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Abstract

Ensuring timeliness and mobility for multimedia computing is a crucial task for wireless communication. Previous algorithms
that utilize information channels, such as the information bottleneck method, have shown great performance and efficiency, which
guarantees timeliness. However, such methods suit only in handling single variable tasks such as image processing, but are in-
applicable to multivariable applications such as video processing. To address this critical shortcoming, we propose a novel tensor
information channel which extends the current single-input single-output matrix information channel to a more practical multi-input
single-output tensor information channel. In comparison with the classic information channel, our tensor information channel not
only performs better in experiments, but also allows for a wider range of practical applications. We further build an innovative
tensor-information bottleneck method upon the state-of-the-art information bottleneck method. Experiments on video shot bound-
ary detection are conducted using benchmark data sets to demonstrate the effectiveness of our proposed approach compared with
state-of-the-art methods. In specific, our approach yields a 6.2% increase compared with the information channel-based method,
and when compared to other state-of-the-art methods, we achieve 0.1%-17.7% performance gains under different experimental
configurations.

Keywords: Tensor information channel, Tensor-information bottleneck, Cluster, Partition.

1. Introduction

In mobile multimedia computing, solutions to many prob-
lems are influenced by the performance of clustering or par-
titioning methods [1, 2]. Therefore, ensuring the robust-
ness of such methods is a key challenge in the fields of ma-
chine learning, image processing, and pattern recognition. In
these fields, clustering or partitioning methods are usually re-
quired to define the “distance” or “similarity” among measured
data sets, such as Pearson correlation and Euclidean distance
[3, 4, 5, 6, 7, 8, 9]. One popular information theory approach of
clustering is to let the clusters only capture relevant information
among the data, where the relevance is explicitly determined by
the various components of the data itself. Mutual information
(MI), which is based on information theory, provides a general
measure of dependencies among variables and serves as a key
tool for clustering, feature extraction (FE), and dimensionality
reduction in many areas [10, 11, 12, 13]. For example, Chen
et al. [11] used minimal redundancy maximal relevance-partial
mutual information clustering with least square regression to
overcome the two main flaws in the structure and the weights
of multi-layer feed-forward networks. Oveisi et al. [12] pro-
posed an efficient tree-based method for FE in which at each
step a new feature is created by selecting and linearly combin-
ing two features such that the MI between the new feature and
the class is maximized. Bouzas et al. [13] proposed a novel

algorithm for dimensionality reduction that uses as a criterion
the mutual information (MI) between the transformed data and
their corresponding class labels.

The main purpose of information theory is to deal with the
communication or information channel between source (or in-
put) and receiver (or output). It was initially introduced by
Claude Shannon. In his paper, Shannon roughly classified com-
munication systems into three main categories: discrete, con-
tinuous, and mixed types [14]. The information channel is gen-
erally applied to any two variables sharing information. This
application is popular in many fields, such as image processing
[15], computer graphics [16, 17], and visualization [18, 19, 20].
Information Bottleneck (IB) method for data compression was
introduced by Tishby et al. in [21], where the key idea is to
compress the observation while the output preserves most of the
information of the relevant variables, i.e., the original source.
Since then, various IB methods have been rapidly developed
and utilized in many fields, such as neuroscience, image pro-
cessing, and deep learning [22, 23, 24, 25]. The partitioning
principle of it is usually divided into soft [21] and hard [26]
partitions of original source. Kartik et al. [22] developed an
approach based on IB that attempts to find functional relation-
ships in a neuron population. New image segmentation algo-
rithms based on the hard version of the information bottleneck
theory are presented in [23]. The highly popular Deep Neural
Networks (DNNs), a good overview of which can be found in

Preprint submitted to Computer Networks



[27], are analyzed in [24], via the theoretical framework of the
IB principle. These works mainly focus on the design of net-
work coding scheme and quantizer using IB method. To the
best of our knowledge, the input and output of the IB based
methods mentioned above are always univariate, and seldom
are multiple variables considered to be processed. Friedman et
al. introduced a general principled framework for multivariate
extensions of the IB method in [28], however, they only utilized
Bayesian networks to specify the systems of clusters and what
information each captures, which do not ensure a competent
performance. Therefore, in this work, we propose the tensor
information channel and tensor-information bottleneck method
to solve the problems especially for these involving input with
multiple variables.

The rest of the paper is organized as follows. In Section 2, we
present some basic concepts of information theory, the structure
of an information channel, and the agglomerative information
bottleneck method. We construct a tensor information channel
and propose the tensor-information bottleneck method in Sec-
tion 3. The experimental results on video shot boundary detec-
tion are shown in Section 4, and conclusions of the paper are
described in Section 5.

2. Related Work

In this section, we briefly review some basic concepts of in-
formation theory [29, 30], the structure of a two-dimensional
information channel [29, 30], and the agglomerative informa-
tion bottleneck method [26], which are shown in matrix-based
perspectives.

2.1. Information Theory

Let X be a discrete random variable taking on values in a set
X = {x1, x2, · · · , xn} and probability distribution p(X) = {p(x)},
where p(x) = Pr{X = x} and x ∈ X. Likewise, let Y be a
random variable and y ∈ Y.

The Shannon entropy H(X) of a random variable X is defined
by

H(X) = −
∑
x∈X

p(x) log p(x), (1)

where the log is with base-2, and the entropy is expressed in
bits. The convention that 0 log 0 = 0 should be noticed. This
entropy is denoted as H(p) as well, which measures the average
uncertainty of a random variable X.

The conditional entropy H(Y |X) is defined by

H(Y |X) =
∑
x∈X

p(x)H(Y |x), (2)

where H(Y |x) = −
∑

y∈Y p(y|x) log p(y|x) is the entropy of Y
given x, and p(y|x) is the conditional probability. H(Y |X) mea-
sures the average uncertainty associated with Y if we know the
outcome of X.

The mutual information (MI) between X and Y is defined by

I(X,Y) = H(Y) − H(Y |X)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
,

(3)

where p(x, y) = Pr{X = x,Y = y} is the joint probability, and
I(X,Y) = I(Y, X) ≥ 0. MI expresses the shared information
between X and Y .
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Figure 1: Main elements of an information channel.

2.2. Information Channel

Conditional entropy H(Y |X) and mutual information I(X,Y)
can be considered as a communication channel or information
channel X → Y whose output Y depends on its input X with
some probability[29].

The diagram in Figure.1 shows the main elements of an in-
formation channel, which are
• Input and output variables, X and Y , with their marginal

probability distributions denoted by p(X) and p(Y), respec-
tively.
• Probability transition matrix p(Y |X), which is composed of

conditional probability p(y|x). p(Y) is determined by the input
distribution p(X): p(y) =

∑
x∈X p(x)p(y|x). Each row of p(Y |X),

denoted by p(Y |x), is a probability distribution. All these el-
ements are connected by Bayes’ rule: p(x, y) = p(x)p(y|x) =

p(y)p(x|y).

2.3. Information Bottleneck Method

The Jensen-Shannon divergence(JS-divergence) [31] is used
to measure the dissimilarity between two probability distribu-
tions, which is defined by

JS (π1,π2,· · ·,πn; p1,p2,· · ·,pn)=H(
n∑

i=1

πi pi)−
n∑

i=1

πiH(pi), (4)

where pi is a probability distribution defined over the same set
with weight πi, satisfying

∑n
i=1 πi = 1.

The information bottleneck method is a technique that com-
presses the variable X into X̂ with minimal loss of mutual in-
formation with respect to another variable Y . The compressed
variable X̂ can be considered as the result of merging two or
more states of X, preserving as much information as possible
with respect to the control variable Y [21].
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Slonim and Tishby introduce the agglomerative information
bottleneck method in [26], which assumes that a cluster x̂ is
defined by x̂ = {x1, . . . , xl}, where for all k ∈ {1, . . . , l}, xk ∈ X,
and the probabilities p(x̂) and p(y|x̂) are defined by

p(x̂) =

l∑
k=1

p(xk), (5)

p(y|x̂) =
1

p(x̂)

l∑
k=1

p(xk)p(y|xk),∀y ∈ Y. (6)

The decrease in the mutual information δIx̂ from I(X,Y) to
I(X̂,Y), due to the merging of x1, . . . , xl, is given by

δIx̂ = p(x̂)JS (π1, . . . , πl; p1, . . . , pl), (7)

where πk =
p(xk)
p(x̂) , and pk = p(Y |xk). In the following sections,

we will try to find the optimal clustering algorithm which aims
to minimize δIx̂.

3. Tensor Information Channel and Tensor-Information
Bottleneck Method

There is only one input variable in the information channel
that we introduced in the previous section, where the output
variable is directly determined by the input variable. However,
in many cases, the output variables are determined by multiple
input variables, and the traditional information channel is no
longer applicable. Therefore, we construct a tensor information
channel and propose the tensor-information bottleneck method
in order to solve this problem.

3.1. Tensor Information Channel

Let Xi be a discrete random variable taking on values
in a set Xi = {xi1, xi2, · · · , xidi } with probability distribu-
tion p(Xi) = {p(xi)}, where i = 1, 2, · · · , n − 1 and
xi ∈ Xi. X1, X2, · · · , Xn−1 are independent variables. Like-
wise, let Y be a discrete random variable and y ∈ Y.
The conditional probability p(y|x1x2 · · · xn−1) = Pr{Y =

y|X1 = x1, X2 = x2, · · · , Xn−1 = xn−1}.
Conditional entropy H(Y |X1 · · · Xn−1) and mutual informa-

tion I(X1X2 · · · Xn−1,Y) can be considered as a Tensor infor-
mation channel (X1, · · · , Xn−1) → Y , whose output Y depends
probabilistically on its n − 1 input variables. Probability transi-
tion tensor T = (p(y|x1x2 · · · xn−1)) ∈ Rd1×d2×···×dn is a real n-th
order d1 × d2 × · · · × dn-dimensional tensor. When there is only
one input variable in the information channel, the probability
transition tensor degenerates into a matrix.

Without loss of generality, we consider a tensor information
channel with two input variables, i.e. (X,Y)→ Z.

The conditional entropy H(Z|XY) is defined by

H(Z|XY) =
∑
x∈X

∑
y∈Y

p(x, y)H(Z|xy), (8)

where H(Z|xy) = −
∑

z∈Z p(z|xy) log p(z|xy) is the entropy of Z
given x and y.

The mutual information between (X,Y) and Z is defined by

I(XY,Z) = H(Z) − H(Z|XY). (9)

The diagram in Figure.2 shows the main elements of a third-
order tensor information channel, which are:
• Input and output variables, (X,Y) and Z, with their respec-

tive probability distribution p(X), p(Y), and p(Z).
• Probability transition tensor T = p(Z|XY) ∈ Rn×m×k,

which is composed of conditional probability p(z|xy). p(Z)
is determined by the input distribution p(X) and p(Y): p(z) =∑

x∈X
∑

y∈Y p(xy)p(z|xy).
• The horizontal and lateral slices of probability transition

tensor T , denoted by Ti:: = p(Z|xiY) and T: j: = p(Z|Xy j), re-
spectively. Each row of Ti:: and T: j:, denoted by p(Z|xiy) and
p(Z|xy j), is a probability distribution. p(Zxi) is determined by
the input p(xi): p(zxi) =

∑
y∈Y p(xiy)p(z|xiy), and p(Zy j) is de-

termined by the input p(y j): p(zy j) =
∑

x∈X p(xy j)p(z|xy j).

3.2. Tensor-Information Bottleneck Method
The tensor-information bottleneck method is a technique that

compresses the multiple variables X1, X2, · · · , Xn−1 with mini-
mal loss in terms of mutual information with respect to variable
Xn. The compressed variable X̂i can be considered as the re-
sult of merging two or more states of Xi, preserving as much
information as possible about the control variable Xn.

We propose the tensor agglomerative information bottleneck
method in this paper with the assumption that a cluster x̂i is
defined by x̂i = {xi1, . . . , xil} for all k ∈ {1, . . . , l} and i ∈
{1, . . . , n−1}, xik ∈ Xi. Without loss of generality, we set n = 3.
Thus, the tensor information channel is (X,Y) → Z. A cluster
x̂ is defined by x̂ = {x1, . . . , xl}. Likewise, ŷ = {y1, . . . , yl}. In
the i-th horizontal slice of a third-order probability transition
tensor, the probabilities p(xiŷ) and p(z|xiŷ) are defined by

p(xiŷ) =

l∑
k=1

p(xiyk), (10)

p(z|xiŷ) =
p(zxiŷ)
p(xiŷ)

=
1

p(xiŷ)

l∑
k=1

p(xiykz),∀z ∈ Z. (11)

The tensor Jensen-Shannon divergence (TJS-divergence) is
used to measure the dissimilarity between the probability dis-
tributions of two slices, which is defined by

T JS (ω1, . . . , ωn; JS 1, . . . , JS n) =

n∑
i=1

ωiJS i, (12)

where JS i = JS (πi1, πi2, . . . , πil; pi1, pi2, . . . , pil) is the Jensen-
Shannon divergence of the i-th slice with weight ωi, fulfilling∑n

i=1 ωi = 1.
The decrease in the mutual information of a third-order prob-

ability transition tensor δIXŷ from I(XY,Z) to I(XŶ ,Z) due to the
merging of y1, . . . , yl is given by

δIXŷ = p(ŷ)T JS (ω1, . . . , ωn; JS 1, . . . , JS n)

= p(ŷ)
n∑

i=1

ωiJS i(πi1, . . . , πil; pi1, . . . , pil),
(13)
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Figure 2: Main elements of a three order tensor information channel, which are connected by Bayes’ rule.

where ωi =
p(xi ŷ)
p(ŷ) , πik =

p(xiyk)
p(xi ŷ) , and pik = p(Z|xiyk), so the

equation (13) can be denoted by

δIXŷ =

n∑
i=1

p(xiŷ)JS i(πi1, . . . , πil; pi1, . . . , pil). (14)

Likewise, the decrease in the mutual information of a third-
order probability transition tensor δIx̂Y from I(XY,Z) to I(X̂Y,Z)
due to the merging of x1, . . . , xl is given by

δIx̂Y =

m∑
j=1

p(x̂y j)JS j(π1 j, . . . , πl j; p1 j, . . . , pl j), (15)

where p(x̂y j) =
∑l

k=1 p(xky j), πk j =
p(xky j)
p(x̂y j)

, and pk j = p(Z|xky j).
To sum up, depending on the compressed variable, the optimal
clustering is the one that tries to minimize the decrease in the
mutual information of the variable, i.e. min{δIx̂Y } or min{δIXŷ}.

In order to introduce tensor-information bottleneck method
to practical applications, we extend the split-and-merge algo-
rithm constructed from the conventional information channel to
the tensor information channel. The split-and-merge algorithm,
proposed by Anton et al. [23], is divided into two phases. For
the first phase, a top-down strategy is applied for partitioning.
In the second phase, a bottom-up strategy is used to merge sim-
ilar parts. The splitting procedure is described in Algorithm 1.
The target of the algorithm is to divide X into m clusters, where
m is the preset number of clusters, and m > 1. m is a parameter
which determines the maximum number of the clusters. In our
experiments, we pick a sufficiently large value for m, that is 215.
Please note that choosing an m that is larger than the total frame
number of a video does not lead to a trivial result (i.e. a cut for
each frame). Instead, most of the resulting cuts will be at the
same place, while the majority of the frames will not be con-
sidered a cut. The initial number of cluster is 1. According to
the probability distribution and conditional distribution of the
three variables x, y, and z that affect the classification, a par-
tition will be made where max(δIx̂Y ) is achieved. The process

continues until the number of clusters is no smaller than m. The
merging procedure is described in Algorithm 2. The purpose of
this algorithm is to merge the over segmented parts and finally
divide X into n clusters. Algorithm 2 has a threshold ε, and the
selection of this value is thoroughly explained in Section 4. To
improve the robustness of our method, we use normalized mu-
tual information gain as the stopping criterion, which is shown
as the following:

NδI =
δI −min δI

max δI −min δI
. (16)

Algorithm 1 Top-down bottleneck algorithm
Input:

Initial value: X
Number of clusters: m

Output: A partition of X: X̂
X̂ ← {X}
while |X̂| < m do

X̂′ ← {}
for T in X̂ do

k ← argmax({δIx̂Y (t)for t in T }) (see (15))
T1 ← T [: k]
T2 ← T [k :]
X̂′ ← X̂′ ∪ {T1,T2}

end for
X̂ ← X̂′

end while
return X̂

4. Experiments

In this section, we testify the proposed split-and-merge al-
gorithm which is based on the tensor information channel
(F,R)→ B, where the random variables F, R, and B each repre-
sents the set of frames of a video, the set of regions of images,
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Figure 3: Main elements of the tensor information channel belonging to the split-and-merge algorithm.

Algorithm 2 Bottom-up bottleneck algorithm
Input:

An excessive partition of X: X̂
Threshold: ε

Output: An optimized partition of X: X̂
D← {δIxY (X̂[i] ∪ X̂[i + 1]) for i in range(|X̂| − 1)}
D← normalize(D) (see (16))
X̂′ ← {X̂[0]}
for i in range(|D|) do

if D[i] > ε then
X̂′ ← X̂′ ∪ {X̂[i + 1]}

else
X̂′[−1]← X̂′[−1] ∪ X̂′[i + 1]

end if
end for
X̂ ← X̂′

return X̂

and the set of intensity bins. This tensor information channel
is defined by a conditional probability tensor T = (p(b| f r)),
which expresses how the pixels corresponding to each block of
the video are distributed into the histogram bins.

Figure.3 shows the elements of the tensor information chan-
nel belonging to the split-and-merge algorithm. The definitions
of these elements are:
• The conditional probability tensor p(B|FR), which repre-

sents the transition probabilities from each block of the video
to the bins of the histogram, is defined by p(b| f r) =

n( f r,b)
n( f r) ,

where n( f r) is the number of pixels of blocks formed by the
intersection of frame f and region r, and n( f r, b) is the num-
ber of pixels of block f r corresponding to bin b. Conditional
probabilities fulfill

∑
b∈B p(b| f r) = 1, ∀ f ∈ F , r ∈ R.

• The input distribution p(FR), which represents the proba-
bility of selecting each video block, is defined by p( f r) =

n( f r)
N ,

where N is the number of pixels of the original video.
• The output distribution p(B), which represents the nor-

malized frequency of each bin b, is defined by p(b) =∑
f∈F
∑

r∈R p( f r)p(b| f r) =
n(b)
N , where n(b) is the number of

pixels corresponding to bin b.
For the first phase, a top-down strategy is applied to parti-

tion a video into quasi-homogeneous frames using binary space
partition (BSP). In the second phase, a bottom-up strategy is
used to merge the frames whose histograms are similar. The
partitioning process is represented over the tensor information
channel (F̂,R)→ B, where F̂ denotes the partitioned variable F
according to the maximum MI gain for each partitioning step.
Note that this tensor information channel varies at each partition
step because the number of regions is increased. Consequently,
the marginal probabilities p(F̂) and the conditional probabili-
ties p(B|F̂R) also change. For the BSP strategy, the gain of MI
due to the partitioning of a block f̂ r in two neighbor blocks f1r
and f2r, such that

p( f̂ r) = p( f1r) + p( f2r) (17)

and
p(b| f̂ r) =

p( f1r)p(b| f1r) + p( f2r)p(b| f2r)

p( f̂ r)
(18)

is given by

δI f̂ R =
∑
r∈R

p( f̂ r)JS (π1r, π2r; p(B| f1r), p(B| f2r)), (19)

where π1r =
p( f1r)
p( f̂ r)

, π2r =
p( f2r)
p( f̂ r)

. The JS-divergence between
two blocks can be interpreted as a measure of dissimilarity be-
tween them with respect to the intensity values. In the splitting
process, the partitioning of each step is determined by the max-
imum MI gain δI f̂ R of each sub partitions.

The merging process is represented over the tensor informa-
tion channel (F,R) → B. From the tensor agglomerative in-
formation bottleneck method, we know that any clustering over
F or R will not increase I(FR, B). Analogous to the MI gain
(19) obtained in the splitting phase, the loss of MI due to the
clustering f̂ of two neighbor frames f1 and f2 is also given by

δI f̂ R =
∑
r∈R

p( f̂ r)JS (π1r, π2r; p(B| f1r), p(B| f2r)), (20)

where π1r =
p( f1r)
p( f̂ r)

, π2r =
p( f2r)
p( f̂ r)

. In the merging phase, if two
frames are very similar (i.e., the JS-divergence between them
is small), the channel could be simplified by merging these two
frames, without a significant loss of information. The merging
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of each step is determined by the minimum MI gain δI f̂ R. Due
to the inevitable redundant partitions that the BSP strategy may
introduce, the merging process is indispensable since it effec-
tively reduces such redundancy.

Theoretically, the optimal value for ε varies with the number
of frames. However, it is possible to find a common value for
ε which suits a variety of videos given that the length of which
do not diverse a lot, ensuring the practicability of our method.

4.1. Data Set
Accurate shot boundary detection plays an important role in

applications such as video extraction, video retrieval, and video
summarization. Reliable shot boundary detection is a funda-
mental step in video segmentation applications because video
shots are the elementary building blocks of a complete video
sequence. We use the Video Segmentation Dataset1 in our ex-
periments, which contains 10 different videos. The rationale
behind this selection is three-fold. First, this data set is repre-
sentative of videos with all kinds of art forms, ranging from car-
toon, live action, long take, and classic black-and-white movies.
It examines the ability to generalize, thus ensures the useful-
ness and robustness of our work. Second, there already exists
a comprehensive range of methodologies using this data set as
a benchmark, which ensures the validity of our work. Third, it
fits the other qualities that makes a good benchmark: the task
is clear, it is open and accessible, and the metrics are clear.
Table.1 shows the characteristics of the video data in detail,
which includes significant camera parameter changes, abrupt
camera movements, and so on. These 10 video sequences con-
tain different video genres, including cartoon, action, horror,
etc. The frame sizes are 327 × 288 pixels. It is challenging to
find a general solution to the shot boundary detection problems
since the videos vary significantly, and the correct partition is
not directly related to the length of videos. Therefore, we look
forward to finding a video shot boundary detection method for
the various types of videos mentioned above.

The tensor information channel we proposed can be utilized
in shot boundary detection. Mutual information in tensor infor-
mation channel is mainly used to measure the correlation be-
tween adjacent video frames. As stated above, our proposed
method is tuned to handle videos whose frame number does not
vary greatly. Therefore, we ignore the label H containing 5133
frames and label F containing 236 frames since they are consid-
ered outliers in length, and, thus, the results upon which will not
be representative. It should be noted that we turned both col-
ored and black-and-white frames into grayscale images, which
may result in some information loss.

To compare the different experimental results, we use Preci-
sion, Recall, and F1 score as criteria, which are defined as

Precision =
TP

TP + FP
, (21)

Recall =
TP

TP + FN
, (22)

1http://www.site.uottawa.ca/~laganier/videoseg/
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ages for the split-and-merge algorithm. H-cut and V-cut indicate the horizontal
division and vertical division respectively.

F1 =
2 × Precision × Recall

Precision + Recall
, (23)

where TP, FP, FN each represents true positive, false positive,
and false negative. For each video, there is a label which spec-
ifies the exact frames that should be considered a cut. For a
predicted cut to be a true positive, it must strictly be one of the
cuts in the label, otherwise, it is considered a false positive.

4.2. Results Analysis

2 4 6 8 10 12 14 16 18 20
bins

0.70

0.75

0.80

0.85

0.90

F1

Figure 5: The value of F1 score varies with the distribution of color histograms
of the split-and-merge algorithm.

In experiments, we use a data set including 8 videos that rep-
resent a variety of different video genres and compare the re-
sults of the proposed method against a feature tracking method
[32], the information channel method [23], a pixel-based
method with relative localization information, and a histogram-
based method [33]. The feature tracking method is based on
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Table 1: The Characteristics of video data.
Label Frames Cuts Characteristic of video data Genre

A 650 7 Substantial object motion. Cartoon
B 959 8 Simulate low lighting conditions with a blue filter. Action
C 1619 54 Black and white movie. Many close proximity cuts. Horror
D 2632 34 High quality digitisation of a television show. Drama
E 536 30 Low quality digitisation of a television show. Science-Fiction
F 236 0 Commercial, no cuts, quick motion, many production effects. Commercial
G 500 18 Commercial sequence from the MOCA Project. Commercial
H 5133 38 Video abstract from the MOCA Project. Comedy/Drama
I 479 4 News Sequence from the MOCA Project. News/Documentary
J 873 87 Many computer generated features, many close proximity cuts. Trailer/Science-Fiction/Action

Table 2: The results of tensor information channel, pixel-based method, and histogram-based method.
Tensor information channel Pixel Based method with localization Histogram MethodCut Det (MOCA)
Precision Recall F1 Precision Recall F1 Precision Recall F1

A 1 1 1 1 1 1 1 1 1
B 1 1 1 0.825 0.825 0.825 1 0.375 0.545
C 0.879 0.944 0.910 0.764 0.778 0.771 0.936 0.536 0.682
D 1 1 1 1 1 1 1 0.941 0.969
E 1 0.933 0.965 0.867 0.867 0.867 0.955 0.700 0.808
G 0.857 1 0.923 0.708 0.994 0.809 1 0.667 0.800
I 1 1 1 1 1 1 1 0.500 0.667
J 0.511 0.805 0.625 0.623 0.540 0.591 0.85 0.395 0.540

AVG 0.906 0.960 0.928 0.848 0.876 0.858 0.968 0.639 0.751
STD.DEV 0.159 0.064 0.119 0.136 0.152 0.134 0.050 0.219 0.164

stable feature tracking for inter frame differencing. It uses
feature tracking as a metric for dissimilarity. The pixel-based
method with localization evaluates the similarity of adjacent
frames using metrics that are used to quantify the difference
between the two adjacent frames. The histogram-based method
adopts the same principle as the pixel-based one, however, it
utilizes histogram values of the pixel data rather than the pixel
values themselves. In the partitioning process, the input param-
eters include the marginal probability distributions p(r), p(b),
the conditional probability distribution p(b|r) (with initializa-
tion of p( f ) = 1), and the number of clusters m. The calculation
of marginal probability and conditional probability distribution
depends on the partition of the image and the color histogram
distribution of the video. We have conducted an ablation study
to explore the impact of each hyperparameter. We divide the
video pictures into {1×1, 1×2, · · · , 1×5, 2×1, 2×2, · · · , 5×5},
i.e. 1 6 |R| 6 25, and the color histogram into {2, 3 · · · , 20},
i.e. 2 6 |B| 6 20. Note that when pictures of the video are di-
vided into 1×1, the tensor information channel degenerates to a
conventional information channel. In the merging process, the
input parameters p( f ), p( f r), and p(b| f r) are determined by the
result of the partitioning process, while p(b) stays unchanged.
Figure.4 demonstrates the change in F1 score when given differ-
ent video picture divisions and other hyperparameter stay fixed.
Figure.5 shows the impact of the color histogram distribution
on the F1 score. To ensure a fair comparison, the following
evaluation of our proposed method will be conducted in three

aspects: (1) local optimization, that is finding the suitable hy-
perparameters for each video. (2) global optimization, which
means finding the suitable hyperparameters for all videos. (3)
theoretical improvement, where we will compare our tensor in-
formation channel based algorithm with the conventional infor-
mation channel based algorithm.

For local optimization, we find a suitable set of hyperparam-
eters for each video. To ensure fairness, the opponent methods
also follow this kind of optimization. We compare the pro-
posed method against a pixel-based method and a histogram-
based method as the proposed method utilizes only the pixels
and histograms of video. Table.2 shows the results of tensor in-
formation channel, pixel-based, and histogram-based methods.
On the average, the proposed method significantly outperforms
both the pixel-based and histogram-based methods. The aver-
age F1 score yield by our method greatly surpasses the other
approaches by 7.0% and 17.7% respectively. The lower stan-
dard deviation shows that the proposed method is more stable
among different video genres. In all cases, the proposed method
yields the best achievable F1 score. It is observed that for all
listed approaches there is a notable performance loss on video
J. It is most likely due to its abnormal cuts and frame rate which
is significantly higher than other videos.

For global optimization, we find the most suitable set of hy-
perparameters for all of the 8 videos. Specifically, the hyperpa-
rameters we choose are: |R| = 6 = (2 × 3), |B| = 5, m = 215,
and ε = 0.10. Table.3 shows the comparison of results between
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Table 3: The results of tensor information channel and the feature tracking
method.

Feature tracking method Tensor information channel
Precision Recall F1 Precision Recall F1

A 1 1 1 0.875 1 0.933
B 1 1 1 1 1 1
C 0.595 0.87 0.707 0.9 0.833 0.865
D 1 1 1 0.971 1 0.985
E 0.938 1 0.968 0.857 1 0.923
G 0.810 0.944 0.872 0.941 0.889 0.914
I 1 1 1 1 1 1
J 0.497 0.897 0.637 0.547 0.598 0.571

AVG 0.855 0.964 0.898 0.886 0.915 0.899
STD.DEV 0.190 0.050 0.138 0.138 0.134 0.131

Table 4: The results of tensor information channel and information channel.
Tensor information channel Information channel
Precision Recall F1 Precision Recall F1

A 0.875 1 0.933 0.779 1 0.875
B 1 1 1 1 1 1
C 0.9 0.833 0.865 0.75 0.889 0.814
D 0.971 1 0.985 0.917 0.971 0.942
E 0.857 1 0.923 0.833 0.833 0.833
G 0.941 0.889 0.914 0.929 0.722 0.813
I 1 1 1 1 1 1
J 0.547 0.598 0.571 0.583 0.322 0.415

AVG 0.886 0.915 0.899 0.849 0.842 0.837
STD.DEV 0.138 0.134 0.131 0.133 0.218 0.175

tensor information channel and the feature tracking method. On
average, the proposed tensor information channel method out-
performs the feature tracking method both in F1 score and stan-
dard deviation, showing the great robustness and stability. It is
also worth noting that although adopted the less advantageous
tuning strategy, our method still, by a large extent, outperforms
the other two methods listed in Table.2, yielding an increment
of 4.1% and 14.8% respectively compared with the pixel-based
and histogram-based methods.

For theoretical improvements, we compare the proposed
method with the conventional information channel method. The
hyperparameters are set to be the same as the global optimized
ones. In Table.4, the proposed method significantly outper-
forms the information channel method. The F1 score yielded
by our method significantly surpasses the conventional infor-
mation channel approach by 6.2%. Also, the smaller standard
deviation (0.131 < 0.175) shows that the tensor information
channel is more stable than the information channel method. In
fact, the existing methodology stated in [21] lacks dimensional-
ity. The proposed information channel and its split-and-merge
algorithm only accepts matrices as input, which is best suited
for image processing. However, it would be impossible for
it to process three-dimensional video inputs. For it to handle
video inputs, each frame must be converted to a one dimen-
sional histogram data recording the distribution of pixel values.
This process introduces a great information loss, which is in
accordance with the experiments. Our generalized tensor infor-
mation channel, however, can handle third-order tensors with
ease. In all cases, the proposed method yields the best F1 score.
The validity of the tensor information channel of multi-input
and single-output is thus verified.

5. Conclusions

In this paper, we address the problem of inefficiency in the
conventional information channel method, focusing on the mul-
tivariable cases. Specifically, we construct a tensor informa-
tion channel and propose a novel tensor-information bottleneck
method. This entails defining tensor information for the frames
of a video, the regions of images, and histogram bins for a split-
and-merge based algorithm. An additional advantage of this
method is that we do not need to assume any priori information
about the video input. We compare our proposed algorithm with
other state-of-the-art methods on 8 benchmark videos from dif-
ferent genres. Numerical experiments demonstrate that the ten-
sor information channel achieves improved and stable results
for video shot boundary detection. However, there are a num-
ber of shortcomings in our proposed method, which will be ad-
dressed through ongoing future researches focused on higher-
order tensor information channels, and evaluations on more
challenging real-world applications (e.g. [34, 35, 36, 37]).
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