the additional loss of glycerol-3-
phosphate dehydrogenase in Gregarinoidea suggests re-
duced Q dependency in these lineages (Additional file 15:
Table S6). This reduced capacity for ubiquinone biosyn-
thesis likely indicates host dependency for a source of Q
in eugregarines. Along with the previously described ETC
reductions, these findings support the hypothesis that pat-
terns of reductive mitochondrial evolution in eugregarines
were co-mediated by adaptions to parasitism and an an-
aerobic environment in a host digestive system.
The presence of ATP synthases has been associated

with the formation of mitochondrial cristae [73], and a
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recent study identified 17 ATP synthase proteins that
contribute to the curvature of cristae in the Toxoplasma
gondii mitochondrion [74]. This study specifically impli-
cated ATPTG11 (called ASAP19 by [75] and in Table
S6) as essential to the structural architecture of T. gondii
cristae [74]. Investigations of medically important api-
complexans like T. gondii have characterized a link be-
tween bioenergetics and cristae formation [74].
However, gregarines complicate our understanding of
these structures despite there being relatively few ultra-
structural studies compared to their vast diversity. Cris-
tae have been observed in the mitochondria of some
archigregarines and blastogregarines [21, 76, 77], which
are both lineages that retain a complete ETC (Fig. 2).
However, other archigregarines appear to lack cristae or
present few structures called blistered vesicles that are
connected to the inner membrane of the mitochondrion
[78]. Surprisingly, members of lineages lacking an ETC
in this study (e.g., Urosporoidea and Gregarinoidea) have
also been shown to retain cristae [79–81]. We were un-
able to identify ATPGT11/ASAP19 in any gregarine
lineage. Other proteins linked to cristae architecture [74]
were identified only from archigregarines, blastogregar-
ines, and actinocephaloideans (see ATPTG proteins in
Additional file 15: Table S6), all of which retain a func-
tional ETC. The presence of cristae in gregarine mito-
chondria that lack an ETC (particularly complex V—
ATP synthase), as well as the lack of cristae in mito-
chondria of gregarines with a complete ETC, would be
of particular interest in future investigations.

Other mitochondrial pathways
Mitochondrial Fe-S cluster synthesis has been consid-
ered the core functional pathway preventing the
complete loss of mitochondria/MROs in numerous line-
ages [54, 82–84]. Accordingly, Monocercomonoides exilis
(Metamonada: Preaxostyla) is the only eukaryote to have
completely lost the organelle and has replaced the mito-
chondrial ISC pathway with the bacterial SUF system
through lateral gene transfer. This laterally acquired SUF
system functions in the cytosol in M. exilis [83]. The
Pygsuia ISC pathway was similarly replaced by a pro-
karyotic SUF system that shares a common origin with
the fused SUFCB proteins identified in Blastocystis [85].
Additionally, Mastigamoeba balamuthi and Entamoeba
histolytica (Amoebozoa: Archamoebae) have both re-
placed their ISC with a NIF pathway of prokaryotic ori-
gin [86–88]. However, in apicomplexans, even the highly
reduced MROs of C. parvum and C. hominis retain a
functional ISC system [54]. Although we did not find
the complete suite of genes involved in the ISC pathway
in any one gregarine, the overall patterns of gene reten-
tion support that this pathway remains functional in all
gregarines studied to date. The findings here further

support the role of the mitochondrial ISC pathway in
the retention of MROs.
Cryptosporidium is known to have reduced metabolic

capacity and has lost several pathways for amino acid
and fatty acid metabolism [43]. Although we are relying
primarily on single-cell transcriptomes, we identified
much broader patterns of amino acid metabolism in the
gregarine mitochondria compared to those of Crypto-
sporidium spp. For example, most Cryptosporidium spe-
cies have lost all genes involved in the glycine cleavage
system (GCS) [15]. Only the GCS L protein is retained
in C. andersoni, C. muris, Porosporoidea, and Gregari-
noidea; however, this protein is known to be widely in-
volved in energy metabolism and maintaining redox
balance, including its role as the E3 component in the
BCKDH complex [15, 89]. In archigregarines, blastogre-
garines, urosporideans, and actinocephaloideans, we
identified a complete GCS pathway (Table S6). Aside
from the GCS pathway, we found cystathione beta syn-
thase, alanine aminotransferase, glutamate dehydrogen-
ase, and several other proteins involved in amino acid
and fatty acid metabolism are conserved across gregarine
lineages.

The role of lateral gene transfer in apicomplexan
mitochondrial metabolism
Lateral gene transfer (LGT) has been implicated as an
important driver in environmental adaptation with an
ever-increasing number of well-supported events occur-
ring in eukaryotes [50, 51, 66, 90–92]. Here, we show
that ADP-forming acetyl-CoA synthetase (ACS) has
been acquired by the ancestor of chrompodellids and
Apicomplexa by LGT from a prokaryotic donor (Add-
itional file 17: Fig. S11). The acquisition of this ADP-
forming ACS likely facilitates ATP production via
substrate-level phosphorylation in the cytosol, providing
flexibility in their metabolic capacity under dynamic en-
vironmental conditions, as in Giardia intestinalis [45].
We also observe strong support for an independent

origin of malic enzyme in the gregarines sequenced for
this study. Malic enzyme converts malate to pyruvate
which is subsequently converted to acetyl-CoA and can
be utilized by the TCA cycle. Seeber et al. [15] proposed
that in C. parvum and C. hominis, the NADH generated,
in part by malic enzyme, can act as a proton pump and
lead to a simplified respiratory chain comprised of
NAD(P) transhydrogenase, NDH2, and AOX. Malic en-
zyme is widely conserved throughout Apicomplexa;
however, it appears to have been lost in the ancestor to
Gregarinoidea and remains absent in G. niphandroides.
Interestingly, the cockroach-infecting gregarines se-
quenced here have replaced the missing malic enzyme
through an LGT from proteobacteria (Additional file 18:
Fig. S12).
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The ancestor of the Apicomplexa lost the TCA cycle
protein MDH, which has been replaced by the acquisition
of MQO through an LGT from epsilon-proteobacteria
[13, 93]. We identified MQO in all apicomplexan lineages
except Urospororidea, and Porospororidea, which are rep-
resented solely by single-cell transcriptome data, so we
consider its absence inconclusive. Both MDH and MQO
have been observed in Squirmidea (Platyproteum) and
two chrompodellids (Alphamonas and Vitrella). The en-
zymes may be functioning independently based on cellular
conditions as was observed in E. coli [94], or collabora-
tively as in Corynebacterium glutamicum [95]. Combined,
these three LGT events represent important adaptations
to mitochondrial metabolism in apicomplexans. Future in-
vestigations of understudied apicomplexans will help to
pinpoint the origins of adaptive LGTs, reveal patterns of
organellar evolution and genomic adaptions to specific
host environments, and establish the order of transitions
between intracellular and extracellular lifestyles, and those
between marine and terrestrial hosts.

Conclusions
Our phylogenomic analyses place Cryptosporidium as a
sister lineage to the rest of Apicomplexa, with gregarines
and core apicomplexans each forming fully supported
clades. However, deeper analysis highlights that the
branching pattern observed in the early apicomplexan
radiation remains highly contentious, and the topology
of gregarines forming sister lineage to a clade of Crypto-
sporidium and core apicomplexans cannot be fully re-
futed. Regardless of whether Cryptosporidium or
gregarines diverged first, this evolutionary framework
suggests that apicomplexans are evolutionarily malleable,
with phenotypic adaptations being driven by the host en-
vironment. Intracellularity has evolved at least three
times independently within the Apicomplexa: once in
Cryptosporidium, again in Coccidia, and a third time in
the ancestor of Haemospororida and Piroplasmorida.
Our phylogeny also supports a propensity for lifestyle
transitions specifically within gregarines, with at least
two transitions between marine and terrestrial hosts, as
well as adaptations to infect different host organs. Add-
itionally, based on our finding that Cryptosporidium
represents an evolutionarily distinct lineage from grega-
rines, it should no longer be considered part of the Gre-
garinasina or the Gregarinomorphea (as in Adl et al. [96]
or Cavalier-Smith [20]).
We characterized mitochondrial metabolism across

the Apicomplexa and observed two distinct modes of
metabolism within gregarines. Blastogregarines, archi-
gregarines, and Actinocephaloidea possess mitochondria
with a fully functioning electron transport chain, akin to
core apicomplexans. All other eugregarines appear to
lack a mitochondrial genome and have completely lost

complexes III–V of the ETC and BCKDH as part of a
switch to anaerobic mitochondrial metabolism. Here,
pyruvate is converted to acetyl-CoA by PNO or PFL.
Acetyl-CoA can then be shuttled to the organelle via
acetyl-CoA transporter, utilized by the TCA cycle, and
NADH is then oxidized by a reduced respiratory chain
consisting of NDH2 and AOX. Alternatively, acetyl-CoA
can be metabolized in the cytosol to acetate by acetyl-
CoA synthetase, while generating ATP. The mitochon-
drial or cytosolic localization of PNO/PFL enzymes and
acetyl-CoA will help us to fully understand the metabol-
ism in these gregarine lineages. These two types of greg-
arine mitochondrial metabolism are not restricted to
monophyletic groups and the electron transport chain
has been reduced at least three times during apicom-
plexan evolution, twice within gregarines.
We hypothesize that the observed distribution of mito-

chondrial reduction within gregarines corresponds with
their adaptation to an anaerobic environment within
their hosts and dependence on the host itself. Actinoce-
phaloidea, blastogregarines, and archigregarines retained
seemingly regular mitochondrial functions, while the
other eugregarines have twice independently transi-
tioned to functionally reduced mitochondria. The pat-
tern of adaptation corresponds well with the first
hypothetical step toward anaerobiosis—loss of com-
plexes III and IV [62]. This has been also observed in
many other gut-inhabiting endobionts across the tree of
life, including Cryptosporidium [44, 45, 62]. Moreover,
these eugregarines have completely lost complex V and
BCKDH. Instead, they possess PNO, which converts
pyruvate to acetyl-CoA in anaerobes [44, 96], and ADP-
forming acetyl-CoA synthetase that likely facilitates cyto-
solic substrate-level phosphorylation, producing acetate
as the final metabolic product.
Recent advances in single-cell sequencing have opened

the door to genomic characterization of unculturable line-
ages throughout the tree of life. Unsurprisingly, these stud-
ies provide profound insight into the understanding of
evolution, ecology, and biochemistry. Gregarines provide a
textbook example, and until now, their uncertain placement
within Apicomplexa hindered our understanding of evolu-
tionary events within this clade of medically important par-
asites. Gregarine metabolism has been shaped by adaptions
to parasitism and anaerobiosis, and as such, the mitochon-
drial remodeling observed in distinct gregarine lineages
highlights the importance of this group to our understand-
ing of organellar evolution and retention in eukaryotes. Fu-
ture investigations of under-explored apicomplexans will
further help to pinpoint the origins of adaptive LGTs, es-
tablish the order of transitions between intra- and extracel-
lular lifestyles, as well as host habitats, and continue to
reveal patterns of organellar evolution and genomic adap-
tions to specific host environments.
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Materials and methods
Specimen collection, RNA isolation and sequencing, and
assembly
Cockroach individuals were obtained from cultures
housed in the Department of Zoology, Charles Uni-
versity, Czech Republic. Gromphadorhina portentosa,
Gyna caffrorum, and Nauphoeta cinerea originated
from laboratory cultures of unknown origin. A colony
of Polyphaga aegyptiaca was established in 2012 from
individuals collected on Corfu, Greece, and a colony
of Pseudoderopeltis sp. was established from individ-
uals collected in 2013 in Ethiopia. Individual gregar-
ine trophozoites were hand-picked from G. caffrorum,
P. aegyptiaca, Pseudoderopeltis sp., and N. cinerea on
an Olympus IX70 inverted microscope using hand-
drawn glass pipettes. The gregarines were washed 3
times in phosphate-buffered saline (PBS) and placed
in a 0.2-ml tube containing 2 μl of cell lysis buffer for
the SmartSeq2 protocol [97], flash frozen, and stored
in a − 80 °C freezer. Single-cell RNA isolation, cDNA
generation, and amplification were completed accord-
ing to the SmartSeq2 protocol with only 11 amplifica-
tion cycles [97]. Heavily infected individuals of
Gromphadorhina portentosa and Polyphaga aegyptiaca
were dissected and the gut contents were emptied
into a petri dish with PBS. Under a Meopta DM23
dissecting microscope, 40–60 trophozoites were trans-
ferred by pipette to a clean dish of PBS to wash the
cells of other gut content and host tissue. Cells were
then transferred to a 2-ml tube and total RNA was
extracted using the RNAqueous RNA isolation kit
(Invitrogen) following the manufacturer protocol. The
resulting total RNA from 1 extraction of gregarines
from P. aegyptiaca (the first isolation of a gregarine
from a Polyphagidae cockroach), 2 extractions of Bla-
bericola migrator isolated from G. portentosa, as well
as cDNA independently generated from 3 gregarines
from Pseudoderopeltis sp., 2 Gregarina sp. Poly, 2
gregarines isolated from Gyna caffrorum, and 2 Proto-
magalhaensia wolfi isolated from N. cinerea were sent
to Macrogen for library preparation and sequencing.
Nextera XT libraries were generated for all single
cells and TruSeq stranded mRNA libraries were gen-
erated for total RNA. Libraries were sequenced on an
Illumina NexSeq producing 30 million 150 bp paired-
end reads per library. The resulting reads were
checked for quality using FastQC. Low-quality bases
and adapters were removed using Trimmomatic [98].
The remaining reads were assembled using rnaSPAdes
v3.13 [99], and Transdecoder was used for ORF pre-
diction and translation. Completeness of all transcrip-
tomes generated in this study, along with all public
apicomplexan data used for phylogenomic analyses,
was assessed using BUSCO with the Apicomplexa

gene set (Additional file 1: Table S1) [100]. Gregarine
species identifications were confirmed (> 99% identity)
or remain ambiguous (< 99% identity, e.g., Protoma-
galhaensia sp. Gyna) based on BLAST searches of the
SSU rRNA sequences recovered from the gregarine
transcriptomes and general morphology.

Phylogenomic dataset construction and analyses
The gene sets used in two independently published phy-
logenomic studies of gregarines were utilized for our
analyses [22, 23]. All publicly available Apicomplexan
genomes/transcriptomes [101–105] were considered for
initial ortholog selection in each gene set and run
through BUSCO [100] to assess completeness (see Add-
itional file 1: Table S1). Prior to assembling phyloge-
nomic datasets, our assemblies were run through
Winston Cleaner [106] to identify and highlight likely
cases of cross contamination. To further assist in the
identification of contamination and paralogs, transcrip-
tomes and genomes spanning the diversity of the
eukaryotic tree of life were included in the initial
“unparsed” datasets which are available on Figshare
[107]. A BLAST database was constructed from all pro-
teins considered for phylogenomic analyses (Additional
file 1: Table S1). A representative seed sequence for each
gene was used as a query to identify putative orthologs
by BLAST search (e-value < 1e−10). Up to the top five
blast hits for each species in the dataset were combined
with their respective genes to form a 246-gene dataset
that corresponded to the Burki et al. [25] dataset used
by Mathur et al. [23] and the 307-gene dataset from
Derrelle et al. [27] used by Janouškovec et al. [22]. For
each dataset, the individual genes were filtered for se-
quencing errors and non-homologous sites using PREQ-
UAL [108], aligned using MAFFT (--globalpair
--maxiterate 1000) [109], alignment uncertainty and er-
rors were filtered using DIVVIER (--partial -mincol 4
-divvygap) [110], and the filtered alignments were
trimmed of sites comprised of > 80% gaps using trimAL
(-gt 0.2) [111]. Trees were constructed from the
trimmed alignments using RAxML (PROTGAMMALG
with 100 rapid bootstraps) [112]. Each tree was then
carefully manually inspected to identify the correct
ortholog for each species and remove paralogous se-
quences and contaminations. In the case of inparalogs
(gene duplications strictly within a single organism), the
longest sequence or sequence with the shortest branch
length was selected as the ortholog. For midparalogs,
only the side of the inferred gene duplication that con-
tained the most data (as the total sum of retained se-
quence length of selected orthologs) based on the tree
was used for ortholog selection, even if this led to a loss
of a specific taxon for the particular gene. To clarify, if
one side of an inferred duplication had 7 taxa that were
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each 50% complete, while the other side contained 5 taxa
that were all 90% complete, the side with 5 taxa was se-
lected. In the event the total amount of retained data was
similar for each side a duplication, the side with greater
representation of species was selected (e.g., a side with 9
taxa that average 50% complete would be chosen over a
side with 7 taxa that average 65% complete). Once ortho-
logs for all taxa were identified, ortholog-only datasets
were filtered and aligned according to the previously de-
scribed methods and were then trimmed using BMGE (-g
0.3) [113]. Final taxon and gene selection were carried out
on these alignments with a threshold of 80% missing data
to maximize representation in each dataset and to accom-
modate for the inclusion of important taxa (e.g., Eimeria
falciformis). Our final phylogenomic datasets were com-
prised of 246 genes (63,201 sites) (corresponding to
Mathur et al. [23]) and 299 genes (89,675 sites) (corre-
sponding to Janouškovec et al. [22]) and 74 taxa. These
datasets were once again filtered, aligned, and trimmed in
the same manner. The resulting alignments were
concatenated into a supermatrix (one for each dataset),
partitioned using PartitionFinder2 under the LG+G model
[114], and subjected to maximum likelihood analysis in
IQtree (LG+C60+F+G) [115] with 1000 PMSF bootstrap
replicates. Bayesian inference was conducted in Phylo-
bayes [116] under the CAT-GTR model with 2 chains for
each dataset run for 7000 generations each (burnin = 20%;
maxdiff = 1 and 0.081 for datasets A and B, respectively).
The average absolute difference in gene-wise log-
likelihood scores, as calculated in IQtree under the LG+
C20+G model, for the A+C, A+G, and G+C topologies
was calculated following Shen et al. [30] for each dataset.
After removing outlier genes identified in each dataset,
maximum likelihood trees were reconstructed in IQtree
(LG+C60+F+G) [115] with 100 PMSF bootstrap repli-
cates. Additional datasets comprised of genes unique to
dataset A, genes unique to dataset B, and genes shared be-
tween the two datasets were also subjected to maximum
likelihood analysis in IQtree (LG+C60+F+G). Additionally,
maximum likelihood trees for the full datasets were con-
structed under the LG model were computed using IQtree
(LG+F+G) with 1000 ultrafast bootstraps. Single gene
datasets including all considered sequences (i.e., including
orthologs and paralogs [35];) and ortholog-only datasets
are available on figshare [107]. Log files for phylogenomic
analyses containing commands and processor information
are also available on figshare [117] as recommended by
Shen et al. [118].

Removal of fast evolving and heterotacheous sites, and
random gene subsampling
For each of our phylogenomic datasets, PhyloFisher
scripts [119] were used for fast site removal,

heterotacheous site removal, and random gene subsamp-
ling. The fastest evolving sites were sequentially removed
in 6000 site chunks generating new alternative datasets at
each step until all sites were removed (as in [31, 32]).
Similarly, the most heterotacheous sites [33] were re-
moved in a stepwise fashion, 6000 sites at a time, produ-
cing iteratively smaller datasets until no further sites could
be removed. Genes from our 74 taxon datasets were ran-
domly subsampled in sets of 20%, 40%, 60%, and 80% of
the complete dataset, under the default 95% confidence
interval setting as in Brown et al. [31]. The dataset com-
prised of genes unique to dataset A was similarly sub-
jected to fast site removal, with 3000 sites being removed
at each step. All datasets generated by these scripts were
then subjected to phylogenetic analysis using IQtree under
the LG+C60+F+G model with 100 non-parametric boot-
strap replicates generated using PMSF and the fast setting
in IQtree. In the case of fast evolving site removal under
the LG model, 100 rapid bootstraps were generated using
RAxML v8 (PROTCATLGF).

Constrained trees, concordance factors, and topology
tests
Both 74 taxon datasets used for the initial phylogenomic
analyses, were subjected to constrained maximum likeli-
hood tree reconstruction in IQtree (LG+C60+F+G) using
the same partitioning scheme applied in our initial ana-
lyses. The overall topologies published in Mathur et al.
[23] (i.e., gregarines are sister to other apicomplexans) and
Janouškovec et al. [22] (monophyletic gregarines and
Cryptosporidium spp. as sister to other apicomplexans)
were used as constraints. Gene concordance factors (gCF)
for the best ML tree for our initial phylogenomic analysis
and the constrained topologies were calculated using
IQtree [29]. Additionally, the approximately unbiased
(AU) test [120] was conducted on the maximum likeli-
hood tree, the constrained trees, and 100 distinct local
topologies saved during the initial ML analysis (-wt option
in IQtree) as implemented by IQtree [115].

In silico predictions of mitochondrial metabolism
Genes of interest were identified from previously
published studies of anaerobic mitochondria, the
published mitochondrial proteome of Tetrahymena
thermophila [121], and recent publications on mito-
chondrial metabolism of Apicomplexa [15, 51, 61,
65, 75, 85, 122–124]. Candidate sequences from our
gregarine data and other publicly available genome-
scale datasets for apicomplexans and their close rela-
tives (Additional file 1: Table S1) were recovered by
BLAST using representative seed sequences and col-
lecting hits with e-value <1e−5 were extracted and
added to the initial datasets for each gene. When
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available, datasets published by Rotterova et al. [61,
124] were used as starting datasets. Alternatively,
datasets for phylogenetic analysis were constructed
by using BLAST searches of the seed sequences
against nr (max target seqs = 100) to thoroughly
sample apicomplexans and other close relatives.
These BLAST results were supplemented with se-
quences selected from gene name search results
from the NCBI protein and RefSeq databases to en-
sure broad eukaryotic and prokaryotic taxonomic
sampling and were then clustered using CD-Hit
[125] at 75%. Each gene dataset was filtered for se-
quencing errors and non-homologous sites using
PREQUAL, aligned using MAFFT (--localpair --maxi-
terate 1000), and alignment uncertainties and errors
were filtered using DIVVIER (-partial -mincol 4 -div-
vygap) and single gene trees were constructed using
IQtree (LG+C20+F+G) with 100 RAxML rapid boot-
straps using constructed under the PROTGAM-
MALG4X model. Each alignment/tree has been
repeatedly inspected by the eye, and sequences were
added/removed as necessary. Ultimately, each tree
was manually inspected, enabling precise inference of
the presence/absence of proteins involved in mito-
chondrial metabolism in the studied lineages. Predic-
tion of subcellular localization for all sequences
identified as apicomplexan homologs in this study
was conducted in TargetP v2 [126] and DeepLoc
[127]. Files containing all initially considered se-
quences, final datasets, final alignments, sequences of
all selected Apicomplexan homologs, the resulting
trees (raw and colored to show selected apicomplexan
homologs), and the subcellular localization prediction
results for all mitochondrial genes discussed in this
study are available on figshare [128].

Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-021-01007-2.

Additional file 1: Table S1. Sources, uses, and BUSCO completeness
for data used in this study.

Additional file 2: Fig. S1. Maximum likelihood phylogeny of
apicomplexans as recovered from dataset A, comprised of 246 genes and
63,201 sites. The final dataset was partitioned under the LG+G model in
PartitionFinder2 and then subjected to maximum likelihood analysis
implemented in IQtree (LG+C60+F+G). Non-parametric PMSF bootstrap
support values (n = 1000) are shown on the branches.

Additional file 3: Fig. S2. Maximum likelihood phylogeny of
apicomplexans as recovered from dataset B, comprised of 299 genes and
89,675 sites. The final dataset was partitioned under the LG+G model in
PartitionFinder2 and then subjected to maximum likelihood analysis
implemented in IQtree (LG+C60+F+G). Non-parametric PMSF bootstrap
support values (n = 1000) are shown on the branches.

Additional file 4: Fig. S3. Bayesian inference (BI) consensus tree for
apicomplexans as recovered from dataset A, comprised of 246 genes and
63,201 sites. The final dataset was subjected to two chains of BI in

Phylobayes for 7000 generations with every second generation sampled
and a burnin of 20%. The two chains for dataset A did not converge
(maxdiff = 1) and their topologies are independently shown as Figs. S7
and S8. Support values listed on branches are posterior probabilities from
the analysis.

Additional file 5: Fig. S4. Bayesian inference (BI) tree for chain 1 from
dataset A, comprised of 246 genes and 63,201 sites. The final dataset was
subjected to two chains of BI in Phylobayes for 7000 generations with
every second generation sampled and a burnin of 20%. Support values
listed on branches are posterior probabilities from the analysis.

Additional file 6: Fig. S5. Bayesian inference (BI) tree for chain 2 from
dataset A, comprised of 246 genes and 63,201 sites. The final dataset was
subjected to two chains of BI in Phylobayes for 7000 generations with
every second generation sampled and a burnin of 20%. Support values
listed on branches are posterior probabilities from the analysis.

Additional file 7: Fig. S6. Bayesian inference (BI) consensus tree for
apicomplexans as recovered from dataset B, comprised of 299 genes and
89,675 sites. The final dataset was subjected to two chains of BI in
Phylobayes for 7000 generations with every second generation sampled
and a burnin of 20%. The two chains for dataset B converged with
maxdiff = 0.081. Support values listed on branches are posterior
probabilities from the analysis.

Additional file 8: Table S2. Gene concordance factors for possible
apicomplexan relationships.

Additional file 9: Table S3. Approximately unbiased test scores for
possible apicomplexan relationships.

Additional file 10: Table S4. Genes unique and overlapping between
phylogenomic datasets A and B.

Additional file 11: Table S5. Maximum likelihood topologies produced
by unique and shared genes from datasets A and B.

Additional file 12: Fig. S7. Effects of fast evolving site removal on
support for bipartitions of interest in the phylogenomic analyses of genes
that are unique to dataset A. Graphs plotting support for bipartitions of
interest after the stepwise removal of the 3000 fastest evolving sites until
all sites are removed from each dataset (dataset A on the top and
dataset B on the bottom). 100 RAxML rapid bootstraps values
(PROTCATLGF) are on the y-axis and number of sites removed, measured
in thousands, is shown on the x-axis.

Additional file 13: Fig. S8. Effects of fast evolving site removal on
support for bipartitions of interest in the phylogenomic analyses of each
dataset under the less complex LG model. Graphs plotting support for
bipartitions of interest after the stepwise removal of the 6000 fastest
evolving sites until all sites are removed from each dataset (dataset A on
the top and dataset B on the bottom). 100 RAxML rapid bootstraps
values (PROTCATLGF) are on the y-axis and number of sites removed,
measured in thousands, is shown on the x-axis.

Additional file 14: Fig. S9. Box-and-whisker plots showing the differ-
ence in gene likelihood scores (ΔGLS) dataset A and dataset B. ΔGLS
values for genes that plot above the upper whisker are shown with the
preferred topology of the gene tree (A + C = core apicomplexans with
Cryptosporidium; A + G = core apicomplexans with gregarines; G + C =
gregarines with Cryptosporidium).

Additional file 15: Table S6. Presence-absence table for genes in-
volved in apicomplexan mitochondrial metabolism.

Additional file 16: Fig. S10. Maximum likelihood trees for all
mitochondrial genes discussed in this study inferred using IQtree
(LG+C20+F+G). Support values are calculated from 100 RAxML rapid
bootstraps under the PROTGAMMALG model. Sequences identified as
apicomplexan homologs are colored in red, sequences in purple are
suspected apicomplexan contamination of a host rather than the target
organism.

Additional file 17: Fig. S11. Maximum likelihood phylogeny of ADP-
forming ACS reconstructed in IQtree (LG+C20+F+G) with support values
from 100 non-parametric PMSF bootstrap replicates. Prokaryotes are blue,
Apicomplexa, Squirmidea and chrompodellids are colored red, and other
eukaryotes are shown in black. The topology shows moderately strong
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support for a laterally transferred ADP-forming ACS gene of prokaryotic
origin to the shared ancestor of chrompodellids and apicomplexans.

Additional file 18: Fig. S12. Maximum likelihood phylogeny of malic
enzyme reconstructed in IQtree (LG+C20+F+G) with support values from
100 non-parametric PMSF bootstrap replicates. Prokaryotes are blue, Api-
complexa, Squirmidea and chrompodellids are colored red, and other eu-
karyotes are shown in black. The topology shows strong support for an
independent acquisition of malic enzyme by members of the Gregarinoi-
dea through lateral gene transfer from proteobacteria. The malic enzyme
sequenced in other eugregarines branches with members of the core
apicomplexans, chrompodellids, and Squirmidea.
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