
WILDA: Wide Learning of Diverse Architectures
for Classification of Large Datasets

Rui P. Cardoso1, Emma Hart4, David Burth Kurka2, and Jeremy Pitt3

1 Imperial College London, rui.cardoso@imperial.ac.uk
2 d.kurka@imperial.ac.uk
3 j.pitt@imperial.ac.uk

4 Edinburgh Napier University, e.hart@napier.ac.uk

Abstract. In order to address scalability issues, which can be a chal-
lenge for Deep Learning methods, we propose Wide Learning of Diverse
Architectures — a model that scales horizontally rather than vertically,
enabling distributed learning. We propose a distributed version of a
quality-diversity evolutionary algorithm (MAP-Elites) to evolve an archi-
tecturally diverse ensemble of shallow networks, each of which extracts
a feature vector from the data. These features then become the input
to a single shallow network which is optimised using gradient descent
to solve a classification task. The technique is shown to perform well
on two benchmark classification problems (MNIST and CIFAR). Addi-
tional experiments provide insight into the role that diversity plays in
contributing to the performance of the repertoire.

Keywords: Diversity · MAP-elites · Machine Learning · Ensemble

1 Introduction

Deep Learning (DL) techniques have revolutionised the field of Machine Learn-
ing (ML) in recent years, providing high-performing neural network models for
solving a number of complex tasks such as Computer Vision (CV) and Natural
Language Processing (NLP). However, the best performing networks often have
very large numbers of layers and millions of parameters, exhibiting a type of
scaling that has mostly been vertical. Some DL algorithms run for days [19, 18].
Amongst other things, this raises important questions regarding the environ-
mental sustainability of DL methods [16]. As an alternative, distributed learning
techniques have been proposed as a way of enacting horizontal scaling [22]. Of-
ten such methods involve training an ensemble of networks whose results can be
aggregated in some manner. This has the obvious advantage that the ensemble
can be trained in parallel, with the added benefit not only that ensembles are
often much more accurate than the individual classifiers they encompass [3], but
also that the individual members of ensembles do not themselves have to be
complex or high-performing [6].

In this paper, we propose an algorithm called WILDA (Wide Learning of
Diverse Architectures) that integrates ML and Evolutionary Computation (EC)

2 Cardoso et al.

to train a classification model applicable to the type of datasets used in DL.
WILDA falls under the broad paradigm of Wide Learning (WL) [23, 12, 15] as a
viable complementary alternative to DL. The approach first trains an ensemble
of low-complexity artificial neural networks (ANNs), each of which extracts a
feature vector from each data point. In a second phase, the features extracted
from the ensemble are then aggregated in a single shallow model to solve the
classification task. It is well understood that a necessary condition for good
ensemble performance is that its members are both accurate and diverse [3]: al-
though the former can be addressed through judicious training of each member
in the ensemble using standard ML methods, the latter provides more challenge.
To address this, we turn to a relatively recent class of algorithms from EC known
as quality diversity (QD) algorithms [14]. These algorithms return an archive of
diverse, high-quality solutions to a problem in a single run, where diversity is
defined by the user with respect to features of interest. Here, we exploit the QD
approach to generate an ensemble of shallow neural networks which are archi-
tecturally diverse yet each optimised with respect to the classification task. The
features extracted from each network in the first phase are then used in the sec-
ond phase to train a single shallow network to output the final classification. The
resulting architecture is easily parallelised and quickly trained, unlike a typical
DL model, which often uses a complex model on a single machine. Running the
full method takes around 50 minutes.

The major contribution of the work is to describe the novel WILDA algo-
rithm, which exploits the latest developments in EC to generate an ensemble of
networks which are diverse w.r.t their hyperparameters and uses ML methods to
optimise their parameters. The main goal is to develop a general model that can
be easily applied to large datasets without specialisation and executed on stan-
dard computer architectures. As such, we do not expect to obtain state-of-the-art
results that compete with methods that are specialised to specific datasets and
extensively tuned. Instead, we aim to show that the method produces reasonable
results without any specialisation to a dataset and gain insight into the factors
that influence the performance of the method.

2 Background

Deep neural networks typically consist of large numbers of stacked layers of neu-
rons. Layers can be different types, for example convolutional, dense, or pooling
[8], and each layer can have a variable number of neurons. Network design is thus
an optimisation problem, and as such, Evolutionary Algorithms (EAs) have nat-
urally been applied to this task. For example, the evolutionary-algorithm-based
Automatic Evolving CNN (AE-CNN) algorithm [19] achieves high performance
on the CIFAR-10 dataset, however consuming 22 days of computational time
on three Graphics Processing Units (GPUs). Using a surrogate model with an
EA considerably reduces this time [18], but still requires 8 GPU days. Genetic
Programming (GP) is employed by Suganuma et al. [17] to evolve a CNN, again

WILDA: Wide Learning of Diverse Architectures 3

for image processing, showing promising results although resulting in networks
with over 1.5 million learnable weights.

The above approaches all use an EA to evolve a single high-performing net-
work. In contrast, ensemble methods consist of building a set of models and then
aggregating their outputs to form a collective prediction, rather than relying
on the predictions made by a single model [3]. Although the use of ensembles
is well known in classical ML, it is less used in DL. An ensemble method for
image classification using deep networks [5] has been shown to provide excel-
lent performance; the networks within the ensemble contain up to 152 layers
each, contrasting to classical ML ensemble approaches which tend to consist of
multiple but low-complexity models (e.g. Random Forest [1]).

The diversity of an ensemble is crucial to its performance [3] and hence is a
key factor in its design. The relatively recent paradigm of quality diversity (QD)
[14] algorithms within the EA field — which aim to find a maximally diverse
but high-performing collection of individuals for a given optimisation task —
thus appears ideally suited to this goal. Specifically of interest to this paper is
the ability of QD methods to produce a diverse repertoire of optimised solutions
in a single run. The methods have received much attention in the Evolutionary
Robotics (ER) literature to evolve behaviourally or structurally diverse robots
[2, 10] but much less attention elsewhere5. A single example within ML [20]
uses a QD algorithm (Novelty Search) as an approach to unsupervised feature
learning in a method that continually accumulates features that make novel
discriminations amongst a training set (with no regard to the classification task),
showing that after generating approximately 3000 features, a simple two-layer
network performed well compared to other shallow architectures. In this paper,
for the first time we propose to use the MAP-Elites algorithm [10] to evolve a set
of optimised architectures that are diverse w.r.t to their structure, as explained
in the next sections.

3 Methodology

WILDA (Wide Learning of Diverse Architectures) uses a two-step approach to
classification in which a diverse ensemble of shallow ANNs is trained in the first
step (section 3.2) and the features extracted by the ensemble are used in the
second step (section 3.4) to train a small feedforward ANN to provide the final
result. This is based on the conjecture that a set of diverse features can be
extracted from an architecturally diverse repertoire of ANNs, which can then be
used to efficiently train a single shallow network in the aggregation phase. The
process can be summarised as follows:

1. Apply MAP-Elites to discover a set of neural network classifiers which are
architecturally diverse, each optimised for accuracy using gradient descent
(section 3.1, algorithm 2)

5 with the exception of a handful of papers in the combinatorial optimisation domain,
for example [21]

4 Cardoso et al.

2. Repeat step 1 r times, and then merge the r sets into a single archive (section
3.3)

3. Extract a single feature from each network in the merged archive for each
data point (section 3.2)

4. For each data point, concatenate the features extracted in step 3 to form a
single input vector (section 3.4)

5. Train a single shallow network to output the desired classification using the
input vectors from step 4 as input (algorithm 5)

WILDA uses a hybrid method that combines an evolutionary approach (MAP-
Elites [10]) with a traditional ML approach (gradient descent) for training each
ANN (Algorithm 1). MAP-Elites (Multi-dimensional Archive of Phenotypic Elites)
explores a low-dimensional projection of the space of hyperparameters which de-
scribe the architecture of the networks and returns an archive of structurally
diverse networks. A gradient descent procedure optimises the parameters of each
ANN discovered. The MAP-Elites algorithm can be run simultaneously on mul-
tiple nodes, resulting in n nodes archives at the end of the feature-extraction
phase. These archives are merged before running the aggregation phase, which
provides the final classification. We first give an overview of the MAP-Elites
algorithm before describing each phase in detail.

Algorithm 1 WILDA algorithm (high-level view)

procedure WILDA
for n = 1→ n nodes do

MAPn ← MapElites() . generate n archives of diverse networks
end for
mergedMap ← merge(MAPs) . merge n archives into a single archive
features ← extractFeatures(data, mergedMap) . for each data point, ex-

tract a feature vector
from each network in the
archive

aggregatedModel ← trainShallowNetwork(features) . train single network to
classify data

end procedure

3.1 MAP-Elites

Fundamentally different to a traditional search algorithm, the MAP-Elites al-
gorithm provides a holistic view of how high-performing solutions are distributed
throughout a feature space [10]. The method creates an archive of high-performing
solutions at each point in a space defined by dimensions of variation chosen by a
user, according to characteristics of a solution that are of interest. The resulting
archive enables the user to gain specific insight into how combinations of char-
acteristics of solutions correlate with performance. As the approach encourages

WILDA: Wide Learning of Diverse Architectures 5

diversity, it has often been shown to be more capable of fully exploring a search
space, outperforming state-of-the-art search algorithms which are given a single
objective, and can be particularly helpful in overcoming deception [14].

The standard algorithm is given in Algorithm 2. This is adapted for our
purposes as follows. A solution consists of a PyTorch [13] representation of an
ANN. We select three dimensions to characterise an architecture, namely the
number of convolutional layers, the number of dense layers, and the maximum
size (number of outputs) of any dense layer in the network, which together
comprise the featureDescriptor. The algorithm begins by generating random
solutions which are mapped to a grid that is discretised in each dimension into a
fixed number of cells (representing possible values of each feature). The grid thus
contains |C| × |D| × |S| cells, where these values represent the total number of
values permitted for the convolutional, dense and size dimensions, respectively.
Following an initialisation phase, solutions are randomly selected from the grid,
after which a variation operator is applied to generate new solutions. Child
solutions are evaluated according to a performance metric and then mapped back
to the grid according to their descriptor: a child solution replaces an existing
solution in any cell if it is better according to its performance metric or may
simply occupy an empty cell. The search process aims to fill the entire grid
with solutions, each of which represents the best performing solution for a given
feature descriptor. The precise implementation of each of the above steps is
described in the next section.

Algorithm 2 MAP-Elites Algorithm, taken directly from [10]

procedure Map-elites Algorithm
(P ← ∅,X ← ∅)
for iter = 1→ max iterations do

if iter < initialise iterations then
x′ ← randomSolution()

else
x← randomSelection(X)
x′ ← randomVariation(x)

end if
b′ ← featureDescriptor(x’)
p′ ← performance(x’)
if P(b′) = ∅ or P(b′) < p′ then
P(b′)← p′

X (b′)← x′

end if
end for
return feature-performance map (P and X)

end procedure

6 Cardoso et al.

3.2 Feature-Extraction Phase

During the extraction phase, MAP-Elites attempts to find a set of diverse ANN
architectures, each of which is optimised on a subset of the data towards solving
a classification task of interest. At the end of this phase, a feature vector is
extracted from each network for each data point, corresponding to the output
of the second-to-last layer of each network as explained below.

Network Representation An individual uses a list representation to describe
a variable-length sequence of convolutional layers followed by a variable-length
sequence of dense layers. Each layer has a random number of neurons, selected
from a list of discrete values. Each dense layer uses a hyperbolic tangent [11]
activation function. The last hidden layer is designated as the feature layer : the
output of this layer is a binary vector which represents a feature extracted by
the network to be used in the second phase (section 3.4). As a result, this layer
always has a fixed number of neurons, feature size, set by the user according to
the desired size of the feature vector. Finally, an output layer is added which
provides the classification of the data point.

Variation Operators Three new individuals are generated at each iteration by
the crossover and mutation operators. Two children are generated by applying
crossover to a pair of randomly selected individuals. The third child is generated
by applying mutation to a single randomly selected parent. Crossover randomly
picks two individuals, selects random crossover points among their dense layers,
and swaps them accordingly. Mutation randomly picks a mutation point among
the dense layers of an individual and either adds or removes a layer at that
position. Note that crossing over two sequences of dense layers or removing
a layer from such a sequence will, in the general case, require changing the
input and/or output sizes of layers at the crossover/mutation point; when adding
a layer at a mutation point, its size is given by the output and input sizes
of the previous and following layer, respectively. For simplicity, crossover and
mutation only operate over the dense layers of an ANN; since convolutional
layers tend to have a non-decreasing number of channels, these operations would
require modifying all layers beyond the crossover/mutation point, defeating their
purpose [8]. However, as the convolutional layers generated in the initialisation
process will be paired with different combinations of dense layers as a result of
these two operations, this still ensures a diverse search process.

Performance Evaluation To evaluate each individual, the single network en-
coded by the individual is trained for a fixed number of iterations (eval iters)
on a sample training set using a standard gradient descent procedure which min-
imises cross-entropy loss [11]. Its classification accuracy is then calculated on a
sample test set, and this value assigned as its fitness, as described in algorithm
3. The sample train and test sets are drawn randomly from the training data at
each iteration; they are both 20% the size of the complete training data, which

WILDA: Wide Learning of Diverse Architectures 7

encompasses 60000 examples in the two datasets we tested (MNIST and CIFAR-
10). For this reason, each node uses 12000 examples at each evaluation and may
therefore only ever have a partial view of the data required to solve the task.

3.3 Distribution of Computation

As described in the introduction, one of the goals of WL is to be able to distribute
the computation over multiple nodes to enable the model to be run in parallel.
One approach to achieving this would be to segment the |C| × |D| × |S| grid
into sub-partitions and run each sub-partition on a separate node. However,
here we adopt an approach described in [4], which proposes a fully distributed
implementation of MAP-Elites designed to be run on a robot swarm. In this
approach, each node runs its own instance of the MAP-Elites algorithm 4. At
the end of the extraction phase, all the maps returned are merged into a single
map referred to in the QD literature as a global map of elites. In previous work
[4], we evaluated multiple options for performing the merge step which inform
our choice of two strategies:

1. merging without overlap: for each cell in the map, select the highest-performing
ANN model found in that cell from any of the n nodes individual maps re-
turned

2. merging with overlap: for each cell in the map, return all of the ANNs
found in that cell across all n nodes maps. This means that a maximum
of n nodes× |C| × |D| × |S| neural networks is returned

In both cases, the maximum number of models passed to the learning phase
via the global map is N , where N is the size of the map (i.e. |C|×|D|×|S|). When
merging without overlap, the procedure returns a maximum of N networks,
maximising diversity. On the other hand, the merge with overlap procedure can
return >> N networks. In this case, the procedure selects the top N networks
according to their fitness metric. This strategy can return multiple networks
which map to the same cell, therefore favouring the quality of solutions over
their diversity.

Algorithm 3 Calculating the fitness of an individual neural network and adding
it to the map of elites

procedure train and eval(m, sample train, sample test, ME)
c, l, s← architectural features of m
train(m, sample train)
if ME [c, l, s] = ∅ OR

accuracy(m, sample test) > ME [c, l, s] .fitness then
ME [c, l, s]← m

end if
end procedure

8 Cardoso et al.

Algorithm 4 Training loop for each node in the extraction phase

create empty map of elites ME
draw sample train and sample test from training set D
for initial size do

m← generate random ANN model
train and eval(m, sample train, sample test,ME)

end for
for extraction epochs do

draw sample train and sample test from training set D
draw individuals x, y from map of elites ME
x′, y′ ← crossover(x, y)
train and eval(x′, sample train, sample test,ME)
train and eval(y′, sample train, sample test,ME)
draw individual z from map of elites ME
z′ ← mutate(z)
train and eval(z′, sample train, sample test,ME)

end for

3.4 Learning/Aggregation Phase

The learning phase uses the information learnt by the ANNs contained in the
repertoire resulting from the first phase to train a single model to solve the
classification task. This single model is a fixed-structure shallow ANN that has
a single intermediate layer with n hidden agg neurons and a hyperbolic tangent
activation function. The node where this model is trained is called the root
node. Note that, even though there is a global merged repertoire at the end of
the feature-extraction phase, as described in section 3.3, this repertoire contains
only references to the models which were generated and trained in separate nodes
and each of these models will still be running in its corresponding node.

Algorithm 5 Learning phase of the procedure for the root node

all MEs← gather all maps() . Root node receives all repertoires
global ME ← merge(all MEs). . Repertoires merged into a global map
send global ME to the other nodes . Global map known by all nodes
initialise model M
for learning epochs do

for batched data and labels do
all features← gather all features(data) . Each node sends its feature

vector extracted from data
concatenate all features into intermediate representation f

M.train step
(
f, labels

)
end for

end for

WILDA: Wide Learning of Diverse Architectures 9

The phase begins with an extraction step: each data point in the training
set is passed through each of the n networks contained in the merged map from
the previous phase. This returns n binary vectors, each representing a feature
(as described in section 3.2), which are concatenated to form the input layer
of the new model. This model is then trained with a standard gradient descent
procedure by minimising cross-entropy loss. Algorithm 5 shows pseudocode for
the learning phase specific to the root node and algorithm 6 shows pseudocode
for all nodes.

Algorithm 6 Learning phase of the procedure for all nodes (including root
node)

send(ME, root) . Sends own repertoire to root node
global ME ← receive(root) . Receives global map from root node
own models← get own models(global ME)
for learning epochs do

for batched data do
own features← get features(own models, data)
send(own features, root) . Sends feature vector to root node

end for
end for

4 Experiments

Experiments have been conducted to: (1) evaluate the performance of WILDA
as a classifier on two datasets providing varying levels of challenge; (2) explore
the effects of encouraging diversity vs. quality within an ensemble; (3) explore
the influence of the size of the ensemble used to execute the centralised learning
step.

Two well-known benchmark datasets are used: MNIST [8] and CIFAR-10
[7]. MNIST is a set of 60000 hand-written digits, while the CIFAR-10 dataset
consists of 60000 32x32 colour images in 10 classes, with 6000 images per class.
MNIST is known to be relatively straightforward for ANN architectures, while
the latter poses a significant challenge to “off-the-shelf” models; state-of-the-art
DL models for CIFAR-10 require significant customisation and tuning. Four sets
of experiments are conducted as described below.

As a baseline for comparing the quality of the ensemble-based solutions from
WILDA, we use a single shallow ANN, trained in a similar fashion to the ag-
gregated single-layer model used in the learning phase of the algorithm (section
3.4). This ANN is the one that has achieved the best performance after a run
of the feature-extraction phase 3.2. Note that this is not a true “baseline” in
the sense that we do not choose a random or otherwise uninformed architecture,
but rather one that has been found to be the best. This is because we wish to
understand the benefits of the ensembles built by our diversity-driven approach;

10 Cardoso et al.

outperforming individual neural networks with the highest fitness values is there-
fore a more interesting challenge. Out of interest, the shallow network trained
with diverse features mentioned in section 2[20] achieves an accuracy of 98.75%
on MNIST, while a shallow CNN is reported to obtain 75.86% on CIFAR-10
in [9].The relevant parameter values are set as per table 1, which lists all the
parameter values that are used throughout the experiments. All experiments,
including the runs of the feature-extraction phase to get the baseline results,
are repeated 30 times in order to evaluate statistical significance. Two-tailed
Mann-Whitney significance tests are applied to compare experimental results,
and noted as significant if the resulting p-value is < 0.01.

Table 1: Parameter settings

Parameter Description Value(s)

n nodes Number of distributed nodes 8
initialise iterations Number of ANNs in the initial maps 20
C set of possible # of convolutional layers {1,2}
D set of of possible # of dense layers {2,3,4}
S set of possible values for layer size {100,110,120,

130,140,150,170}
max iterations Number of iterations in the extraction

phase
30

eval iters Number of iterations in gradient-descent
training in extraction phase

5

feature size Size of binary vector produced by last hid-
den dense layer in extraction phase

100

aggregation iters Number of iterations in the learning phase 10
n hidden agg Number of neurons in the intermediate

layer of the centralised model (learning
phase)

50

merge Strategy used to merge the maps of elites
evolved by each node

with/without
overlap

n models Maximum number of models to use in the
learning phase (≤ the size of the map)

48

4.1 Comparison of Different Merge Strategies

This set of experiments compares the two merge strategies (section 3.2) to un-
derstand how the construction of the merged archive impacts the performance of
the aggregated model. For reference, a full run of WILDA with the parameters
of table 1 takes around 50 minutes on the machine upon which the algorithm
was tested. Recall that the two strategies represent different trade-offs between
diversity and quality of the solutions. The size of the maps evolved by each node,

WILDA: Wide Learning of Diverse Architectures 11

as well as the global map, is 2 × 3 × 8 = 48; this is also the maximum number
of ANN models used in the learning phase (n models).

Table 2 presents the median test set accuracy for the two merge strategies
and compares them to the baseline. Recall that the architecture of the baseline
network is that of the best network found in a run of the feature-extraction
phase, as explained earlier in this section. Both methods significantly outperform
the baseline individual best network for both datasets (p << 0.01). There is
no significant difference between the two merge strategies, however. A possible
reason for this is that these two merge strategies actually lead to similar global
maps of elites. On the one hand, each node might be finding high-performing
ANNs in different regions of their individual maps, thus leading to few overlaps
at a same cell when merging. On the other, it is possible that networks which
are mapped to the same cell are still significantly diverse. Further investigation
is required to answer these questions. We also include for interest the result
obtained by Szerlip et al. [20] from first evolving 3000 divergent discriminative
features, but note that the training procedure used in that paper differs from
ours, which runs a two-phase procedure that first trains on a small training set
before shifting to the full example set, using a single-layer network to classify.
Our evolved ensemble of features obtained from 48 diverse networks outperforms
both the single high-performing learner and the previously obtained result.

Table 2: Median test set accuracy for the two merge strategies considered

MNIST CIFAR-10

Baseline 0.9899 0.646

Merge without overlap 0.99175 0.6982

Merge with overlap 0.9919 0.6983

Divergent Discriminative Feature Accumulation [20] 0.9875 n/a

4.2 Investigating the role of architectural diversity

The global map of elites which is constructed from the individual maps and used
in the aggregation phase is essentially an ensemble of the best ANNs found for
different types of architecture. This naturally raises the question of how useful it
is to promote architectural diversity amongst the networks in the ensemble, and
how the performance of such a diverse ensemble compares with ensembles which
do not have architectural diversity, but are diverse in terms of their optimised
weights due to training on different samples of the dataset. Thus, we compare
the performance of architecturally diverse ensembles evolved by WILDA with
two kinds of ensembles that lack architectural diversity:

– an ensemble of networks in which every individual has the best architecture
found in the extraction phase but is trained using a different sample of the
training data

12 Cardoso et al.

– an ensemble of networks in which each individual has the worst architecture
found in the extraction phase but is trained using a different sample of the
training data

Table 3 shows the accuracy results for ensembles trained with a fixed set of
architectures (the best and worst architectures found in the extraction phase).
All differences are significant compared to both the baseline and to both merge
strategies (p << 0.01). It is clear that ensembles that do not have architectural
diversity perform significantly worse than the results obtained by WILDA on
both datasets. They also show that the fixed-architecture ensembles perform
significantly worse than the baseline case. This is perhaps surprising given that
the baseline case uses a feature vector from a single network obtained from the
extraction phase. It appears that combining the predictions made by the best
architecture trained on different subsets of the data leads to overall poorer per-
formance than training an individual network on all of the data. This could
be a particular characteristic of our procedure for aggregating the features ex-
tracted from the data by the ANNs in the ensemble during the learning phase,
as described in section 3.4. However, it is a clue that the ensembles may be
accumulating and reinforcing prediction errors when there is a lack of architec-
tural diversity, i.e. errors made on the same data or on data from which similar
features have been extracted. The performance of an ensemble depends on the
diversity of errors made by each of its learners [3]; the results of this section en-
able us to suggest that promoting architectural diversity among the ANNs in the
repertoires built during the extraction phase of the algorithm drives diversity of
features extracted from the data and diversity of prediction errors, which in turn
leads to higher test set accuracy. This observation is of the utmost importance
in informing future research into how to increase the performance of the diverse
ensembles evolved by WILDA.

Table 3: Median test set accuracy for ensembles without architectural diversity

MNIST CIFAR-10

Ensemble of instances of the best architecture 0.98685 0.62835

Ensemble of instances of the worst architecture 0.97815 0.557

4.3 Investigation of the influence of ensemble size

After constructing the merged map, one question that arises is how to use it
to solve the task. We can simply pick the single best-performing architecture,
as per the baseline case, or use an ensemble selected from the map. This raises
the question of how many networks to include in the ensemble. This set of
experiments assesses the relevance of fine-tuning the number of ANN models
used in the ensemble by comparing the test set performance of ensembles of

WILDA: Wide Learning of Diverse Architectures 13

different sizes. We vary n models (the size of the ensemble) in the range {10,
20, 30, 40, 48}, selecting the best n models ANNs in each experiment. All the
other parameters are fixed as per table 1.

Figure 1 presents the performance results when only the n models top-
performing models from the global map of elites are used in the learning phase. In
all cases the algorithm significantly outperforms the baseline and changing this
parameter only produces small variations in accuracy. For MNIST, using only
10 models outperforms all other cases. The difference is statistically significant
when compared with cases using 30 or more models. These observations suggest
that using fewer models in the learning phase leads to better performance on the
MNIST dataset. This could be because the simplicity of MNIST leads to smaller
error diversity among different learners, which would cause the reinforcement of
errors in larger ensembles. On the other hand, using only 10 models leads to
significantly worse performance on the CIFAR-10 dataset than all other cases.
This disparity in the observations for both datasets suggests that the choice of
number of models that brings optimal performance is domain-dependent and
must therefore be fine-tuned to the problem being tackled.

10 20 30 40 48
Number of models

0.9905

0.9910

0.9915

0.9920

0.9925

0.9930

0.9935

Ac
cu

ra
cy

MNIST

10 20 30 40 48
Number of models

0.680

0.685

0.690

0.695

0.700

0.705

0.710

0.715

Ac
cu

ra
cy

CIFAR-10

Fig. 1: Test set accuracy for each number of models added to the ensemble in
the learning phase

4.4 Search Space Illumination

Figure 2 shows an example of how the extraction phase of WILDA, which runs
a version of MAP-Elites, can illuminate the search space of architectures. For
each combination of number of dense layers and maximum size of any dense
layer, the diagram shows the fitness (accuracy on sample test set) — averaged
out along the other dimension, which is the number of convolutional layers —
of the best-performing ANNs on the CIFAR-10 dataset which map to that cell
after merging all individual maps into a global map without overlap (section
3.2). Note that more runs of the extraction phase would be required in order to
draw conclusions about which architecture leads to the best performance.

14 Cardoso et al.

Fig. 2: Illuminating the architectures’ search space for the CIFAR-10 dataset -
the colour shading indicates the accuracy of the best network found for each cell

5 Conclusions and Future Work

We have presented an innovative diversity-driven distributed algorithm dubbed
WILDA for training classification models within a WL paradigm. The basic idea
is to extract a representation for the input in a way that scales horizontally rather
than vertically. The algorithm first trains a repertoire of architecturally diverse
ANNs in parallel: each node constructs a repertoire of high-performing, architec-
turally diverse networks, accessing different subsets of the data, which are then
merged together into a global map of elite networks, each of low complexity. The
features extracted by each network from the data are then aggregated and fed
to a centralised model which will solve the classification task. The approach re-
lies on the assumption that networks constructed with diverse architectures and
trained on diverse samples of data will extract diverse features from a dataset,
ultimately improving classification.

The overriding goal of the paper is to show that a general method that is eas-
ily distributed and does not require either vast amounts of computational power
or expert knowledge to design a network is capable of reasonable performance.
Experimental results show that this technique performs well on the MNIST and
CIFAR-10 datasets and that a diverse ensemble performs better than the best
individual model found in the extraction phase. We also show that architectural
diversity is key to improving performance: ensembles using fixed architectures
have been found to perform worse than an individual model, likely due to the
accumulation and reinforcement of the same kind of errors. The results suggest
that architectural diversity promotes error diversity, which in turn increases the
performance of the ensembles evolved by the algorithm. Note that only basic
tuning of the method was conducted and there remains considerable scope for
improvement, for instance in investigating greater ranges of values for each of
the dimensions over which diversity is defined, or adding additional dimensions

WILDA: Wide Learning of Diverse Architectures 15

of diversity within MAP-Elites; both would lead to an increase in the size of the
map and therefore a larger potential space of networks.

We note that the algorithm can also be a useful tool for exploring and illu-
minating the space of hyperparameters in that it exposes correlations between
the characteristics of different architectures and their performance. Moreover, we
believe that the WL paradigm can complement current DL techniques, partic-
ularly when addressing issues of scaling and distribution. Finally, further work
will focus on using QD methods to explicitly create an archive of diverse features,
rather than implicitly relying on diverse architectures to do so.

References

1. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
2. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-

mals. Nature 521(7553), 503 (2015)
3. Dietterich, T.G.: Ensemble methods in machine learning. In: International work-

shop on multiple classifier systems. pp. 1–15. Springer (2000)
4. Hart, E., Steyven, A.S.W., Paechter, B.: Evolution of a functionally diverse swarm

via a novel decentralised quality-diversity algorithm. In: Proceedings of the Genetic
and Evolutionary Computation Conference. pp. 101–108. GECCO ’18, ACM, New
York, NY, USA (2018)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

6. Hong, L., Page, S.E.: Groups of diverse problem solvers can outperform groups
of high-ability problem solvers. Proceedings of the National Academy of Sciences
101(46), 16385–16389 (2004). https://doi.org/10.1073/pnas.0403723101

7. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Tech. rep.,
University of Toronto, Science Dept. (2009)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998)

9. McDonnell, M.D., Vladusich, T.: Enhanced image classification with
a fast-learning shallow convolutional neural network. In: Proceed-
ings of the International Joint Conference on Neural Networks (2015).
https://doi.org/10.1109/IJCNN.2015.7280796

10. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv
preprint arXiv:1504.04909 (2015)

11. Murphy, K.P.: Machine learning: a probabilistic perspective) (2012)
12. Pandey, G., Dukkipati, A.: To go deep or wide in learning? (2014)
13. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., Facebook, Z.D., Research,

A.I., Lin, Z., Desmaison, A., Antiga, L., Srl, O., Lerer, A.: Automatic differentiation
in PyTorch. In: Advances in Neural Information Processing Systems 32 (2019)

14. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: A new frontier for evo-
lutionary computation. Frontiers in Robotics and AI 3, 40 (2016)

15. Shafaei-Bajestan, E., Baayen, R.H.: Wide learning for au-
ditory comprehension. In: Proc. Interspeech 2018. pp. 966–
970 (2018). https://doi.org/10.21437/Interspeech.2018-2420,
http://dx.doi.org/10.21437/Interspeech.2018-2420

16 Cardoso et al.

16. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243 (2019)

17. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to de-
signing convolutional neural network architectures. In: Proceedings of the Genetic
and Evolutionary Computation Conference. pp. 497–504 (2017)

18. Sun, Y., Wang, H., Xue, B., Jin, Y., Yen, G.G., Zhang, M.: Surrogate-assisted
evolutionary deep learning using an end-to-end random forest-based performance
predictor. IEEE Transactions on Evolutionary Computation (2019)

19. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Automatically designing cnn architectures
using genetic algorithm for image classification. arXiv preprint arXiv:1808.03818
(2018)

20. Szerlip, P.A., Morse, G., Pugh, J.K., Stanley, K.O.: Unsupervised feature learn-
ing through divergent discriminative feature accumulation. In: Proceedings of the
National Conference on Artificial Intelligence (2015)

21. Urquhart, N., Hart, E.: Optimisation and illumination of a real-world workforce
scheduling and routing application (wsrp) via map-elites. In: International Confer-
ence on Parallel Problem Solving from Nature. pp. 488–499. Springer (2018)

22. Xing, E.P., Ho, Q., Xie, P., Wei, D.: Strategies and Principles of Distributed Ma-
chine Learning on Big Data (2016). https://doi.org/10.1016/J.ENG.2016.02.008

23. Zagoruyko, S., Komodakis, N.: Wide residual networks (2016)

