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On the dynamics of FG-GPLRC sandwich cylinders
based on an unconstrained higher-order theory

Arameh Eyvazian1, Tamer A. Sebaey2,3, Krzysztof Kamil Żur 4, Afrasyab Khan 5,
Hexin Zhang 6, Simon H. F. Wong 7

Abstract

In the present paper, a novel unconstrained higher-order theory (UCHOT) is
applied to analyse the free vibration of cylindrical sandwich shells with nanocom-
posite face sheets reinforced with graphene platelets. UCHOT considers the shear
and thickness deformations. It is assumed that the cylinder includes a soft core
which embedded between functionally graded graphene platelets reinforced com-
posites (FG-GPLRC). FG-GPLRC face sheet consists of several laminas that the
GPL weight fraction is modified layer to layer based on the various functionally
graded (FG) patterns. The Winkler-Pasternak elastic foundation is located at
the inner surface of the shell. Highly coupled motion equations are solved by a
semi-analytical approach. This approach is blended of the generalized differential
quadrature and trigonometric expansion (TE-GDQ) methods. Solving the obtained
eigenvalue problem, corresponding frequencies to the cylindrical sandwich shell are
achieved. In the results part, comparison studies are carried out to indicate the
validity and performance of the selected theory and solution method. Afterward,
some parametric results are demonstrated to investigate the impacts of shell the-
ory order, geometrical parameters, FG model, elastic foundation parameters, and
boundary conditions on the frequency response of the mentioned structure.

Keywords: Frequency Analysis; Graphene Platelets; Sandwich Cylindrical Shell;
Unconstrained Higher-Order Plate Theory (UCHOT); Elastic Foundation.

1 Introduction

1.1 Background

Sandwich structures are important class of structures because of their preferable
properties such as great bending stiffness and low specific weight with application in
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medical, aircraft and aerospace space vehicles and portage systems [1,2]. One of the most
widely used class of this structures can be constituted of a placed homogeneous soft core
between two face sheets made of isotropic material [3], fiber-reinforced composites [4, 5],
carbon nanotube [6, 7], or functionally graded materials [8–10]. Owing to ultramodern
electrical, thermal and mechanical characteristics of nanofillers, they are largely tested
to augment the polymer composites, instead of usual elongated fibers. Beside to uniform
prorating, nanocomposites can also be functionally graded (FG) reinforced [11]. Graphene
has a greater ability to react with the matrix than other nano-amplifiers due to their flat
appearance, so its application will be more effective than other nanofillers [12–16]. Due
to chemical properties, the dispensation of graphene sheets to a matrix causes them to
react with together, which ultimately form graphene platelets (GPLs) [17]. So-called
nanocomposites reinforced with GPLs are called FG-GPLRC. The employing of this
type of modern nanocomposites as face sheets in sandwiches can enormously better their
vibrational response [18].

1.2 Literature survey

Latterly, large number of experimental and analytical articles have been accomplished
regarding the vibrational behavior of reinforced structures by GPLs. Rafiee et al. [17]
discovered that the improved elastic stiffness and strength due to appending 0.1 w.t.%
(weight fraction) of GPLs, is equivalent to adding 1 w.t.% of CNTs. Besides, King et
al. [19] manufactured a graphene reinforced composite (GRC) structure and showed that
enhancing 6.0 w.t.% graphene could magnify the elasticity modulus from 2.72 GPa to 3.36
GPa. Fang et al. [20] showed that synthesis of 0.9 wt.% graphene sheets to polystyrene
may eventuate 57.2 % increment of the Young modulus. Some analysis depicted that the
exerting graphene either in sheets or platelets types will amplify the natural frequency
of the plates and shells in comparison of the graphene-free ones. For instance, Song
et al. [21] ascertained that employing just 1.2 wt.% graphene will boost the natural
frequencies of the rectangular plate about 160 %. Chandra et al. [22] scrutinized the
outcomes of several models of nanocomposite manufacturing on their vibration behavior
and discussed on the significant role of graphene sheets sizes in increment of the natural
frequency. However, it should be attended that, graphene weight fraction cannot be
exceedingly increased, because excessive weight fraction of graphene nanofillers causes an
unpleasant results [23].

Kitipornchai et al. [24] perused the free vibration of FG-GPLRC beams considering
the impact of the porosity and GPLs stepwise distribution along the beam thickness.
In this study, the porosity is considered based on the closed-cell model according to the
Gaussian random law. In addition, the conventional Ritz method is used. It is evidenced
that the beam natural frequency can be elevated by the variation of distribution model of
porosity and GPLs. Dynamic response of edge-cracked nanocomposite beams reinforced
with GPLs was analyzed by Song et al. [25]. The rested beam on a two parameter elastic
foundation was investigated using thr GDQ tool. The influence of dielectric permittivity
on the forced vibration of FG-GPLRC beams was researched by Wang et al. [26]. Barati
and Shahverdi [27] proffered the finite element method to examine the force vibration
of FG-GPLRC elastic beam. A recent refined shear deformation theory was engaged to
develop the formulation. An investigation about the dynamic response of a FG-GPLRC
beam was carried out by Wang et al. [28]. It was assumed that the beam was exposed
to two subsequent movable masses. It should be mentioned that the Navier solution was
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implemented to adopt the response of higher-order shear deformation beam. Li et al. [29]
examined the primary and secondary resonances based on the geometrically nonlinear
assumptions for FG-GPLRC beams. Galerkin’s method was used to this problem. Feng
et al. [30] investigated the effect of porosity on the large amplitude free oscillation of the
GPL-based nanocomposite beams.

Frequency research was produced for the nanocomposite rectangular plates with in-
serting the porosity and GPL nanofillers by Yang et al. [31]. The calculated outcomes by
means of the Chebyshev-Ritz procedure shows that the X-model of functionally graded
material makes a plate with extra natural frequencies. Reddy et al. [32] convinced var-
ious boundary conditions around the FG-GPLRC rectangular plate for a free vibration
study. Zhao et al. [33] acceded the greater natural frequencies utilizing the amplified
trapezoidal plates by GPLs. Free vibration of FG-GPLRC quadrilateral plates imposing
the modified Halpin-Tsai micromechanical rule is scrutinized by Guo et al. [34]. Gholami
and Ansari [35] analyzed the free vibration of FG-GPLRC plates utilizing the variational
differential quadrature (VDQ) technique. In this research, the free vibration was investi-
gated for the mechanically pre- or post-buckled plates. Malekzadeh et al. [36] presented
the effect of piezoelectric layers attached to the FG-GPLRC eccentric annular plates on
their free vibrations implementing the GDQ method based on the polar coordinate map-
ping. Saidi et al. [37] surveyed the authority of GPLs reinforcement, piezoelectric plies,
and porous cells on the flutter aerodynamic pressure and free vibration response of plates.
As a further case of vibration control, Salim et al. [38] controlled the vibrations of FG-
GPLRC plate applying two piezoelectric layers based on the velocity feedback control.
This research was done using an element free method based on the improved moving
least-squares Ritz associated with higher-order shear deformation theory. The effects of
thermal environment and axial loading on the axisymmetric free vibration of annular
plates were analyzed by Wang et al. [39]. The extracted motion equations of higher-
order shear deformable plate were solved by means of GDQ tool. Gholami et al. [40, 41]
bringed up the VDQ method to research the geometrically nonlinear free and forced vi-
brations of FG-GPLRC rectangular plates considering the third-order shear deformation
assumptions. Liu et al. [42] analyzed the three-dimensional free oscillation of annular
plates utilizing the state-space based GDQ technique. Dong et al. [43, 44] analyzed the
asymmetric linear and non-linear free vibration response of FG-GPLRC cylindrical shells
with spinning motion. Analytically and Galerkin’s techniques are in order utilized to
obtain the response of governing motion equations related to small and large amplitude
vibrations. First-order shear deformation is applied to estimate the displacement field.
Usage of porosity in controlling the natural frequencies behavior of FG-GPLRC cylin-
drical shells is presented by Barati and Zenkour [45]. The dynamic response obtained
of the impulse loaded FG-GPLRC cylindrical shell has been investigated by Heydarpour
et al. [46] adopting the DQ-Heaviside-NURBS combination approach. Wang et al. [47]
inspected the GPL trigonometric dispersal effect on the large amplitude vibration of hol-
low cylinders. metal foam is selected as the matrix material. Niu et al. [48] employed the
Chebyshev-Ritz technique to evaluate the natural frequency response of revolving pre-
twisted nanocomposite cylindrical panels reinforced by GPL. Wang et al. [49] showed a
comprehensive research on the free vibration of FG-GPLRC shallow doubly curved pan-
els. Bidzard et al. [50] investigated vibration demeanor of FG-GPLRC toroidal panels
with edges that are resistant to elastic rotation. Liu et al. [51] analytically investigated
the three dimensional free vibration of thin, moderately thick, and thick hollow cylinders.
It is assumed that the structure is initially stressed.
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There are many approach to obtain the structure frequencies. Some of them are based
on the energy approach [52–54]. Others are applied to the motion equations in the strong
form [55]. These types of solutions are generally in the three categories: nodal, element,
and meshless [56] methods. One of the most implemented nodal methods are generalized
differential quadrature method. The GDQ is a simple and efficiency method which divide
the solution domain in some nodal points. More details are demonstrated in the solution
section [57].

1.3 Voids in the literature

Although theoretical research on the GPL-reinforced nanocomposite structures are
rich, articles about the vibration of sandwich structures with GPL-reinforced skins are
limited. Nematollahi et al. [58] gave a nonlinear free vibration study on the sandwich
beams with FG-GPLRC skins. The third-order shear deformation theory was utilized
in formulation of governing equations. Applying the transformed differential quadrature
method, Liang et al. [59] demonstrated the vibration behavior study of shear deformable
trapezoidal sandwich plate consists of a porous core with the outer FG-GPLRC surface
sheets. Mohseni and Shakouri [60] investigated the free vibration of sandwich plates
consist of the middle viscoelastic core embedded by GPL reinforced nanocomposites layers
on its surfaces.

Based on the above-reviewed studies, it is detected that published investigations on
the sandwiches incorporating the FG-GPLRC surfaces are all based on the plate/shell
theories and do not take into account the thickness deformation of the structure. Usually,
only shear deformations of structures were taken into account. However, there is not
even an article on the vibrations of a cylindrical sandwich shell with FG-GPLRC layers.
The current research examines the free vibration of FG-GPLRC cylindrical sandwich
shells based on a novel unconstrained higher-order theory. The utilized shell theory
considered shear deformations, rotary inertias and also thickness variations. The effective
of Young’s modulus for nanocomposite face sheets is obtained based on the Halpin-Tsai
homogenization model. The governing motion equations are solved implementing a semi-
analytical approach based on the trigonometric expansion and generalized differential
quadrature methods. It is assumed that the shell is on the Winkler-Pasternak elastic
foundation. The parametric studies are demonstrated to obtain the convergence criterion
for order of UCHOT. In addition, the effects of various boundary conditions, geometrical,
material factors, and also, a two-parameter elastic foundation on the natural frequencies
of the sandwich shell are investigated.

2 Geometric and material characteristics of sand-

wich cylindrical shell

A circular cylindrical sandwich shell with a desired total thickness h, mean radius R
and length L is considered. It is assumed that two FG-GPLRC face sheets surround a
soft core. Thickness of each FG-GPLRC face sheet is indicated by hf and core thickness
is hc (h = hc + 2hf ). A cylindrical coordinate is assumed on the middle surface of shell
(x, θ, z). z is measured from the middle surface and changes from −h/2 to h/2 which is
positive outward as depicted in Fig. 1.
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Figure 1: A schematic figure of the FG-GPLRC sandwich hollow cylinder on the elastic
foundation.

The sandwich cylinder is made of perfectly connected laminas. Each ply of FG-
GPLRC is made of composition of GPL reinforcements and isotropic matrix. In addition,
GPLs are randomly oriented and uniformly distributed; hence GPL weight fraction should
be considered as constant in the total of a ply. Besides, nanofillers weight fraction varies
from layer-to-layer based on the five functionally graded patterns as shown in Fig. 2.

Case1 Case2 Case3 Case4 Case5

hf

hf

hc

Figure 2: Functionally graded distributions.

Number of layers for each FG-GPLRC face sheet is even and indicated by NL. It
should be mentioned that the number of plies in the upper and lower face sheets is
equal. Several step layerwise for GPL weight fraction changes are supposed for the top
and bottom face sheets. The volume fraction of each ply V

(k)
GPL based on the various

functionally graded models are calculated in Table (1) [36, 61].
The total volume fraction of GPLs in each face sheet V ∗

GPL is computed in terms of
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Table 1: FG GPL distribution models along the top and bottom composite thickness.

FG name top GPLRC face sheet bottom GPLRC face sheet

Case1:
(

U
U

)

V
(k)
GPL = V ∗

GPL V
(k)
GPL = V ∗

GPL

Case2:
(

X
X

)

V
(k)
GPL = 2V ∗

GPL|2k −NL − 1|/NL V
(k)
GPL = 2V ∗

GPL|2k −NL − 1|/NL

Case3:
(

O
O

)

V
(k)
GPL = 2V ∗

GPL(1− |2k −NL − 1|/NL) V
(k)
GPL = 2V ∗

GPL(1− |2k −NL − 1|/NL)

Case4:
(

Λ
V

)

V
(k)
GPL = V ∗

GPL(2(NL − k) + 1)/NL V
(k)
GPL = V ∗

GPL(2k − 1)/NL

Case5:
(

V
Λ

)

V
(k)
GPL = V ∗

GPL(2k − 1)/NL V
(k)
GPL = V ∗

GPL(2(NL − k) + 1)/NL

GPLs weight fraction WGPL

V ∗
GPL =

WGPL

WGPL +
(

ρGPL

ρm

)

(1−WGPL)
(1)

The mass density of the constituents are presented by ρm and ρGPL. Halpin-Tsai’s
micromechanical rule as a second-order correlation homogenization rule which is con-
sidered as the geometry and size of reinforcements in obtaining the effective material
properties [62,63] is used. Accordingly, Young’s modulus of each ply may be attained by
utilizing the Halpin-Tsai micromechanical rule as

E(k) =
3

8

1 + ξLηLV
(k)
GPL

1− ηLV
(k)
GPL

× Em +
5

8

1 + ξTηTV
(k)
GPL

1− ηTV
(k)
GPL

× Em (2)

in which, two ancillary parameters ηL and ηT in Eq. (2) are given below

ηL =

(

EGPL

Em

)

− 1
(

EGPL

Em

)

+ ξL
, ηT =

(

EGPL

Em

)

− 1
(

EGPL

Em

)

+ ξT
(3)

where Em and EGPL present the Young modulus of the isotropic matrix and GPLs,
respectively. The geometric coefficients of used amplifications are explained in terms of
the GPLs thickness tGPL, width bGPL, and length aGPL as follows

ξL = 2

(

aGPL

tGPL

)

, ξT = 2

(

bGPL

tGPL

)

(4)

Due to the small distinction between the density and the Poisson’s ratio of graphene
and polymer used, Voigt’s model is satisfactory to extract the equivalent magnitude of
these parameters. These amounts can be calculated by

ρ(k) = ρGPLV
(k)
GPL + ρmV

(k)
m

ν(k) = νGPLV
(k)
GPL + νmV

(k)
m (5)

In Eq. (5), the subscripts m and GPL corresponds to the matrix and graphene platelets,
respectively. Also, Vm = 1 − VGPL is the isotropic polymer volume fraction. It should
be attended that the captured soft core is considered isotropic and homogeneous. Its
Young’s modulus, Poisson’s ratio and mass density are demonstrated by Ec, νc, and ρc,
respectively. Since it is used a soft core surrounded by two FG-GPLRC face sheet, the
total layers of sandwich which is displayed by Nt is Nt = 2NL + 1.
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3 Basic formulation

In the mechanical examinations of thick sandwich structures, choosing a suitable the-
ory in light of the accuracy of final results seems to be notable. Love first presented
the theory of shells based on Euler’s classical theory of beams [64]. This theory merely
considered the effect of bending and stretching of the plates/shells. Reissner extended
the previous theory by considering the influence of shear deformations [65]. This the-
ory is based on the Timoshenko theory for beams and is known as the first-order shear
deformation theory (FSDT). Next, Reddy reported a third-order theory for in-plane dis-
placements to apply the impact of free stress condition on the structure surfaces in me-
chanical behaviors [66]. Other higher order theories can be viewed in the articles [67,68].
All of these theories for formulating the plates and shells behavior, although suitable
for thicker structures, respectively, did not take into account changes of the thickness,
and the alone way to apply this effect was to employing the three-dimensional theory
of elasticity. Matsunaga [69], with expansion of displacements in every direction to high
and desired orders, was able to investigate the effects of thickness modification without
implementing the three-dimensional elasticity approach. He implemented this theory to
investigate the free vibrations of cylindrical shells and extracted the natural frequencies
of these structures with arbitrary thickness [70, 71]. Sahraee et al. [72] analyzed the free
vibration of thick beam on the elastic foundation using the Matsunaga theory. Javani
et al. [73] developed this theory to investigate the free vibration of a deep FGM arches.
They called Matsunaga’s theory unconstrained higher-order theory (UCHOT). UCHOT
is based on the expanding the displacement components to a higher-order of thickness
direction. Therefore, unlike other theories in the open literature, this theory considers
the effect of thickness changes in the formulation in addition to the effect of shear defor-
mations. The election of the order for this theory is optional and is therefore called the
unconstrained theory. Based on this theory, the displacement field of a circular cylinder
can be defined as

u(x, θ, z, t) =
M
∑

i=0

ziui(x, θ, t)

v(x, θ, z, t) =
M
∑

i=0

zivi(x, θ, t)

w(x, θ, z, t) =
M−1
∑

j=0

zjwj(x, θ, t) (6)

u, v, and w indicate the displacements of an arbitrary point of sandwich plate in the
meridional, tangential, and thickness directions, respectively. The order of theory is
depicted by M . In addition, t represents the time variable. It should be noted that
the order of transverse displacement w in this theory is one unit less than the order
of expanding of in-plane displacements. The three-dimensional strains related to the
UCHOT can be defined as follow
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εxx =
M
∑

i=0

ziui
,x

εθθ =
1

R(1 + z/R)

(

M
∑

i=0

zivi,θ +
M−1
∑

j=0

zjwj

)

εzz =
M−1
∑

j=0

zj,zw
j

γθz =
M
∑

i=0

zi,zv
i +

1

R(1 + z/R)

(

M−1
∑

j=0

zjwj
,θ −

M
∑

i=0

zivi

)

γxz =
M
∑

i=0

zi,zu
i +

M−1
∑

j=0

zjwj
,x

γxθ =
1

R(1 + z/R)

M
∑

i=0

ziui
,θ +

M
∑

i=0

zivi,x (7)

It is notable that the trapezoidal shape parameter (1 + z/R) is considered to achieve
more accurate result for free vibration of thick cylindrical shell. εxx, εθθ, εzz show the nor-
mal strains in the length, circumferential, and thickness directions. Moreover, γθz, γxz, γxθ
depict the shear strain components. Subscript comma shows the partial derivatives with
respect to ulterior letter. Considering the Hooke’s law, the stresses and strains of the
sandwich elastic media are related by linear relationships. Three-dimensional type of this
law is represented below for every layer of sandwich.
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(8)

where E1, E2, E3 refer to elastic parameters devoted to each layer and are defined as

E
(k)
1 =

E(k)(1− ν(k))

(1 + ν(k))(1− 2ν(k))

E
(k)
2 =

E(k)ν(k)

(1 + ν(k))(1− 2ν(k))

E
(k)
3 =

E(k)

2(1 + ν(k))
(9)

It was mentioned that E and ν represent the Young modulus and Poisson’s ratio.
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4 Governing equations

Implementing Hamilton’s principle, the equations of motion are derived. This rule
expresses

∫ t2

t1

(δT − δV − δU)dt = 0 (10)

δU is the strain energy variation, δT indicates the kinetic energy variation and δV is the
variation of work done by the Winkler-Pasternak foundation on the inner surface of shell.
This statements for UCHOT-based cylindrical shells may be obtained by

δU =

∫ 2π

0

∫ L

0

∫ +0.5h

−0.5h

σ
(k)
ij δεijR(1 +

z

R
) dz dx dθ i, j = x, θ, z

δV =

∫ 2π

0

∫ L

0

{

kww|z=−h/2 − kg(w,xx|z=−h/2 +
1

R2
w,θθ|z=−h/2)

}

δw|z=−h/2R(1 +
z

R
)|z=−h/2 dx dθ

δT =

∫ 2π

0

∫ L

0

∫ +0.5h

−0.5h

ρ(k) (u̇δu̇+ v̇δv̇ + ẇδẇ)R(1 +
z

R
) dz dx dθ (11)

Substituting Eq. (11) into Eq. (10) and using the conventional variational technique,
the motion equations of cylindrical sandwich shell integrated with FG-GPLRC surface
sheets are acquired in terms of stress resultants as

δui : N i
xx,x +

1

R
N i

θx,θ −Qi
xz =

M
∑

l=0

Iilü
l, i = 0, ...,M,

δvi :
1

R
N i

θθ,θ +N i
xθ,x −Qi

θz +
1

R
Q̄i

θz =
M
∑

l=0

Iilv̈
l, i = 0, ...,M,

δwj : Q̄j
xz,x +

1

R
Q̄j

θz,θ −N j
zz −

1

R
N j

θθ

−
M−1
∑

l=0

(−h/2)j+l(1−
h

2R
)

{

kww
l − kg(w

l
,xx +

1

R2
wl

,θθ)

}

=
M−1
∑

l=0

Ijlẅ
l, j = 0, ...,M − 1

(12)

where stress resultants are defined as

(N i
xx, N

i
θθ, N

i
zz) =

Nt
∑

k=1

∫ zk+1

zk

(σ(k)
xx z

i(1 + z/R), σ
(k)
θθ z

i, σ(k)
zz z

i
,z(1 + z/R))dz

(N i
θx, N

i
xθ) =

Nt
∑

k=1

∫ zk+1

zk

(σ
(k)
xθ z

i, σ
(k)
xθ z

i(1 + z/R))dz

(Q̄i
xz, Q

i
xz) =

Nt
∑

k=1

∫ zk+1

zk

(σ(k)
xz z

i(1 + z/R), σ(k)
xz z

i
,z(1 + z/R))dz

(Q̄i
θz, Q

i
θz) =

Nt
∑

k=1

∫ zk+1

zk

(σ
(k)
θz z

i, σ
(k)
θz z

i
,z(1 + z/R))dz (13)
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Substituting Eq. (8) into Eq. (13), these expressions can be written in terms of displace-
ments

N i
xx =

M
∑

l=0

{

Cx11
il ul

,x +
1

R
Cx12

il vl,θ

}

+
M−1
∑

l=0

{

1

R
Cx12

il wl + Cx13
il wl

}

N i
θθ =

M
∑

l=0

{

Cθ21
il ul

,x +
1

R
Cθ22

il vl,θ

}

+
M−1
∑

l=0

{

1

R
Cθ22

il wl + Cθ23
il wl

}

N i
zz =

M
∑

l=0

{

Cz31
il ul

,x +
1

R
Cz32

il vl,θ

}

+
M−1
∑

l=0

{

1

R
Cz32

il wl + Cz33
il wl

}

N i
θx =

M
∑

l=0

{

1

R
Cxθ11

il ul
,θ + Cxθ12

il vl,x

}

N i
xθ =

M
∑

l=0

{

1

R
Cxθ21

il ul
,θ + Cxθ22

il vl,x

}

Qi
xz =

M
∑

l=0

{

Cxz11
il ul

}

+
M−1
∑

l=0

{

Cxz12
il wl

,x

}

Q̄i
xz =

M
∑

l=0

{

Cxz21
il ul

}

+
M−1
∑

l=0

{

Cxz22
il wl

,x

}

Qi
θz =

M
∑

l=0

{

Cθz11
il vl −

1

R
Ĉθz12

il vl
}

+
M−1
∑

l=0

{

1

R
Cθz12

jl wl
,θ

}

Q̄i
θz =

M
∑

l=0

{

Cθz21
il vl −

1

R
Cθz22

il vl
}

+
M−1
∑

l=0

{

1

R
Cθz22

jl wl
,θ

}

(14)

in which cylinder stiffness factors are described using the following formulation





Cx11
il Cx12

il Cx13
il

Cθ21
il Cθ22

il Cθ23
il

Cz31
il Cz32

il Cz33
il



 =
Nt
∑

k=1

∫ zk+1

zk







(1 + z
R
)E

(k)
1 E

(k)
2

l
z
(1 + z

R
)E

(k)
2

E
(k)
2

1
(1+ z

R
)
E

(k)
1

l
z
E

(k)
2

i
z
(1 + z

R
)E

(k)
2

i
z
E

(k)
2

il
z2
(1 + z

R
)E

(k)
1






zi+ldz

[

Cxθ11
il Cxθ12

il

Cxθ21
il Cxθ22

il

]

=
Nt
∑

k=1

∫ zk+1

zk

[

1
(1+ z

R
)
E

(k)
3 E

(k)
3

E
(k)
3 (1 + z

R
)E

(k)
3

]

zi+ldz

[

Cxz11
il Cxz12

il

Cxz21
il Cxz22

il

]

=
Nt
∑

k=1

∫ zk+1

zk

[

il
z2
(1 + z

R
)E

(k)
3

i
z
(1 + z

R
)E

(k)
3

l
z
(1 + z

R
)E

(k)
3 (1 + z

R
)E

(k)
3

]

zi+ldz

[

Cθz11
il Cθz12

il

Cθz21
il Cθz22

il

]

=
Nt
∑

k=1

∫ zk+1

zk

[

il
z2
(1 + z

R
)E

(k)
3

i
z
E

(k)
3

l
z
E

(k)
3

1
(1+ z

R
)
E

(k)
3

]

zi+ldz (15)

In addition, Iil are the inertia terms of structure obtained by

Iil =
Nt
∑

k=1

∫ zk+1

zk

ρ(k)(1 +
z

R
)zi+ldz (16)
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Substituting Eq. (14) into Eq. (12), the governing motion equations of cylindrical
sandwich shell with unconstrained thickness based on the UCHOT are attained in terms
of displacements as

M
∑

l=0

{

Cx11
il ul

,xx +
1

R2
Cxθ11

il ul
,θθ − Cxz11

il ul +
1

R
(Cx12

il + Cxθ12
il )vl,xθ

}

+
M−1
∑

l=0

{

(
1

R
Cx12

il + Cx13
il − Cxz12

il )wl
,x

}

=
M
∑

l=0

Iilü
l, i = 0, ...,M

M
∑

l=0

{

1

R
(Cθ21

il + Cxθ21
il )ul

,xθ +
1

R2
Cθ22

il vl,θθ + Cxθ22
il vl,xx

+(
1

R
(Cθz21

il + Cθz21
il )− Cθz11

il −
1

R2
Cθz22

il )vl
}

+
M−1
∑

l=0

{

1

R
(
1

R
Cθ22

il + Cθ23
il − Cθz12

il +
1

R
Cθz22

il )wl
,θ

}

=
M
∑

l=0

Iilv̈
l, i = 0, ...,M

M
∑

l=0

{

(Cxz21
jl −

1

R
Cθ21

jl − Cz31
jl )ul

,x +
1

R
(Cθz21

jl −
1

R
Cθz22

jl −
1

R
Cθ22

jl − Cz32
jl )vl,θ

}

+
M−1
∑

l=0

{

Cxz22
jl wl

,xx +
1

R2
Cθz22

jl wl
,θθ − (Cz33

jl +
1

R2
Cθ22

jl +
1

R
Cθ23

jl +
1

R
Cz32

jl )wl

}

−

M−1
∑

l=0

(−h/2)j+l(1−
h

2R
)

{

kww
l − kg(w

l
,xx +

1

R2
wl

,θθ)

}

=
M−1
∑

l=0

Ijlẅ
l, j = 0, ...,M − 1

(17)

Furthermore, during the implementing of variational procedure, different boundary
conditions of shell for the circular edges (x = 0, L) can be derived. Major utilized
boundary conditions in the analytical and experimental researches are immovable simply
supported (S), movable simply supported (MS), clamped (C), and free (F). The mathe-
matically wording of these considering the UCHOT are illustrated as

for Simply Supported edges (S) : ui,i 6=2 = N1
xx = vi = wj = 0

for Movable Simply Supported edges (MS) : N i
xx = vi = wj = 0

for Clamped edges (C) : ui = vi = wj = 0

for Free edges (F) : N i
xx = N i

xθ = Q̄j
xz +

M−1
∑

l=0

kg(−h/2)j+l(1−
h

2R
)wj

,x = 0 (18)

where i = 1, 2, ...,M and j = 1, 2, ...,M .

5 Solution approach

Using the following approach which is called variable separation in the literature, the
dynamic equations (17) for linear treatment of sandwich cylinders can be separated and
then solved [74, 75].
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ui(x, θ, t)
vi(x, θ, t)
wj(x, θ, t)







= sin(ωt+ α′)





sin(nθ) 0 0
0 cos(nθ) 0
0 0 sin(nθ)











U i(x)
V i(x)
W j(x)







(19)

As can be viewed, with selecting the trigonometric terms for the circular direction, the
periodicity condition can be satisfied. These terms satisfy kinematic and static conditions
at θ = 0, 2π. Also, since the free vibration of sandwich shells is harmonic in the time
domain, a periodic form can be presumed for the displacement variables, where ω refers
to the natural frequency, α′ depicts the phase lag, and U i, V i,W j denote the meridional
dependent functions (x). Accordingly, n denotes the number of half-wave in the θ axis.
Applying the mentioned procedure into the dynamic equations (17), gives (3M+2) cou-
pled x-dependent ordinary differential equations. To achieve an eigenvalue problem, it
is necessary to discrete the mentioned ODEs into a system of algebraic equations. To
perform this process, generalized differential quadrature (GDQ) method is implemented.
This tool is utilized to separate the ODEs in the x-direction [76]. GDQ method is known
as an exalted and simple tool and is based on the converting the derivatives of an unknown
variable for example u into a linear summation of weighted coefficients and function val-
ues at the defined grid nodes [77, 78]. Application of this tool is represented below for
the first and second order derivatives

u,x|x=xp
=

Nx
∑

p′=1

App′up′

u,xx|x=xp
=

Nx
∑

p′=1

Bpp′up′ p = 1, 2, ..., Nx (20)

where Nx refers to the number of distributed nodes in the x-direction. Weighted coeffi-
cients of the first and second order derivatives are illustrated by App′ andBpp′ , respectively,
and are determined exploiting the Lagrange interpolated polynomials characterized by
the following formula:

App′ =











Π(xp)

(xp−xp′ )Π(xp′ )
when p 6= p′

−
Nx
∑

k=1,k 6=p

Apk when p = p′
, p, p′ = 1, 2, ..., Nx (21)

in which

Π(xp) =
Nx
∏

k=1,k 6=p

(xp − xk) (22)

and











Bpp′ = 2
(

AppApp′ −
App′

(xp−xp′ )

)

when p 6= p′

Bpp = −
Nx
∑

k=1,k 6=p

Bpk when p = p′
, p, p′ = 1, 2, ..., Nx (23)
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The exactitude of GDQ method is severely dependent on the sample of point distri-
bution in the solution field. Chebyshev-Gauss-Lobatto as an effective and accurate node
distribution is investigated in the literature [79,80]. The discrete points in the x direction
based on this pattern is defined by

xp = L

(

1

2
−

1

2
cos

(

p− 1

Nx − 1
π

))

, p = 1, 2, . . . , Nx (24)

By engaging Eq. (19) associated GDQ method, both motion equations and boundary
conditions turn into an eigenvalue problem related to the free vibration of cylindrical
sandwich shells which is not showed here for the sake of brevity. However, to apply this
method into the motion equations and also boundary condition one may refer to the avail-
able article about this field [73]. The obtained eigenvalue problem may be demonstrated
in the compact matrix form as

(

K− ω2M
)

X = 0 (25)

In Eq. (25), X((3M + 2)Nx × 1) is the displacement vector, K((3M + 2)Nx × (3M +
2)Nx) refers to the elastic stiffness matrix and M displays the mass matrix which has
((3M + 2)Nx × (3M + 2)Nx) components. It should be noticed that a Matlab code is
implemented to solve the problem and obtain the natural frequencies corresponding to
the circular sandwich cylinders with functionally graded GPLRC face sheets.

6 Numerical results and discussion

The theories and methods mentioned in the previous parts may be used here to probe
the free vibration of thick sandwich cylindrical shells on the elastic foundation which
consists of a soft core and two FG-GPLRC face sheets. As pointed before, all of the
numerical results, layers applied and also GPL weight fraction for both FG-GPLRC face
sheets are assumed equal. The shell edges can be clamped (C) or simply supported
(S) or free (F) which their mathematical relations are written earlier. The boundary
conditions of the cylindrical shell are represented by a two letter brevity, where the
first one shows the boundary on x = 0 and the second one depicts the boundary on
x = L. Unless otherwise mentioned, Epoxy is considered as the matrix of composite face
sheets and GPLs are considered as nanofillers. Necessary material properties of sandwich
constituents are recognized in Table 2. To obtain the effective Young’s modulus of the
nanocomposite media, Halpin-Tsai’s approach is employed. Considering the published
experimental paper, the computed theoretical effective Young’s modulus employing the
Halpin-Tsai model of homogenization and experiments are nearly valid for GPL fillers
with the dimensions aGPL = 2.5µm, bGPL = 1.5µm, tGPL = 1.5nm [81]. As a result, just
these sized are exploited for the GPLs in this research.

6.1 Convergence and comparison study

A convergence study is displayed to attain the converged order of displacement series
expansion (Eq. (7)) and number of distributed points in the GDQ method (Nx) for free
vibration response. For this purpose, fully clamped FG-GPLRC sandwich cylinder with
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Table 2: Mechanical properties of the matrix and reinforcement of FG-GPLRC face sheet
and core [61, 82].

Properties Epoxy GPL Core
Elasticity modulus (E)[GPa] 3.0 1010 3.0
Mass density (ρ) [kg/m3] 1200 1062.5 1400

Poisson’s ratio (ν) 0.34 0.186 0.4

1% GPL weight fraction for each surface sheet, length-to-radius ratio L/R = 1, and
hf/h = 0.15 are considered. To develop this study Case2 of functionally graded samples
is selected. No elastic foundation is assumed for this example. First four natural frequen-
cies are obtained for different numbers in series expansion and grid points considering two
magnitude of thickness-to-radius ration h/R = 0.1, 0.5. Numerical outcomes are illus-

trated in Table (3). Dimensionless frequency parameter is defined as Ωi = ωiR
√

2ρc(1+νc)
Ec

.

It is found out that the Ninth-order of series expansion (M = 9) results in proper ac-
curacy for the first four frequencies. In addition, it can be viewed that the results with
Nx = 15 has experienced an excellent convergence. Hereupon, M = 9 and Nx = 15 are
assumed for the rest comparison and parametric studies. It should be noticed that the
number of laminas for each FG-GPLRC is presumed equal NL = 10. Hence, total number
of shell layers is obtained as Nt = 21.

Four comparison studies are showed in more forward. As the first comparison, the first
ten frequencies in Hertz for an isotropic cylindrical shell with R = 1m, h = 0.1m, and L =
2m is evaluated and collated with the results of Tornabene et al. [77] in Table (4). In the
paper [77], natural frequencies of the cylindrical shell are extracted employing the GDQ
method based on the first-order shear deformation theory. Material parameters are chosen
as νc = 0.3, E = 210GPa, and ρ = 7800kg/m3. To develop this comparison, the thickness
of face sheets is set zero (hf = 0). Three boundary condition types are investigated. A
great agreement can be seen between present results and those by Tornabene et al. [77].
This witnessing indicates the efficiency and accuracy of employed unconstrained higher-
order theory (UCHOT).

For the second comparison survey, the first three frequencies of a movable simply
supported hollow cylinders made of pure/reinforced epoxy with various geometrical fac-
tors are examined between present results and those by Liu et al. [51]. Liu et al. [51]
investigated the free vibration response using an analytical approach. Three-dimensional
elasticity theory is employed to formulate the problem by Liu et al. [51]. GPL is selected
to reinforced matrix. To perform this study, GPL weight fraction of total structure is
considered WGPL = 1.5%. Geometric parameters are presented in the comparison table.
Total number of layers of the employed nanocomposite shell is NT = 20; hence, NL = 10
is considered to investigate the study. Also, the thickness of core is set zero hc = 0.
The results are tabulated in Table (5). Uniformly distribution for GPL weight fraction

across thickness is considered. Dimensionless frequencies is obtained by λi = ωiR
√

ρm
Em

.

It should be mentioned that parameter α is defined as α = mπR/L where m denotes
the number of vibration wave in the longitudinal direction. Mighty agreement can be
discerned from this Table (5) that guarantees good accuracy and performance of the em-
ployed approach for the shells with arbitrary thickness. In addition, material properties
used to perform this study are exactly alike with Table (2). However, mass density of
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Table 3: Convergence table of the first four frequencies of cylindrical sandwich shell with
Case2 FG pattern.

Frequency M
h/R Number Nx 1 3 5 7 9

0.1 Ω1 9 2.838 2.475 2.467 2.463 2.458
11 2.838 2.472 2.464 2.460 2.455
13 2.838 2.471 2.462 2.458 2.453
15 2.838 2.471 2.461 2.457 2.452

Ω2 9 2.892 2.490 2.484 2.480 2.477
11 2.892 2.487 2.480 2.477 2.473
13 2.892 2.486 2.479 2.475 2.472
15 2.892 2.486 2.478 2.475 2.471

Ω3 9 3.161 2.728 2.719 2.713 2.708
11 3.161 2.726 2.716 2.710 2.704
13 3.161 2.725 2.714 2.709 2.703
15 3.161 2.725 2.713 2.707 2.702

Ω4 9 3.255 2.788 2.781 2.778 2.776
11 3.255 2.785 2.778 2.776 2.773
13 3.255 2.785 2.777 2.774 2.772
15 3.255 2.785 2.776 2.774 2.771

0.5 Ω1 9 4.455 3.908 3.832 3.811 3.783
11 4.455 3.908 3.832 3.808 3.780
13 4.455 3.908 3.832 3.808 3.780
15 4.455 3.908 3.832 3.807 3.779

Ω2 9 4.614 3.926 3.863 3.846 3.823
11 4.614 3.926 3.862 3.843 3.821
13 4.614 3.926 3.863 3.843 3.820
15 4.614 3.926 3.863 3.842 3.820

Ω3 9 4.684 4.383 4.294 4.266 4.232
11 4.684 4.383 4.293 4.263 4.229
13 4.684 4.383 4.293 4.263 4.229
15 4.684 4.383 4.293 4.262 4.228

Ω4 9 5.272 4.396 4.330 4.311 4.286
11 5.272 4.396 4.329 4.308 4.283
13 5.272 4.396 4.329 4.308 4.282
15 5.272 4.396 4.329 4.307 4.282

GPL is assumed ρGPL = 1060kg/m3.
Third comparison study is performed to investigate the validity of the results obtained

by the current formulation and those by experimental and three-dimensional elasticity
results. For this purpose a hollow cylinder with L = 254mm, R = 95.25mm, and h =
38.1mm which is a thick structure. Material properties of the cylinder are considered
as E = 207GPa, ρ = 7860kg/m3, and ν = 0.28. The outcomes are tabulated in the
Table (6) in which the compared results are taken from a work by [83]. A very good
agreement validation is observed that shows the utilized formulation and solution methods
are enough effective.

Last comparison study is performed to compare the results attained by the present
formulation and those considered the Zig-Zag effects. Also, this example is demonstrated
for two hard and soft sandwich structures. For this purpose a parameter FCSR (face-
to-core-stiffness ratio) is defined which indicates the ratio of material properties of face
respect to core. The results are illustrated in Table (7). In this example, the material
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Table 4: Comparison of the frequency (Hz) for an isotropic cylindrical shell (R = 1m,
h/a = 0.1m and L = 2m).

CC SS CS
Ref. [77] Present Ref. [77] Present Ref. [77] Present

360.36 359.537 331.15 329.200 344.78 343.305
360.36 359.537 331.15 329.200 344.78 343.305
375.86 375.233 348.46 346.875 361.52 360.365
375.86 375.233 348.46 346.875 361.52 360.365
463.29 463.251 440.86 440.024 451.18 450.674
463.29 463.251 440.86 440.024 451.18 450.674
523.55 523.660 508.07 507.890 515.53 515.468
523.55 523.660 508.07 507.890 515.53 515.468
646.56 647.930 596.25 592.664 628.74 625.987
646.56 647.930 596.25 592.664 628.74 625.987

Table 5: Comparison of first three natural frequency parameter λi = ωiR
√

ρm
Em

for a pure

epoxy and GPLRC hollow cylinder.

Pure Epoxy GPLRC
Shell Type α Source λ1 λ2 λ3 λ1 λ2 λ3

Thin 2 Ref. [51] 0.1528 0.1588 0.1731 0.3743 0.3891 0.4239

(R+h/2
R−h/2 = 1.01) Present 0.1528 0.1588 0.1731 0.3743 0.3891 0.4239

5 Ref. [51] 0.3850 0.3942 0.4005 0.9429 0.9654 0.9812
Present 0.3850 0.3942 0.4005 0.9429 0.9654 0.9812

10 Ref. [51] 0.7747 0.7820 0.7826 1.8976 1.9152 1.9171
Present 0.7747 0.7820 0.7826 1.8976 1.9152 1.9171

Moderately Thick 2 Ref. [51] 0.9659 0.9996 1.0161 2.3674 2.4499 2.4904

(R+h/2
R−h/2 = 2) Present 0.9659 1.0019 1.0161 2.3674 2.4625 2.4904

5 Ref. [51] 2.6997 2.7156 2.7680 6.6185 6.6576 6.7861
Present 2.6989 2.7156 2.7680 6.6201 6.6576 6.7861

10 Ref. [51] 5.6503 5.6603 5.6897 13.8540 13.8785 13.9504
Present 5.6403 5.6603 5.6897 13.8353 13.8785 13.9504

Thick 2 Ref. [51] 1.1358 1.1386 1.1561 2.7846 2.7916 2.8346

(R+h/2
R−h/2 = 5) Present 1.1329 1.1386 1.1561 2.7790 2.7916 2.8346

5 Ref. [51] 2.8432 2.8458 2.8534 6.9711 6.9773 6.9961
Present 2.8423 2.8464 2.8541 6.9719 6.9788 6.9976

10 Ref. [51] 5.6928 5.6940 5.6977 13.9579 13.9610 13.9699
Present 5.6270 5.7008 5.7372 13.8028 13.9838 14.0667

and geometric properties of the face sheets and core of the structure are exactly the same
as in an article by Brischetto et al. [84]. For thick structures, an excellent agreement is
seen between the results of this paper with the theory of elasticity and the third-order
theory with zigzag effects (EDZ3). Although the results of this paper can be said to be
somewhat lower than other theories.
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Table 6: Comparison of natural frequencies (Hz) for an isotropic hollow cylinder.

wave number (n) Source β1 β2

0 Present 8131 8787
Ref. [83] (Exp) 8109 8817
Ref. [83](3D) 8149 8886

1 Present 6997 1004
Ref. [83](Exp) 7104 9859
Ref. [83] (3D) 7037 9803

2 Present 2547 6390
Ref. [83] (Exp) 2577 6429
Ref. [83](3D) 2555 6395

3 Present 6580 9190
Ref. [83] (Exp) 6618 9210
Ref. [83](3D) 6592 9232

4 Present 11331 13454
Ref. [83] (Exp) 11417 13532
Ref. [83] (3D) 11385 13473

5 Present 16577 18373
Ref. [83] (Exp) 16597 18390
Ref. [83] (3D) 16594 18402

Table 7: Comparison of natural frequency parameters ¯omega = ωR2/h
√

ρskin
Eskin

for a

sandwich cylindrical shell.

FCSR R/h Present 3D [84] EDZ3 [84] FSDT [84]

10 10 5.7783 5.7896 5.7937 6.1564
100 7.3590 7.3593 7.3593 7.3677
1000 36.525 36.527 36.527 36.528

105 10 0.5825 0.6105 0.6742 6.8458
100 3.9397 3.9470 3.9565 8.0816
1000 36.550 36.557 36.557 36.678

6.2 Parametric studies

After validating the attained outcomes using the present formulation with the available
data from other articles, various parametric researches are tabulated and figured in this
segment. Mechanical properties are established from Table (2). For a more perceptible
study, natural frequencies have been converted to dimensionless natural frequencies by

Ωi = ωiR
√

2ρc(1+νc)
Ec

, Winkler parameter becomes dimensionless by KW = kwR412(1−ν2c )
EcH3 ,

and finally Pasternak parameter becomes dimensionless by KG = kgR212(1−ν2c )

EcH3 . Results
are shown for the first four frequency parameters. It is observed from the available
researches, the nanocomposite with NL = 10 is an economical structure (minimum layer)
which experiences a smooth stress gradient between laminas. So, number of plies for
each FG-GPLRC face sheet is considered equal NL = 10 [61]. Furthermore, from many
articles about the GPL-based nanocomposites, GPL weight fraction growth increases the
natural frequencies for all cases of functionally grading. Hence, GPL weight fraction of
each face nanocomposite plate is assumedWGPL = 1% in all parametric results. However,
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as aforesaid before, according to some laboratory works, excessive increase of graphene
causes a sharp decrease in the stiffness of structure, and followed by it a sharp decrease
in natural frequencies [23]. In the provided results, the repetitive frequencies are written
only once. In all results, the shell radius is equal R = 1m.

As a first instance, consider a fully clamped cylindrical sandwich shell with thickness-
to-radius ratio h/R = 0.5 and length-to-radius ratio L/R = 1 without elastic foundation.
Table (8) checks out the impact of face sheet thickness hf on the natural frequencies for
the cases of functionally graded patterns. It can be seen that with enlarging the face
sheets thickness, the non-dimensional natural frequencies are intelligibly increased. This
reason is due to more rigidity of face sheets rather than core. Pure core structure has
lowest natural frequency. It is indicated that for sandwich shells, the frequency of shell
is largest for FG Case2 rather than other types. When sandwich is made of thin face
sheets, Case4 of functionally graded models causes the lowest frequency while the face
sheet thickness is grown, this behavior has been changed and sandwich with Case3 has
the lowest frequencies. This behavior is due to difference between material properties of
sheet and soft core.

Table 8: The influences of face sheet thickness and functionally graded patterns on the
first four dimensionless frequency parameters Ω of CC FG-GPLRC cylindrical sandwich
shell (h/R = 0.5, L/R = 1).

hf/h FG Case Ω1 Ω2 Ω3 Ω4

0.0 1 2.868 2.891 3.142 3.218
2 2.868 2.891 3.142 3.218
3 2.868 2.891 3.142 3.218
4 2.868 2.891 3.142 3.218
5 2.868 2.891 3.142 3.218

0.05 1 3.231 3.233 3.629 3.646
2 3.237 3.241 3.636 3.654
3 3.223 3.224 3.620 3.634
4 3.216 3.218 3.612 3.623
5 3.235 3.239 3.636 3.655

0.15 1 3.730 3.780 4.166 4.238
2 3.779 3.820 4.228 4.282
3 3.649 3.715 4.066 4.168
4 3.649 3.718 4.056 4.159
5 3.715 3.764 4.158 4.233

0.25 1 4.347 4.412 4.832 4.918
2 4.444 4.491 4.956 5.005
3 4.145 4.248 4.577 4.740
4 4.203 4.301 4.632 4.775
5 4.260 4.334 4.741 4.857

1.0 1 6.517 6.555 7.196 7.219
2 6.279 6.293 6.941 7.015
3 6.160 6.202 6.811 6.824
4 6.408 6.409 7.028 7.065
5 6.132 6.159 6.816 6.858

To examine the effect of elastic foundation on the natural frequencies of thick sandwich
cylinders, Figs. 3,4 are provided. To develop this results, geometrical parameters are
considered as h/R = 0.5, L/R = 2, and hf/h = 0.15. Each figure consists of two subsets,
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one for a cylindrical shell with CC boundary conditions and the other with CF boundary
conditions. Moreover, Case2 of FG patterns is assumed to perform these examples. It can
be observed that appropriate selection of elastic foundation can significantly increase the
natural frequencies. Fig. 3 illustrates the effect of dimensionless Pasternak parameter on
the first four frequency parameters. In this figure Winkler parameter is assumed zero. It
can be seen that the effect of shear layering parameter on each order of frequencies is in
a certain range and outside this range has no special effect. For instance, the influence of
this factor on the fundamental frequency of CC hollow cylinder is in the range 0 < Kg <
20. In addition, Fig. 4 gives data about the impact of non-dimensional Winkler parameter
on the first four natural frequencies. In this figure Pasternak parameter is assumed zero.
The same behavior as seen before can be seen in the effect of this parameter. For example,
the influence of Winkler factor on the first natural frequency of CC hollow cylinder is in
the range 0 < KW < 70
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Figure 3: The influence of Pasternak’s parameter on the first four dimensionless frequency
parameters Ω of FG-GPLRC cylindrical sandwich shell (h/R = 0.5, L/R = 2, hf/h =
0.15).

Table 9 investigates the impression of length-to-radius ratio L/R and also thickness-
to-radius ratio h/R on the frequency response of CC cylindrical shell includes FG-GPLRC
face sheets with hf/h = 0.15. Case2 is utilized as reinforce model of face sheets. Beside,
two parameters of elastic foundation are supposed equal (KW , KG) = (50, 20). At first, it
is realized that the cylindrical shell with more length-to-radius ratio, loses its stiffness and
therefore its natural frequencies are remarkably decreased. Generally, it is seen that the
natural frequencies of shell grows when thickness-to-radius ratio diminishes. However, for
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Figure 4: The influence of Winkler’s parameter on the first four dimensionless frequency
parameters Ω of FG-GPLRC cylindrical sandwich shell (h/R = 0.5, L/R = 2, hf/h =
0.15).

low values of L/R, there is a critical thickness-to-radius ratio that before it the natural
frequencies are enlarged and after that the natural frequencies are reduced with respect
to increasing the h/R.

Fig. 5 indicates the frequency behavior of sandwich cylindrical shells with respect
to the variation of length-to-radius ratio. This example is prepared for CC and CF
shells. Thickness-to-radius ratio and face sheet thickness parameters are respectively
considered as h/R = 0.5 and hf/h = 0.15. Also, Case2 is elected to locate the GPL
weight fraction changes. Moreover, the factors of elastic foundation are presumed as
(KW , KG) = (50, 20). It can be viewed that with enhancement of L/R, first four natural
frequencies of structure decline. This treatment is sharp for the lower amounts of length-
to-radius ratio. There is some specific magnitudes of L/R that at its, two consecutive
frequencies are equal.

Table 10 explores the power of various boundary conditions on the first four natural
frequencies of sandwich shells. This table is provided for circular cylindrical shells with
h/R = 0.5, L/R = 1, and hf/h = 0.15. Case2 of functionally graded is also considered.
Elastic foundation with parameters (KW , KG) = (50, 20) is located on the inner shell
surface. It can be seen that for thick cylindrical shells, the clamped boundary condition
has a higher rigidity and is then simply supported and free. Therefore, the shell with
clamped conditions has a higher stiffness and consequently a higher natural frequency.
It should be distinguished that for completely shell, the zero frequencies are neglected.
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Table 9: The influences of L/R and h/R ratios on the first four dimensionless frequency
parameters Ω of FG-GPLRC cylindrical sandwich shell (hf/h = 0.15, (KW , KG) =
(50, 20)).

L/R h/R Ω1 Ω2 Ω3 Ω4

0.5 0.2 7.504 7.536 7.601 7.636
0.4 8.706 8.711 8.823 8.904
0.8 7.902 7.983 8.190 8.488
1.0 7.530 7.666 7.973 8.350

1.0 0.2 3.598 3.685 3.886 4.039
0.4 4.476 4.597 4.648 5.189
0.8 4.490 4.490 4.656 4.995
1.0 4.353 4.386 4.476 4.791

2.0 0.2 1.885 1.903 2.309 2.429
0.4 2.324 2.360 2.830 3.582
0.8 2.364 2.577 3.113 3.640
1.0 2.380 2.510 2.888 3.379

4.0 0.2 1.045 1.155 1.310 1.769
0.4 1.165 1.440 1.932 2.090
0.8 1.198 1.708 1.919 2.205
1.0 1.218 1.656 1.894 2.213

These frequencies are related to the rigid body motion.

Table 10: The influences of boundary conditions on the first four dimensionless frequency
parameters Ω of FG-GPLRC cylindrical sandwich shell (h/R = 0.5, L/R = 1, hf/h =
0.15, (KW , KG) = (50, 20)).

B.Cs Ω1 Ω2 Ω3 Ω4

CC 4.583 4.586 4.832 5.360
CS 4.468 4.583 4.691 5.248
CF 2.334 2.437 2.967 3.477
SS 4.400 4.583 4.604 5.169
SF 2.255 2.334 2.796 3.144
FF 0.536 1.190 1.559 2.297

7 Conclusion

In the present research, a natural frequency study for cylindrical sandwich shells
made of FG-GPLRC face sheets and soft core is provided. For this purpose, a novel
unconstrained higher-order theory is employed for extracting the three dimensional dis-
placements. Material properties of the nanocomposite face sheet are attained utilizing
the modified Halpin-Tsai approach which applies the size and geometric of the GPLs in
obtaining the elasticity modulus. Hamilton’s principle is implemented to form the motion
equations of the shell. The governing equations are obtained by means of a semi-analytical
procedure based on the GDQ tool. The developed solution technique is employed to at-
tain the natural frequency of arbitrary thickness sandwich shell. It is verified that the
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Figure 5: The variation of the first four frequency parameters versus the L/R of the Case2-
GPLRC annular sandwich plate for the CC and CF conditions (h/R = 0.5, hf/h = 0.15,
(KW , KG) = (50, 20)).

natural frequency parameters based upon the ninth order of displacements expansion
are completely valid with those by the three dimensional elasticity theory. Moreover,
embedding soft core with the FG-GPLRC sheets outstandingly increases the frequency
parameters. Also, it is observed that the functionally graded samples to distribute GPLs
has a substantial part to change the frequencies. Case2 and Case5 made sandwich with
more frequencies. It is viewed, elastic foundation parameters affect on the shell frequency
in a particular range. As expected, the clamped boundary condition hugely increases the
flexural rigidity of the structure compared to the others. In addition, the effect of sand-
wich thickness growth on the natural frequencies, depends on the length-to-radius ratio.
In the small range of length-to-radius ratio, there is a critical magnitude for thickness-
to-radius ratio that before it, growth of thickness increase frequency parameter but after
that the frequencies begin to decrease.
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