
1

FLORA: Fuzzy based Load-Balanced
Opportunistic Routing for Asynchronous

Duty-Cycled WSNs
Weiqi Wu, Xingfu Wang*, Member, IEEE, Ammar Hawbani*, Ping Liu, Liang Zhao, Member, IEEE, Ahmed

Al-Dubai, Senior Member, IEEE

Abstract—Existing Opportunistic routing (OR) schemes work well with asynchronous duty-cycled wireless sensor networks (WSNs),
which effectively reduces the sender waiting time by broadcasting packets to a set of forwarders instead of a predetermined forwarder.
However, these protocols seriously suffer from the multiple receivers problem which distinctly shortens the network lifetime. Many
opportunistic routing protocols view each node as equal importance, neglecting the fact that the nodes close to the sink undertake
more duties than the rest of network nodes. Therefore, the nodes located in different positions should play different roles during the
routing process. Unlike existing solutions, this paper presents a novel fuzzy logic-driven routing protocol, which consists of three parts.
Firstly, each node defines a Routing Zone (RZ) to address the problem resulting from the randomness of node deployment. Secondly,
the nodes within RZ are prioritized based on competency value obtained through the fuzzy-logic model. Finally, one of forwarders is
selected as the final relay node after forwarders coordination. Through extensive experimental simulations, it is confirmed that FLORA
achieves better performance compared to its counterparts in terms of energy consumption, overhead packets, waiting times, packet
delivery ratio and network lifetime.

Index Terms—fuzzy routing, opportunistic routing, duty cycle, load balancing, wireless sensor networks.
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1 INTRODUCTION

AWireless Sensor Network (WSN) consists of a large
number of sensor nodes. These nodes are randomly

deployed in the sensor field to collect the sensory data
and send it to the sink employing multi-hops mechanism.
One of the most important constraints on sensor nodes is
the limited power resource. This makes energy efficiency
greatly important when designing routing protocols.

Duty-cycling, an effective mechanism for energy sav-
ing, is widely used in WSNs [1]. In this mechanism, the
node periodically switches between active and sleep states
according to predefined active/sleep intervals [2]. One of
the two approaches, synchronous and asynchronous, is
commonly utilized for coordinating active/sleep states in
the MAC layer. In the synchronous approach, MAC layer
synchronizes the active/sleep states so that the sender and
its receiver simultaneously wake up to forward packets.
Nevertheless, this incurs a great number of control messages
to maintain time synchronization among nodes. Different
from the synchronous approach, the protocol running the
asynchronous approach efficiently reduces the number of
control messages since nodes randomly wake up according
to predefined active/sleep periods. However, this increases
the packet delivery delay and the sender waiting time
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as the sender has to wait until its forwarder wakes up
and receives the packet. Fortunately, Opportunistic Routing
(OR), benefiting from the broadcast characteristic of wireless
mediums, is suitable for asynchronous duty-cycled wireless
sensor networks (WSNs) by broadcasting packets to a set
of forwarders instead of a single predetermined forwarder
[3]. This effectively reduces the packet delivery delay and
the sender waiting time. However, selecting multiple for-
warders can cause multiple receivers problem (packets du-
plication problem) since multiple receivers may simultane-
ously wake up and receive the same packet. This leads to
unnecessary energy consumption and a high traffic load.
Additionally, if the ACK packet collides at the sender, this
will cause a rise in the sender waiting time since the sender
continuously transmits preamble packets until successfully
receiving an ACK packet [2]. As a result, the sender waiting
time reduced by selecting multiple receivers may be offset
by the collision of ACKs. In such case, the opportunistic
routing may perform even worse than single receiver based
routing.

Many protocols, such as LORA [2] and ORR [4], have
been proposed to balance the sender waiting time and the
packets duplication problem. However, these protocols view
each node as equal importance and neglect the fact that
the nodes close to the sink have to undertake more duties,
receiving data from farther nodes and forwarding data to
the sink, than the nodes far from the sink do, which imposes
the nodes close to the sink to deplete their energy faster and
significantly degrades the performance of network includ-
ing, but not limited to, the network connectivity and the
network lifetime. Therefore, the nodes located at different
positions should play different roles during the routing
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process. We call this the location characteristics of nodes or the
roles of nodes. For example, the nodes whose number of hops
to the sink is one should directly forward packets to the sink
instead of employing the multi-hops mechanism according
to data transmission in one-hop region as explained in [5]. The
nodes whose number of hops to the sink are either two
or three should pay more attention to the energy of their
neighbors than the transmission distance and the direction
angle factors. This leads to longer network lifetime and the
nodes far from the sink should forward packets to the nodes
close to the sink as soon as possible.

Considering the QoS metrics such as low waiting time,
few duplicate packets and long network lifetime, the routing
decision in OR is influenced by multiple attributes (multiple
criteria or multiple factors). For example, the transmission
distance, the direction angle and the residual energy are the
most common attributes involved during the selection of
next hop node. The routing decision is essentially a multiple
criteria decision making problem. Fuzzy logic does not only
provide appropriate methods to represent multiple criteria
involved during the forwarders selection, but also provides
efficient solutions to identify the relationships among differ-
ent criteria and to aggregate these criteria. This enables the
fuzzy logic to work well in dealing with the multiple criteria
decision making problem.

Motivated by the aforementioned observations, we pro-
pose a Fuzzy based Load-Balanced Opportunistic Routing
for Asynchronous Duty-Cycled WSNs (FLORA) to achieve
the location characteristics of nodes and infer the final routing
decision affected by various criteria. The main contributions
of our work are described as follows.

1) We introduce fuzzy logic into the design of oppor-
tunistic routing protocol. We propose a fuzzy-logic model,
in which the Takagi-Sugeno-kang (TSK) interface [6] is used
to infer the competency value of each node. Compared to
traditional fuzzy-logic model, our model directly outputs a
value with no need for the defuzzification process.

2) A modified Analytic Hierarchy Process method is de-
signed to achieve the location characteristics of nodes by
assigning different control parameters to nodes located at
different positions.

3) To route packets toward the sink and deal with the
problem resulting from the randomness of node deploy-
ment, each node defines a routing zone. Moreover, a novel
approach combined with routing zone is proposed to control
the number of forwarders. In this approach, each node
has one of the two actions, forward and drop. Only the
nodes whose action is forward have qualification to become
potential forwarders.

The rest of this paper is organized as follows. Section 2
explains the related works. The preliminary knowledge of
our work is described in Section 3. Section 4 is devoted to
the main idea of our protocol. The performance is analyzed
in Section 5. Section 6 elaborates simulation setup and
experimental results. Finally, Section 7 concludes this paper.

2 RELATED WORK

Significant efforts have been devoted to improving the
network performance. In this section, we review two main
approaches for improving the network performance, Oppor-
tunistic Routing and Fuzzy-based Routing.

2.1 Opportunistic Routing

Opportunistic Routing (OR) is an efficiently promising
paradigm to improve the performance of wireless networks
by exploiting the multiple transmission opportunities actu-
alized by the broadcast nature of the wireless medium [3].
S. Biswas et al. [7] proposed Extremely Opportunistic Routing
(ExOR) which first clearly shapes and exhibits the struc-
ture of opportunistic routing concept. In ExOR, each node
chooses a prioritized set of potential forwarders based on a
metric called Expected Transmission Count (ETX). Although
ExOR increases the throughput of network compared to
single-path traditional routing, it still suffers from some
shortcomings, such as waiting time, duplicate transmissions
and being sensitive to link quality. O. Landsiedel et al. [8]
proposed Opportunistic Routing in Wireless Sensor Networks
(ORW) using a metric called Expected Duty Cycled Wakeups
(EDC). ORW efficiently reduces the sender waiting time
and energy consumption by utilizing an asynchronous low-
power-listening MAC and using lightweight mechanisms
to ensure a unique forwarder in case of multiple receivers.
Unfortunately, it still generates a mass of redundant packets
and degrades the performance of the network. Later, Oppor-
tunistic Routing Based on Residual Energy (ORR) [4] is pro-
posed to address the load balancing problem of energy and
the duplicate transmissions problem. ORR considers resid-
ual energy factor in the design of the metric and calculates
its optimal number of forwarders according to forwarding
cost estimation. However, it incurs a great number of control
messages and costly computational cost since the sink peri-
odically collects the entire network information and recur-
sively computes its optimal number of forwarders. Recently,
A. Hawbani et al. [2] proposed Load-Balanced Opportunis-
tic Routing for Asynchronous Duty-Cycled WSN (LORA). In
LORA, each node defines a Candidates Zone (CZ) to restrict
the number of candidate nodes. These nodes are locally
prioritized based on neighbors information and only the
nodes within the zone are allowed to forward data packets.
Although LORA achieves better performance compared to
its counterparts, LORA assigns the same control parameters
to each node and ignores the location characteristics of
nodes like protocols mentioned above. We found that the
location characteristics of node have positive impacts on the
network performance.

2.2 Fuzzy-based Routing

The fuzzy logic is a promising technique in dealing with the
multiple criteria decision making problem. A large number
of fuzzy-based protocols (e.g. [9], [10], [11], [12], [13], [14],
[15]) are proposed for clustering tasks, selecting cluster-head
(CH), computing cluster size or forming cluster. These pro-
tocols can be categorized into two groups, equal-clustering
protocols (e.g. [9], [10], [11]) and unequal-clustering proto-
cols (e.g. [12], [13], [14], [15]), according to whether the size
of each cluster is equal. Cluster Head Election mechanism using
Fuzzy logic (CHEF) [9], a distributed CHs election algorithm,
introduces fuzzy logic into WSNs to optimize the energy
consumption. In CHEF, the probability of each node to be
CH is computed by considering nodes residual energy and
distance between nodes and the sink. Like CHEF, Distributed
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Fuzzy Logic-based Clustering algorithm (DFLC) [10] and En-
ergy Aware Distributed Clustering using Fuzzy Logic (EADC-
FL) [11] are also distributed CHs election algorithms. DFLC
designs a filter mechanism before CHs election to reduce
the overhead of unnecessary data packets. In DFLC, the
probability of each node to be CH is computed accord-
ing to five factors, energy, centrality, distance to the sink,
number of hops, and node density. Unlike CHEF, EADC-
FL performs clustering on demand instead of each round in
order to reduce the extra energy dissipation resulting from
consecutive clustering phases. In EADC-FL, the probability
of each node to be CH depends on node energy, node degree
and node centrality factors among which the node energy
is a primary factor to elect CHs. Compared to non-cluster
protocols, equal-clustering protocols improve the network
lifetime to some extent. Unfortunately, it still brings negative
influences on load balance of the entire network. H. Bagci
et al. [12] proposed Energy Aware Unequal Clustering with
Fuzzy (EAUCF), which is a distributed competitive unequal-
clustering algorithm. In EAUCF, the competition range of
each node is computed by considering residual energy and
the distance to the sink. A node with the highest residual
energy within the competition radius is selected as the CH.
However, EAUCF causes the unreasonable energy depletion
at the CH. To deal with this issue, R. Logambigai et al.
[13] proposed Fuzzy Based Unequal Clustering (FBUC). Like
EAUCF and FBUC, Low-Energy Adaptive Unequal Clustering
Protocol using Fuzzy C-Means (LAUCF) [14] and Distributed
Unequal Clustering using Fuzzy Logic (DUCF) [15] are also
unequal-clustering protocols. LAUCF uses Fuzzy C-Means
(FCM) to select CHs to uniform energy dissipation among
the CHs. Unlike LAUCF, DUCF selects CHs by considering
node residual energy, node degree and the distance to
the sink. Although unequal-clustering protocols outperform
equal-clustering protocols to some degree in terms of energy
consumption and network lifetime, these protocols bring
extra overhead for forming and maintaining clusters. M. R.
Minhas et al. [16] proposed Fuzzy Multiobjective Routing Al-
gorithm (FMO) which is a centralized non-cluster algorithm.
Compared to cluster protocols, FMO avoids the process
of clustering tasks. Unfortunately, it induces immeasurable
cost for finding the minimum weight path from the source
to the sink. In FMO, for each routing request, the sink firstly
collects the information of nodes. Then, the sink tries to find
a minimum weight path from the source node to itself using
Dijkstra’s Shortest Path Algorithm [17]. Finally, the source
node sends data packets along the minimum weight path.

Different from the aforementioned routing schemes, we
propose FLORA, which is a non-cluster, fuzzy logic based,
and distributed opportunistic routing protocol for asyn-
chronous duty cycled WSNs. FLORA efficiently avoids the
process of clustering tasks and locally selects next-hop
according to the information sensed from neighbor nodes
instead of the information collected from the entire network.
Additionally, FLORA realizes positive impacts of the roles
of nodes on the network performance and takes the roles of
nodes into consideration during the routing process.

3 PRELIMINARIES

This section is devoted to elaborating three issues. i) The
assumptions. ii) BoX-MAC protocol running in MAC layer.
iii) Fuzzy logic introduced in this article.

TABLE 1
NOTATIONS

Notation Description
N The network. N = {n1, n2, n3, ...}. ni ∈ N is a sensor

node.
Ni The neighbors set of node ni.
mi The size of Ni, mi = ||Ni||
ns The source node.
nd The sink node.
e∗ The initial energy.
hi,d The number of hops from ni to nd.
di,j The transmission distance from sender node ni to its

neighbor node nj .
ϑi,j The direction angle between ni and nj considering the

location of the sink node nd.
ei,j The residual energy of neighbor node nj of ni.
d̃i,j The transmission distance crisp parameter of neighbor

node nj of nj .
ϑ̃i,j The direction angle crisp parameter of neighbor

node nj of nj .
ẽi,j The residual energy crisp parameter of neighbor

node nj of nj .
℘i,j The competency value of neighbor node nj of ni.
<i,j The forwarding qualification of neighbor node nj of ni.
Ci The routing zone of the sender node ni.
% The sensing range.
φ The communication range.

3.1 Assumptions
We assume that all sensor nodes are randomly deployed in
a specific area. Each node is static and is aware of its own
geographical coordinate (xi, yj) through any localization
scheme such as the one studied in [18]. It is worth noting
that an error of 6 meters (typical of GPS positioning [19])
is between 6% and 12% of the typical transmission range,
which means it may have impacts on the protocol behavior.
The network is formed from a set of a finite number of
nodes, denoted by N = {n1, n2, · · · , ni, · · · }. Any sensor
node ni ∈ N has a limited sensing range %, communication
range φ = 2∗% and non-renewable energy. The initial energy
of ni is set to e∗. We define the neighbors set of ni as Ni, a
subset of N, here Ni = {nj | nj ∈ N and di,j < φ} where
di,j denotes the Euclidean distance from ni to nj . And the
size of Ni is denoted by mi = |Ni|. We used the same
interference model as ORR [4]. The First Order Radio Model
[20] is employed to compute the energy consumption of
ni. The notations used frequently in this paper are listed
in Table 1.

3.2 BoX-MAC
BoX-MAC [21] is an asynchronous low power listening
MAC protocol meeting duty-cycling. Each node utilizes
the duty-cycled mechanism and periodically switches be-
tween active and sleep modes. In Box-MAC, when a sender
transmits a packet, its intended forwarders probably are in
sleep mode. Therefore, the sender continuously transmits
the packet until either one of its intended forwarders wakes
up and receives the packet or its timer expires. When a
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sensor node wakes up, it checks the channel. If the channel
is idle, this node will switch to sleep mode. Otherwise, if
there exits a packet, the node will verify the packet to decide
whether to receive it or discard it. The node sends back
an ACK to the sender after receiving the packet. When the
sender receives an ACK, it stops transmitting.

3.3 Fuzzy Logic

This subsection presents the basics of fuzzy logic covering
four aspects. i) Fuzzy set theory. ii) Fuzzification interface.
iii) Fuzzy rules. iv) Analytic Hierarchy Process (AHP). More
details about fuzzy logic can be found in [22], [23].

3.3.1 Fuzzy Set Theory

The fuzzy set theory, introduced by Lotfi A.Zadeh, is a
powerful method for dealing with the uncertainty and
imprecision resulting from limited knowledge in decision
making processes. A fuzzy set is a set of pairs A =
{(xi, µA (xi)) | xi ∈ X}, where xi is an alternative in a deci-
sion, X = {x1, x2, · · · , xi, · · · } and µA (xi) is a membership
function of xi in a given objective A, which maps each value
xi in X to a number within 0 and 1. The number indicates
the degree of satisfaction of xi to the objective A.

3.3.2 Fuzzification Interface

Through the Fuzzification Interface composed of the clas-
sification of crisps and membership functions, each input
value, such as the transmission distance di,j between ni and
nj , is first converted into corresponding crisp parameter.
Then, each crisp parameter is mapped into a crisp item
modeled as a fuzzy set which is characterized by a corre-
sponding fuzzy membership function [24]. For example, the
fuzzy linguistic variable used for defining the “transmission
distance” includes Close, Medium and Far items. Assuming
di,j = 45 and φ = 50, we first get the transmission
distance crisp parameter d̃i,j = 0.9 using Eq. (4). Then,
the d̃i,j is mapped to Far membership function according
to crisps classification listed in Table 2. There are different
types of membership function to describe various fuzzy
linguistic variables in different situations, such as triangular,
trapezoidal and singleton membership functions. The most
commonly used membership function types are triangular
and trapezoidal membership functions.

3.3.3 Fuzzy Rules

Fuzzy rules, expressed by various modalities, are widely
used to deduce fuzzy output from input linguistic vari-
ables in the fuzzy logic system. The most commonly used
fuzzy rule is “if-then” rule defined on the basic of expe-
rience and expertise. The rule can be written as the form:
if χ1 is Rm

1 and χ2 is Rm
2 and · · · and χk is Rm

k ,
then F (χ1, χ2, · · · , χk) is Cm, where χi stands for the ith
input variable, m denotes the mth rule in the fuzzy rules,
F (χ1, χ2, · · · , χk) is a fuzzy linguistic term, Rm

i and Cm

are corresponding fuzzy sets for χi and F (χ1, χ2, · · · , χk)
respectively.

3.3.4 Analytic Hierarchy Process
The Analytic Hierarchy Process (AHP) as introduced in [25]
is a useful tool for identifying the relationships among cri-
teria by constructing a pairwise comparison matrix, where
each entry ai,j , a constant between 1 and 9, reveals the im-
portance of the ith criterion relative to the jth. For example,
the entry ai,j = 2 denotes that the importance of the ith
criterion is twice that of the jth criterion. A pairwise com-
parison matrix, including m criteria and denoted by A∗, is
shown in Eq. (1). Note that ai,k ∗ak,i = 1 and ai,i = 1. Each
entry āi,j , in the normalized pairwise comparison matrix
Ā∗ derived from A∗, is computed using Eq. (2). Finally, the
weight corresponding to each criterion is formulated by Eq.
(3).

A∗ =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
...

. . .
...

am,1 am,2 · · · am,m

 (1)

āi,j =
ai,j∑m
k=1 ak,j

(2)

wki =

∑m
l=1 āk,l
m

(3)

4 THE PROPOSED PROTOCOL

According to the fact that the nodes close to the sink deplete
their energy faster than the rest of network nodes, FLORA is
proposed to infer the final routing decision and accomplish
the roles of nodes by assigning different roles to nodes from
different tiers. Nodes in the same tier have the same roles
and the ith tier includes the nodes whose number of hops
to the sink is i. The concept of the tier is explained in Fig. 1.
The basic idea of this work is described as follows. i) Each
node ni defines a Routing Zone (RZ) to address the problem
resulting from the randomness of node deployment. ii) The
nodes within RZ are prioritized based on competency value
obtained through the fuzzy-logic model considering the
location characteristics of nodes. iii) One of forwarders is se-
lected as the final relay node after forwarders coordination.
The rest of this section is organized as follows. Subsection
4.1 introduces the fuzzy-logic model proposed for FLORA.
The Routing Zone is explained in Subsection 4.2. Subsection
4.3 illustrates the Forwarders Selection. Finally, the Forwarders
coordination is described in Subsection 4.4.

4.1 Fuzzy-Logic Model Proposed for FLORA

The fuzzy-logic model proposed for FLORA, as shown in
Fig. 2, is used to compute the competency value of each
node. To design this model, some basic fuzzy logic concepts
are considered. Before introducing these concepts, we first
elaborate the working process of the model as follow. Each
input value is converted into a crisp parameter. After the
classification of crisps, each crisp parameter is mapped to
a crisp item modeled as a fuzzy set which is characterized
by a corresponding fuzzy membership function [24]. And
then, we designed a modified AHP method, constructing a
dynamic pairwise comparison matrix where each entry is
a function related with the number of hops to the sink, to



5

n
3

n
7

n
6

n
5

n
10

n
9

n
4

n
2

n
1

n
8

n
d

Communication RangeNodeSink

Fig. 1. The solid line between ni and nj indicates that ni and nj can
communicate directly with each other. h1,d, h2,d, h3,d, h4,d, and h5,d
are 1. h6,d, h7,d, h8,d, h9,d, and h10,d are 2. The 1th tier consists of n1,
n2, n3, n4, and n5. The 2th tier is formed from n6, n7, n8, n9, and n10.
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Fig. 2. Structure diagram of the fuzzy logic proposed for FLORA.

evaluate the relationship among the items. Finally, the TSK
interface as introduced in [6] is exploited to infer the final
competency value according to the fuzzy rules.

4.1.1 Crisp Parameter
We choose values of transmission distance, direction angle
and residual energy metrics as the input of our model. Each
crisp parameter is calculated on the basic of corresponding
input variable.

The transmission distance from the sender node ni to
each its neighbor node nj is expressed as a random vari-
able di = (di,1, di,2, · · · , di,mi). Here, di,j is the Euclidean
distance from ni to nj , which is calculated by di,j =√

(xi − xj)2 + (yi − yj)2 and is shown in Fig. 3 (a). Based
on the random variable di, the transmission distance crisp
parameter is denoted by d̃i =

(
d̃i,1, d̃i,2, · · · , d̃i,mi

)
where

d̃i,j is computed by Eq. (4).

d̃i,j =
di,j
φ

(4)

The direction angle, related with the location of the ni,
ni
′s neighbor nodes and the sink nd, is defined as a random

variable ϑi = (ϑi,1, ϑi,2, · · · , ϑi,mi). The ϑi,j shown in Fig.
3 (b) is calculated using Eq. (5) where ~a = (xj − xi, yj − yi)
and ~c = (xd − xi, yd − yi). Based on the ϑi, the direction an-
gle crisp parameter, denoted by ϑ̃i = (ϑ̃i,1, ϑ̃i,2, · · · , ϑ̃i,mi),
is calculated using Eq. (6).

ϑi,j = arccos
~a · ~c
‖~a‖ · ‖~c‖

∀nj ∈ Ni (5)

(b)(a)

ni
nj

nd

Ji,j

ni
nj

nd

di,j

Fig. 3. (a) shows the transmission distance di,j from the current sender
node ni to its neighbor node nj . (b) shows the direction angle ϑi,j from
ni to nj with respect to the location of the sink nd.

ϑ̃i,j =
ϑi,j
π

∀nj ∈ Ni (6)

For the sender node ni, we define the residual energy
of its neighbor node nj as ei,j and the random variable
ei = (ei,1, ei,2, · · · , ei,mi) stands for the residual energy of
each its neighbor nodes. Based on the random variable, the
residual energy crisp parameter, ẽi = (ẽi,1, ẽi,2, · · · , ẽi,mi),
is obtained by Eq. (7).

ẽi =
ei,j
e∗

∀nj ∈ Ni (7)

4.1.2 Crisps Classification
Each crisp parameter is mapped to a corresponding lin-
guistic item, according to the crisps classification as shown
in Table 2. The ranges in this table are empirically ob-
tained based on massive simulation results. For the node
ni, we define transmission distance linguistic item of each
its neighbor nodes as d̈i =

(
d̈i,1, d̈i,2, · · · , d̈i,j , · · · , d̈i,mi

)
.

Similarly, the direction angle linguistic item and the resid-
ual energy linguistic item of ni’s neighbor nodes are de-
fined as ϑ̈i =

(
ϑ̈i,1, ϑ̈i,2, · · · , ϑ̈i,j , · · · , ϑ̈i,mi

)
and ëi =

(ëi,1, ëi,2, · · · , ëi,j , · · · , ëi,mi) respectively. For instance, if
d̃i,j is equal to 0.9 within the range

(
67
100 ∼ 1

)
, then d̈i,j is

Far.

TABLE 2
Crisps Classification

Transmission Distance
Item Close Medium Far

Range 0 ∼ 29
100

29
100 ∼

67
100

67
100 ∼ 1

Direction Angle
Item ExtraSmall Small Medium Large SuperLarge

Range 0 ∼ 2
225

2
225 ∼

1
3

1
3 ∼

43
90

43
90 ∼

3
4

3
4 ∼ 1

Residual Energy
Item Low Medium High

Range 0 ∼ 3
10

3
10 ∼

7
10

7
10 ∼ 1

4.1.3 Membership Functions
A fuzzy set is graphically represented by a corresponding
membership function. Various membership function types
are used to describe different fuzzy linguistic terms, such as
triangular, trapezoidal and singleton functions. In this pa-
per, the triangular membership function and the trapezoidal
membership function are employed to describe boundary
items and intermediate items in a fuzzy set respectively. The
most widely used graphs of the triangular and trapezoidal
membership functions are shown in Fig. 4. The membership
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functions for boundary items and intermediate items used
in this paper are obtained based on the graph shown in Fig.
4 and some of our own experimental experience.

Now, an example involving transmission distance at-
tribute is used to illustrate how to obtain the transmission
distance membership function which is depicted in Fig. 5.
Here, Close, Medium and Far are the left boundary item,
the intermediate boundary item and the right boundary
item, respectively. Thus, Close, Medium and Far transmission
distance membership functions should have a similar shape
to l1, l3 and l2, respectively. Considering the roles of nodes,
there are some differences. For example, when the value of
transmission distance crisp parameter is within the range
(0 ∼ 0.29), the graph of the Close transmission distance
membership function is designed as a slanted line rather
than a horizontal line.
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Fig. 4. (a) shows the graph of triangular membership function where l1
and l2 are used to describe a left boundary item and a right boundary
item respectively. (b) shows the graph of trapezoidal membership func-
tion. Here, l3 is used for describing intermediate items.
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Fig. 5. (a) shows the graph of Close and Far transmission distance
membership function. (b) shows the graph of Medium transmission
distance membership function.

1) Transmission Distance Membership Function
A fuzzy linguistic variable is utilized to define the “trans-

mission distance”, which is denoted by T with three items
set V (T ) = {Close, Medium, Far}. Each item is shaped
by a fuzzy set as follows. TC =

{(
x, µTC (x)

)
| x ∈ [0, 1]

}
defines the Close fuzzy set, where µTC (x) represents the Close
membership function and µTC (x) is formulated by Eq. (8).

µTC (x) =


0.34483 · x+ 0.6, 0 ≤ x < 0.29

−3.33333 · x+ 1.66667, 0.29 ≤ x ≤ 0.5

0, otherwise

(8)

The Medium transmission distance membership function
is defined by TM =

{(
x, µTM (x)

)
| x ∈ [0, 1]

}
where µTC (x)

represents the Medium transmission distance membership
function and is formulated by Eq. (9).

µTM (x) =


2.10526 · x− 0.01053, 0.1 ≤ x < 0.29

0.26316 · x+ 0.52368, 0.29 ≤ x < 0.67

−3.84615 · x+ 3.27692, 0.67 ≤ x < 0.8

0.2, otherwise

(9)

Similarly, TF =
{(
x, µTF (x)

)
| x ∈ [0, 1]

}
defines the Far

fuzzy set, in which µTC (x) is the Far membership function
and is formulated by Eq. (10).

µTF (x) =


1.2766 · x− 0.25532, 0.2 ≤ x < 0.67

0.30303 · x+ 0.39697, 0.67 ≤ x < 1.0

0, otherwise

(10)

2) Direction Angle Membership Function
The “direction angle” is defined as a fuzzy linguistic

variable, denoted by D with five items V (D) =
{ExtraSmall, Small, Medium, Large, SuperLarge}.
Each item correspondingly represents a fuzzy
set as follows. The ExtraSmall set is defined by
DES =

{(
x, µDES (x)

)
| x ∈ [0, 1]

}
, where µDES (x)

represents the ExtraSmall membership function as given in
Eq. (11). DS =

{(
x, µDS (x)

)
| x ∈ [0, 1]

}
defines the Small

fuzzy set where µDS (x), formulated by Eq. (12), is the Small
membership function.

µDES (x) =


−3.6036 · x+ 1.0, 0 ≤ x < 0.0555

−1.79978 · x+ 0.89989, 0.0555 ≤ x < 0.5

0, otherwise
(11)

µDS (x) =


9.00901 · x+ 0.6, 0 ≤ x < 0.0111

−0.20929 · x+ 0.70232, 0.0111 ≤ x < 0.25

−1.71429 · x+ 1.07857, 0.25 ≤ x < 0.6

0.05, otherwise
(12)

The Medium fuzzy set is defined by DM ={(
x, µDM (x)

)
| x ∈ [0, 1]

}
in which µDM (x) represents the

Medium direction angle membership function as shown in
Eq. (13).

µDM (x) =


1.2 · x+ 0.5, 0 ≤ x < 0.25

−0.6 · x+ 0.95, 0.25 ≤ x < 0.5

−1.83333 · x+ 1.56667, 0.5 ≤ x < 0.8

0.1, otherwise

(13)

The Large fuzzy set is defined by DL ={(
x, µDL (x)

)
| x ∈ [0, 1]

}
where µDL (x) stands for the

Large membership function as formulated in Eq. (14).

µDL (x) =


1.0 · x+ 0.3, 0 ≤ x < 0.5

−0.6 · x+ 1.1, 0.5 ≤ x < 0.75

−5.0 · x+ 4.4, 0.75 ≤ x < 0.85

0.15, otherwise

(14)

Similarly, DSL =
{(
x, µDSL (x)

)
| x ∈ [0, 1]

}
defines the

SuperLarge fuzzy set where µDSL (x) formulated by Eq. (15)
is the SuperLarge membership function.
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µDSL (x) =


1.77778 · x− 0.53333, 0.3 ≤ x < 0.75

−0.4 · x+ 1.1, 0.75 ≤ x ≤ 1.0

0, otherwise

(15)

3) Residual Energy Membership Function
A fuzzy linguistic variable, denoted by R with three

items set V (R) = {Low, Medium, High}, is used to
define the “residual energy”. Each item is modeled by a fuzzy
set as follow.RL =

{(
x, µRL (x)

)
| x ∈ [0, 1]

}
defines the Low

fuzzy set where µRL (x) given in Eq. (16) represents the Low
membership function.

µRL (x) =


0.5 · x+ 0.75, 0 ≤ x < 0.3

−2.25 · x+ 1.575, 0.3 ≤ x < 0.7

0, otherwise

(16)

The Medium fuzzy set is defined by RM ={(
x, µRM (x)

)
| x ∈ [0, 1]

}
where µRM (x) stands for the

Medium residual energy membership function shown in Eq.
(17).

Similarly, RH =
{(
x, µRH (x)

)
| x ∈ [0, 1]

}
defines the

High fuzzy set where µRH (x) formulated by Eq. (18) cor-
responds to the High membership function.

µRM (x) =


2.75 · x− 0.075, 0.1 ≤ x < 0.3

0.25 · x+ 0.725, 0.3 ≤ x < 0.7

−3.5 · x+ 3.35, 0.7 ≤ x < 0.9

0.2, otherwise

(17)

µRH (x) =


3.75 · x− 1.875, 0.5 ≤ x < 0.7

0.5 · x+ 0.4, 0.7 ≤ x ≤ 1.0

0, otherwise

(18)

4.1.4 Modified AHP Method (MAHP)
A modified AHP method named MAHP is designed to
accomplish the location characteristics of nodes by assigning
different control parameters to nodes from different tiers.
The nodes in the same tier have same control parameters.
Different from the AHP method, the MAHP constructs a dy-
namic pairwise comparison matrix given in Eq. (19). Here,
each entry is a function related with the number of hops to
the sink, fm,n (hi,d) ∗ fn,m (hi,d) = 1 and fm,m (hi,d) = 1.
Each function fm,n (hi,d) (1 ≤ m < n ≤ 11) is drawn in
Fig. 6 where fm,n (hops) denotes the entry fm,n (hi,d).
We include eleven sub-criteria in A∗ (hi,d) where each
column contains eleven rows representing Close transmis-
sion distance (TC), Medium transmission distance (TM),
Far transmission distance (TF), Low residual energy (RL),
Medium residual energy (RM), High residual energy (RH),
ExtraSmall direction angle (DES), Small direction angle (DS),
Medium direction angle (DM), Large direction angle (DL),
and SuperLarge direction angle (DSL). Each entry āi,j (hi,d)
in the normalized pairwise comparison matrix Ā∗ (hi,d)
derived from A∗ (hi,d) is calculated using Eq. (20). Finally,
the control parameters vector of the node ni, denoted by
Wi =

[
w1
i , w

2
i , · · · , w11

i

]
, is obtained using Eq. (21) where

the value of m is equal to 11.
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Fig. 6. The part of entries in A∗
(
hi,d

)
.

A∗ (hi,d)=


f1,1 (hi,d) f1,2 (hi,d) · · · f1,11 (hi,d)
f2,1 (hi,d) f2,2 (hi,d) · · · f2,11 (hi,d)

...
...

. . .
...

f11,1 (hi,d) f11,2 (hi,d) · · · f11,11 (hi,d)

 (19)

āi,j (hi,d) =
ai,j (hi,d)∑m
k=1 ak,j (hi,d)

(20)
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TABLE 3
The Definition of Relative Importance

Value of fm,n (y) Definition
1 Equally important
3 Slightly more important
5 Moderately more important
7 Strongly more important
9 Absolutely more important

wki =

∑m
l=1 āk,l (hi,d)

m
(21)

Before illustrating how to design each entry in A∗ (hi,d),
we first explain the meaning and effect of each entry in
A∗ (hi,d). Considering a node ni located at yth tier (hi,d =
y), fm,n (hi,d) can be also written as fm,n (y). The value of
fm,n (y) denotes the relative importance between the mth
criterion and the nth criterion, as shown in Table 3. The
relative importance is measured according to a numerical
scale from 1 to 9 [25]. For instance, when hi,d is 2 and the
value of f1,5 (2) is equal to 7, from point of view of ni,
Medium residual energy is strongly more important than
Close transmission distance. As a result, the value of w5

i

will be greater than that of w1
i according to the Eq. (21).

This means that the neighbor with more residual energy is
more likely to become a potential forwarder compared to
the neighbor close to ni.

Now we explain how to design each entry in A∗ (hi,d),
which consists of two main steps. i) Sorting the 11 sub-
criteria involving in A∗ (hi,d) based on the roles of the node
ni. ii) Assigning a value to each entry according to Table 3.
Considering a node ni located at 2th tier, hi,d is equal to
2. The design ideas of each entry in A∗ (2) are as follows.
Firstly, for ni, the importance among 11 sub-criteria can
be sorted as DES = DS > DM = RH > RM > RL > DL
> DSL = TC = TM = TF. The importance among DES,
DS, DM, and RH is sorted as DES = DS > DM = RH
for the purpose of forwarding packets toward the sink. In
order to achieve a longer network lifetime, the importance
of remaining 7 sub-criteria (plus RH) is sorted as RH > RM
> RL > DL> DSL = TC = TM = TF. As ni pays more
attention to residual energy of its neighbors, the neighbor
with more residual energy is more likely to relay packets.
This in turn leads to longer network lifetime. Additionally,
note that DSL = TC = TM = TF since these sub-criteria have
a very small function. Secondly, since DES = DS, this means
that ExtraSmall direction angle and Small direction angle
are equally important. Thus, the value of f7,8 (2) is set to
1 according to Table 3. As DS > DM, Small direction angle is
more important than Medium direction angle. Consequently,
the value of f8,9 (2) should be greater than 1. It is set to
3 which is empirically obtained based on our simulation
experience. Similarly, the remaining entries in A∗ (2) can be
obtained.

4.1.5 Competency Value
For the sender node ni, the competency value is expressed
as a random variable ℘i = (℘i,1, ℘i,2, · · · , ℘i,j , · · · , ℘i,mi)
and normalized into ℘̄i = (℘̄i,1, ℘̄i,2, · · · , ℘̄i,j , · · · , ℘̄i,mi)
formulated by Eq. (22) where ℘i,j denotes the competency
value of ni’s neighbor node nj . Before explaining the com-
petency value, we first introduce the fuzzy rules used for

TABLE 4
Fuzzy Rules

Rule ID TD DA RE Function
R1 Close ExtraSmall Low F1

R2 Close ExtraSmall Medium F2

R3 Close ExtraSmall High F3

R4 Close Small Low F4

R5 Close Small Medium F5

R6 Close Small High F6

...
...

...
...

...
R44 Far SuperLarge Medium F44

R45 Far SuperLarge High F45

this model, as listed in Table 4 where TD denotes the
transmission distance, DA stands for the direction angle
and RE represents the residual energy. The fuzzy rules are
designed to merge TD, DA and RE attributes. The TSK
interface, which directly outputs a value with no need for
the defuzzification process utilized for traditional fuzzy
model, is exploited to evaluate the competency value of
nodes according to the fuzzy rules given in Table 4. The
rule combined with the TSK interface system has the form:
if x1 is ut (x1) and x2 is ut (x2) and · · · and xk is ut (xk),
then Ft (x1, x2, · · · , xk) = $t

0 + $t
1 ∗ x1 + $t

2 ∗ x2 + · · · +
$t
k ∗xk, where Ft (x1, x2, · · · , xk), representing competency

value, is a number between 0 and 1 instead of a fuzzy
linguistic term. For example, if d̈i,j is Far, ëi,j is High and
ϑ̈i,j is Small, then Ft

(
d̈i,j , ϑ̈i,j , ëi,j

)
= ω3

i ∗µTF
(
d̃i,j
)

+ω6
i ∗

µRH (ẽi,j)+ω8
i ∗µDS

(
ϑ̃i,j

)
. Note that the value of ℘i,j is equal

to Ft
(
d̈i,j , ϑ̈i,j , ëi,j

)
and the t is 36 here.

℘̄i,j =
℘i,j∑mi
l=1 ℘i,l

(22)

4.2 Routing Zone
To route packets toward the sink and deal with the prob-
lem given in Fig. 7 (a) arising from the randomness of
node distribution, each node ni defines a Routing Zone, as
shown in Fig. 7 (b), denoted by Ci = {c1, c2, c3, c4} where
ci = (xi, yi) stands for the coordinate of a corner of Ci.
Note that ωi = 2 ∗ φ and ιi = di,d. Here ωi represents the
width of ni’s zone and ιi denotes the length of ni’s zone. In
the network initialization phase, each node ni calculates the
coordinates of the four corners of the Ci using Eq. (23).

c1 =

(
xd −

ωi ∗ (yi − yd)
2 ∗ ιi,d

, yd −
ωi ∗ (xd − xi)

2 ∗ ιi,d

)
c2 =

(
xd +

ωi ∗ (yi − yd)
2 ∗ ιi,d

, yd +
ωi ∗ (xd − xi)

2 ∗ ιi,d

)
c3 =

(
xi −

ωi ∗ (yi − yd)
2 ∗ ιi,d

, yi −
ωi ∗ (xd − xi)

2 ∗ ιi,d

)
c4 =

(
xi +

ωi ∗ (yi − yd)
2 ∗ ιi,d

, yi +
ωi ∗ (xd − xi)

2 ∗ ιi,d

)
(23)

4.3 Forwarders Selection
The nodes with multiple potential forwarders can reduce
packet delay. However, these nodes have a high chance
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W
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ni
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(a) (b)

Communication Range Routing ZoneSink Node

Fig. 7. (a) shows the problem arising from the randomness of node
distribution. Here ni is a direct neighbor of nd. nk, nj and nd are
neighbors of ni. If ϑi,j < 2

225
, which means ϑ̈i,j is ExtraSmall, ni may

forward packets to nj instead of nd. In fact, ni should directly forward
packets to nd. (b) shows the routing zone for ni.

of generating redundant packets, which causes unneces-
sary energy consumption [4]. A novel approach combined
with RZ is proposed to control the number of forwarders.
In this approach, each node has one of the two actions,
forward and drop. For the sender node ni, the action of
each its neighbor node is defined as a random variable
<i = (<i,1,<i,2, · · · ,<i,j , · · · ,<i,mi) where <i,j represents
the action of ni’s neighbor node nj . Only the node whose
<i,j is forward has qualification to become a forwarder of ni.
The procedures for computing the action of each ni’s neigh-
bor node are outlined in Algorithm 1 where nj ∈ Ci means
nj locates within the Ci. The key idea of this algorithm is
as follows. The neighbor nj of ni should be selected as a
potential forwarder when ℘̄i,j is greater than the threshold
of competency value, nj locates within Ci and the current
number of forwarders of ni is fewer than the maximum
threshold of forwarders of ni. Owing to FLORA locally
making decisions according to the information sensed from
neighbor nodes, the threshold of competency value and the
maximum threshold of forwarders for ni are respectively
formulated by 1

mi
and

⌊
4
√
mi + 1

⌋
which are associate with

the number of neighbors.

Algorithm 1 Procedures for Computing Action <i at Node
ni
Input:

The size of ni’s neighbors: mi;
The normalized competency value of each ni’s neigh-
bors: ℘̄i = (℘̄i,1, ℘̄i,2, · · · , ℘̄i,j , · · · , ℘̄i,mi);
The size of ni’s forwarders: fi, and fi ← 0;

Output:
1: Sort ℘̄i in descending order;
2: for each ℘̄i,j ∈ ℘̄i do
3: if ℘̄i,j ≥ 1

mi
and nj ∈ Ci and fi ≤

⌊
4
√
mi + 1

⌋
do

4: <i,j ← forward;
5: fi++;
6: else
7: <i,j ← drop;
8: end if
9: end for

In the network initialization phase, the sink first broad-
casts a beacon containing its hd,d where the hd,d is set to
0, and then each node ni that hears the beacon updates its

hi,d based on Algorithm 2. In addition, each node calculates
its forwarder set based on the information of its neighbor
nodes, as outlined in Algorithm 3. To reduce unnecessary
network load and prolong the network lifetime, each time a
node losing 5 percent of its energy updates its forwarder set
according to Algorithm 4.

Algorithm 2 Procedures for Computing the Number of
Hops to the Sink hi,d
Input:

hj,d;
Output:

1: for each ni that hears the beacon sent by nj do
2: if hi,d > hj,d + 1 do
3: hi,d ← hj,d + 1;
4: ni broadcasts a beacon packet that contains its hi,d;
5: end if
6: end for

Algorithm 3 Procedures for Initializing the Forwarder Set
Input:

Fi ← ∅;
The number of hops to the sink: hi,d;

Output:
1: for each node ni ∈ N do
2: Compute Wi =

[
w1
i , w

2
i , · · · , w11

i

]
using Eq. (19), Eq.

(20) and Eq. (21);
3: Define Routing Zone Ci using Eq. (23);
4: for each nj ∈ Ni do
5: Get the d̃i,j using Eq. (4);
6: Get the ϑ̃i,j using Eq. (6);
7: Get the ẽi,j using Eq. (7);
8: Map d̃i,j , ϑ̃i,j and ẽi,j into corresponding d̈i,j , ϑ̈i,j

and ëi,j respectively by considering crisps classifi-
cation listed in Table 2;

9: Compute the ℘i,j by considering fuzzy rules listed
in Table 4;

10: end for
11: Compute the <i using Algorithm 1;
12: for each nj ∈ Ni do
13: if <i,j = forward do
14: Add nj to Fi;
15: end if
16: end for
17: end for

4.4 Forwarders Coordination
Coordination between forwarders is an effective scheme to
decrease the number of duplicate packets. Our coordina-
tion scheme between forwarders is simplified as follows.
Before transmitting the data packet, the sender node ni
continuously sends preamble packets containing the ID of
its forwarders until receiving an ACK packet. The nodes that
successfully receive the preamble packet and match with
one of the IDs will send back an ACK packet to ni while
other nodes will discard the preamble packet. When ni
receives multiple ACKs, it selects the node with maximum
℘i,j among the nodes that have sent back an ACK as the
final relay node.
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Algorithm 4 Procedures for Updating Forwarder Set at
Node ni
Input:

ei = (ei,1, ei,2, · · · , ei,mi);
Output:

1: Fi ← ∅;
2: for each nj ∈ Ni do
3: Calculate the ẽi,j using Eq. (7);
4: Map ẽi,j into ëi,j based on Table 2;
5: Calculate the ℘i,j based on Table 4;
6: end for
7: Compute the <i,j using Algorithm. 1;
8: for each nj ∈ Ni do
9: if <i,j = forward do

10: Add nj to Fi;
11: end if
12: end for

5 ANALYSIS

In this section, the performance of FLORA is analyzed from
two aspects. i) The feasibility of the protocol. ii) The impact
of localization errors on the routing performance. Other
aspects, such as energy cost and the average number of
redundant packets, have been analyzed in our previous
works [2] [26].

5.1 The Feasibility of the Protocol

We used Arduino Mega 2560 as the sensor node. Each node is
equipped with a XBee S2C 802.15.4 radio frequency module
for wireless communication as shown in Fig. 9 (a). This mod-
ule allows users to adjust the transmission power among 5
levels from the lowest power level 0 to the highest power
level 4. In order to verify the feasibility of our protocol,
nodes are deployed in an area, as shown in Fig. 8, and the
sink node locates at (0, 2). In this scenario, for each node,
the power level and the communication range are set to
the lowest power level and 5m, respectively. In addition,
these nodes have the same duty cycles. Here, the active
period is set to 3s and meanwhile the sleep period is 1s. The
nodes located at (6, 8) and (10, 3) individually generate a
data packet in each 5s. The results of evaluating the average
waiting times (AWT) and the average number of overhead
packets (AxOP) that are explained in 6.1.2 varying the
number of data packets are depicted in Fig. 9 (b). From Fig.
9 (b), we can conclude the existence of slight fluctuations
as the number of generated data packets increases due to
environmental influence and good performance achieved by
FLORA.

5.2 The Impact of Localization Errors On the Routing
Performance

In this subsection, the impact of localization errors on the
routing performance is briefly analyzed from two aspects.
i) Error model. ii) The probability of null relaying zone in
the presence of localization errors. Extensive evaluations
of how localization errors impact routing performance are
presented in Section 6.2.
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Fig. 8. (a) shows the experiment setup. (b) depicts the overall diagram
of the network deployment.

(a)

0

0.5

1

1.5

2

100 120 140 160 180 200

Number of Generated Packets

AWT AxOP

(b)

Fig. 9. (a) presents a sensor node used in the experiment. (b) shows the
results of evaluating the average waiting times and the average number
of overhead packets varying the number of data packets.

5.2.1 Error Model
To study the impact of localization errors on the routing
performance, we introduce Gaussian errors into the x and y
coordinates on the actual position of a node. We assume that
the location errors on x-axis and y-axis for each node are
modeled by two independent Gaussian distributions with
zero mean and different standard deviations. For simplicity,
we assume that the node nj locates at the origin of coordi-
nates, as shown in Fig. 10 (a), and that the sender ni and
the sink nd have no location errors. However, the location
information of each node has errors in the simulation. The
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(c)

Routing ZoneSink Node

Error Region Communication Range

li

(b)

d

li

Fig. 10. (a) shows location errors model. (b) presents a simplified and
enlarged version of (a). (c) depicts the region zi.
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real and measured location of nj can be expressed as (xj , yj)
and (xj

′, yj
′) respectively. Note that xj ′ = xj + εa and

yj
′ = yj + εb, where εa ∼ N

(
0, σ2

1

)
and εb ∼ N

(
0, σ2

2

)
.

Therefore, the probability density function of (xj
′, yj

′) is
presented by Eq. (24).

f
(
xj
′, yj

′) = 1

2πσ1σ2
e

−xj
′2

2σ21

+
−yj
′2

2σ22 (24)

We define r and d as the radius of error region and the
distance from nj to the line li, respectively, as shown in
Fig. 10 (b). The probability density of d, denoted by f (d),
is formulated by Eq. (25) where A and B are the part of
error region above the line li and the overall error region,
respectively.

f (d) =

∫∫
A
f (xj

′, yj
′) dσ∫∫

B
f (xj ′, yj ′) dσ

(25)

Therefore, the probability that nj actually located within
the region z3 is measured inside the region z2, denoted by
p, is computed by Eq. (26) where φ denotes the communi-
cation range of ni. The definition of the region of z2 and z3
refers to Fig. 10 (c).

p ≈
2φ
∫ r

0
f (u) du

2φr
=

∫ r

0
f (u) du

r
(26)

5.2.2 The Probability of null relaying zone in the Presence
of Localization Errors
We define the relaying zone of ni as the overlapping region
between its routing zone and its communication range.
There are two cases which could cause null relaying zone. i)
Nodes that are actually within the region z3 are measured
inside the region z2 and no nodes are within the region
z4. ii) Nodes that actually locate within the region z2 are
considered within the region of z1 or z2 after localization.
The definition of the region zi (i = 1, 2, 3, 4) refers to Fig.
10 (c). Here, we do not consider the case that nodes located
inside/outside the communication range of ni are measured
outside/inside the communication range of ni. We assume
that there are n nodes within the region of z3 and z4 after
all nodes are randomly deployed in a specific area. Hence,
the number of nodes located in the region of z1 and z2 is
equal to mi − n, where mi is the size of ni’ neighbors. The
probability that there are n nodes within the region of z3
and z4 after nodes deployment is formulated by Eq. (27).
Note that the sum of the area of z1, z2, z3, and z4 is equal
to πφ2 and szi is the area of zi. szi is calculated by Eq. (28)
where θ = arccos r

φ .

Pr1=

(
mi

n

)(
sz3 + sz4
πφ2

)n(
1− sz3 + sz4

πφ2

)mi−n

(27)

szi =

{
πφ2

2 −
πθφ2

180 − φrsinθ i = 1 or i = 4
πθφ2

180 − φrsinθ i = 2 or i = 3
(28)

We denote Ei as the number of nodes within the region
zi after nodes deployment. Due to positioning errors, the
actual number of nodes within the region zi is denoted by
Ei
′. When E3 + E4 = n, the probability, E3

′ + E4
′ = 0, is

equal to the probability that all of n nodes are within the

region z3 and these nodes are measured within the region
z2 owing to positioning errors, which is computed by Eq.
(29).

Pr2=

(
n

n

)(
sz3

sz3 + sz4

)n(
1− sz3

sz3 + sz4

)n−n
(
n

n

)
pn(1− p)n−n

(29)
Similarly, when E1 +E2 = mi−n, the probability, E3

′+
E4
′ = 0, is equal to the probability that there are k nodes

within the region z2 and each of them does not locate within
the region z3 after localization, which is calculated by Eq.
(30).

Pr3 =

mi−n∑
k=0

(
mi − n

k

)(
sz2

sz1 + sz2

)k (
1− sz2

sz1 + sz2

)mi−n−k

(
k

k

)
(1− p)k pk−k

(30)
Finally, the probability of null relaying zone in the pres-

ence of localization errors is formulated by Eq. (31).

Pr =

mi∑
n=0

Pr1 × Pr2 × Pr3 (31)

6 PERFORMANCE EVALUATION

This section is devoted to the performance evaluation of our
proposed routing protocol FLORA. Extensive experimental
simulations have been performed. Before reporting the sim-
ulation results, we first introduce the simulation setup.

6.1 Simulation Setup

In this paper, we evaluated the performance of FLORA with
a simulator used in [26], [27]. Our source code is available
online in the link: https://github.com/howbani/FLORA.

6.1.1 Simulation Settings

When the simulation starts, the nodes whose initial energy is
0.5 Joules are randomly deployed in a 400m×400m sensing
field and the sink node starting with unlimited energy is
positioned in the center of the field. All nodes run BOX-
MAC, have the same duty cycles and consume the energy
according to the First Order Radio Model as in [28]. We use the
same interference model as ORR [4]. The maximum error
ratio of each link and the maximum retransmission times
of each node are set to 0.2 and 3, respectively. To study
the impact of localization errors on the performance of our
protocol, we set the maximum location errors to 6m which
is typically GPS positioning errors [19]. We assume that the
network generates a data packet from a random sensor node
to the sink in each 0.1s. The size of the data packet is set
to 1024bits. The default simulation parameters are listed in
Table 5.
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TABLE 5
SIMULATION PARAMETERS

Parameter Default Value
Network Topology Random
Network Size 400m× 400m
Generation Rate 1 packet/0.1s
Number of Nodes 120 (include sink)
Sink 1 static sink (center)
Transmission Rate 2Mbps
Simulation Time 480s
Active Time 2s
Sleep Time 1s
MAC BOX-MAC
Communication Range 80m

6.1.2 Evaluation Metrics
The following evaluation metrics are used to evaluate the
simulation results. i) Energy Consumption (EC): The total
energy consumption required to deliver data packets from
the sources to the sink. ii) Average Number of Overhead
Packets (AxOP): When the sender broadcasts a packet
to its forwarders, all its awaken forwarders will receive
the packet. However, after coordination, one of these for-
warders is selected to relay the packet while the other for-
warders will abort the received packet. The aborted packet
is regarded as redundant packets. AxOP is the ratio of the
redundant packet’s count plus the control packet’s count to
the number of delivered packets. iii) Average Waiting Times
(AWT): When all forwarders of the sender are at the sleep
state, it has to wait until one of its forwarders wakes up and
successfully receives the data packet. AWT is the ratio of
the total waiting times to the number of delivered packets.
iv) Packet Delivery Ratio (PDR): The ratio of the number
of packets successfully received at sink to the number of
packets generated by randomly selected source nodes. v)
Network Lifetime (NL): The time (in seconds) from the
simulation starting moment to the moment that the first
node completely depletes its energy.

6.1.3 Representative Approach for Comparison
In order to thoroughly evaluate the performance of our
protocol, namely FLORA, we select two different proto-
cols for comparison, Opportunistic Routing based on Residual
Energy, namely ORR [4], and Fuzzy Multiobjective Routing
Algorithm, namely FMO [16]. ORR is a opportunistic routing
protocol for asynchronous duty-cycled wireless sensor net-
works. FMO is a fuzzy-based multiple routing algorithm.
Further details on these two protocols can be found in the
Section 2. In our simulation of ORR, the α parameter is
set to 1.0. The authors of ORR evaluated the performance
of ORR by varying α from 0 to 4 and pointed out that α
greater than 1.0 has small impacts on the performance. In
our implementation of FMO, the value of α, β, γ and ∆ are
set to 0.2, 0.2, 0.9 and 0.2 respectively, which are the optimal
parameter values as reported by the authors of FMO.

6.2 Simulation Results
The performance of the network is evaluated by varying two
different evaluation scenarios, the communication ranges
and the wake-up intervals. The simulation results in dif-
ferent scenarios are reported individually in the following
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Fig. 11. Network performance varying communication ranges.

two subsections and the concluded result is the average of
100 independent runs of the same configurations to mitigate
the impacts of randomness and to guarantee the accuracy of
simulation results.

6.2.1 Scenario 1: Varying the Communication Ranges
In this scenario, the performance of the network is evaluated
by varying the communication ranges from 50m to 100m.
Other parameters for this scenario are listed in Table 5.

(a) Energy Consumption: The results of evaluating the
energy consumption varying the communication ranges are
depicted in Fig. 11 (a). The energy consumption of the three
routing protocols simultaneously decreases as the commu-
nication range increases since greater communication ranges
results in fewer number of hops to the sink. This in turn
reduces the number of nodes that packets traverse. Con-
sequently, the total energy consumption reduces. Although
ORR has more than FMO in the AxOP (see Fig. 11 (b)), the
energy consumption in ORR is comparable to FMO for the
two reasons. On the one hand, the delivery ratio of ORR is
greater than that of FMO (see Fig. 11 (d)). Lower delivery
ratio incurs more packet retransmissions, which inevitably
causes more energy consumption. On the other hand, in
order to maximum network lifetime, the packets in FMO
will traverse a longer path to reach the sink, which causes
more energy consumption. Compared to ORR and FMO,
FLORA achieves better energy saving due to the following
two reasons. First, each node, in FLORA, calculates its
forwarder set according to the information locally sensed
from neighbor nodes. However, ORR and FMO need to
collect the information of the entire network to compute its
forwarder set. This incurs a rise in the number of control
packets, which results in a big amount of energy. Second,
FLORA realizes that the roles of nodes have positive impacts
on the network performance. In FLORA, the nodes close
to the sink pay more attention to the energy of neighbors
than transmission distance factor, which leads to less energy
consumption. As a result, FLORA achieves better energy
saving than ORR and FMO.

(b) Average Number of Overhead Packets: Fig. 11 (b)
shows the evaluation results of the average number of over-
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head packets varying the communication ranges. Several
observations are concluded. i) When the communication
range is lower than 70m, the AxOP in ORR increases
as the communication range becomes larger since greater
communication range increases the number of candidate
nodes. This inevitably increases the number of redundant
packets. However, when the communication is greater than
70m, the AxOP in ORR decreases as the communication
range increases since greater communication range leads to
fewer number of hops to the sink, which in turn reduces the
number of overhead packets. ii) Compared to ORR, FLORA
achieves better performance due to the following reasons.
In FLORA, each node updates its forwarder set according
to the information locally sensed from neighbors. However,
ORR first need to collect the information from the entire
network to compute its optimal number of forwarders nmax,
and then distributes the information to each node. This
undoubtedly increases the number of control packets. In
addition, it is inappropriate to use a global nmax to control
number of forwarders by virtue of nodes with different
number of neighbors. In FLORA, each node individually
calculates its maximum threshold of forwarders based on
the number of neighbors and only the nodes whose action
is forward have qualification to relay packets. This effectively
limits the number of forwarders and reduces the number of
duplicate packets. iii) The AxOP in FMO gets smaller as the
communication range increases owing to the decline in the
number of hops to the sink and the rise in the delivery ratio
(see Fig. 11 (d)).

(c) Average Waiting Times: The comparison of ORR,
FMO and FLORA for evaluating the average waiting times
over the communication ranges is plotted in Fig. 11 (c). The
average waiting times of the three protocols get smaller as
the communication range increases for the following two
reasons. On the one hand, the increment of communication
range will reduce the number of hops to the sink. Fewer
hops mean that the number of nodes that the packets
traverse decreases, which reduces the waiting times. On the
other hand, the increment of the delivery ratio (see Fig.11
(d)) leads to a rise in the number of delivered packets.
Compared to FMO, FLORA and ORR achieve better perfor-
mance since each node in FLORA and ORR selects multiple
potential forwarders. A sender with multiple forwarders can
use different paths to forward packets to the destination,
which effectively reduces the waiting times. Nevertheless,
this also leads to a rise in the AxOP (see Fig. 11 (b)). Even
though ORR has more than FLORA in the AxOP, FLORA
is approximately similar to ORR with a minor difference
in the AWT. The key reason is that FLORA considers the
location characteristics of nodes during the routing process.
In FLORA, the nodes far from the sink forward packets to
the nodes close to the sink as soon as possible, which results
in the reduction of waiting times.

(d) Packet Delivery Ratio: The results of evaluating
packet delivery ratio varying the communication ranges are
shown in Fig. 11 (d), which indicate that FLORA outper-
forms ORR and FMO since the delivery ratio is related with
link quality and the number of forwarders. Different from
FMO, each node in FLORA has multiple forwarders. This
means that the sender does not need to wait for a specific
node to wake up and to forward packets, which increases

the number of delivered packets. In addition, ORR and FMO
need to send a lot of control packets for collecting the entire
network information to calculate the forwarder set. This
causes more packets loss due to collision.

(e) Network Lifetime: Fig. 12 presents the results of
evaluating the network lifetime varying the communication
ranges. From Fig. 12, we can conclude that the network
lifetime of the three protocols grows as the communication
range gets larger owing to the increment in the number
of neighbor nodes of the sink and the rise in the delivery
ratio. Compared to ORR and FMO, FLORA achieves longer
network lifetime due to the following reasons. During the
process of forwarders selection, ORR collects global topo-
logical information prior to compute its optimal number of
forwarders, and meanwhile FMO computes its minimum
weight path from the sources to the sink according to the
information collected from the whole network. This incurs
a large number of control packets and consumes more
energy. Different from ORR and FMO, FLORA updates its
forwarder set based on the local information. During the
routing process, FLORA realizes positive impacts of the
roles of nodes on the network performance. In FLORA, the
nodes with two hops to the sink assign a greater weight
to residual energy factor, which results in a longer network
lifetime. In addition, in FLORA, only nodes whose action is
forward have qualification to relay packets. This effectively
reduces the number of redundant packets, which in turn
results in less energy consumption. Consequently, FLORA
achieves longer network lifetime than ORR and FMO.
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Fig. 12. The network lifetime varying communication range.

6.2.2 Scenario 2: Varying the Wake-Up Intervals
In this scenario, the performance of the network is evaluated
by varying the wake-up intervals. The sleep period is set
to 1s and while the active period varies from 1s to 5s.
Other parameters for this scenario are the same with the
simulation parameters listed in Table 5.

(a) Energy Consumption: The comparison of ORR, FMO
with FLORA for evaluating the energy consumption over
the active period is presented in Fig. 13 (a). The energy
consumption of three protocols slightly grows as the active
period gets longer. Longer active period makes nodes awake
for a long time, which inevitably leads to a rise in the total
energy consumption. FLORA achieves better energy saving
than ORR and FMO for the following reasons. In FLORA,
each node computes its forwarder set according to the local
information. This reduces the number of control packets,
which in turn incurs a decline in the energy consumption.
Furthermore, FLORA considers the location characteristics
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Fig. 13. Network performance varying wake-up intervals.

of nodes during the routing process. In FLORA, the nodes
with fewer hops assign a lower weight to the transmission
distance factor, which further reduces the energy consump-
tion for transmitting and receiving packets.

(b) Average Number of Overhead Packets: The results
of evaluating the average number of overhead packets vary-
ing the active period are plotted in Fig. 13 (b). The average
number of overhead packets of FLORA and ORR increases
as the active period becomes longer. The longer active
period undoubtedly increases the probability of multiple
receivers, which in turn generates more redundant packets.
Compared to ORR, FLORA outperforms ORR for the same
reasons explained in 6.2.1 (b). Unlike ORR, each node in
FMO only has a forwarder instead of a set of forwarders.
Therefore, the increasing active period has a small impact
on FMO.

(c) Average Waiting Times: Fig. 13 (c) shows the results
of evaluating the average waiting times over the active
period. The average waiting times of the three protocols de-
crease as the active period increases since the waiting times
not only depend on number of candidate nodes but also on
active period. Longer active period increases the probability
that when the sender is awake, one of its forwarders is
also awake, which reduces the waiting times. Although the
AxOP in FLORA is fewer than that of ORR (see Fig. 13 (b)),
the AWT in FLORA is comparable to ORR. The main reason
is that FLORA realizes positive impacts of the roles of nodes
during routing process. In FLORA, the nodes far from the
sink assign a greater weight to transmission distance factor
since these nodes have enough energy. Greater transmission
distance will result in fewer hops, which in turn incurs less
waiting times.

(d) Packet Delivery Ratio: The results of evaluating
packet delivery ratio varying the wake-up intervals are de-
picted in Fig. 13 (d). The delivery ratio of the three protocols
slightly grows with the increment of active period since
longer active period increases the probability that when the
sender is awake, one of its forwarders is also awake. This in
turn increases the number of delivered packets. In terms of
delivery ratio, FLORA outperforms ORR and FMO for the
same reasons explained in 6.2.1 (d).

(e) Network Lifetime: Fig. 14 depicts the results of eval-
uating network lifetime varying the active period, which
indicates that the network lifetime of the three protocols
decreases as the active period increases due to the rise in
the energy consumption (see Fig. 13 (a)). Compared to ORR
and FMO, FLORA achieves longer network lifetime for the
same reasons explained in 6.2.1 (e).
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7 CONCLUSION

In this paper, we propose FLORA, which is a distributed,
fuzzy logic based, and opportunistic routing protocol for
asynchronous duty cycled WSNs. Our proposed FLORA re-
alizes positive impacts of the roles of nodes on the network
performance and takes the roles of nodes into consideration
during the routing process. The simulation results demon-
strated FLORA achieves better performance compared to
its counterparts in terms of energy consumption, overhead
packets, waiting times, packet delivery ratio and network
lifetime.

Furthermore, the main idea of our work can apply to
Mobile ad-hoc Network (MANET) and Vehicular ad-hoc Net-
works (VANETs) by constructing appropriate membership
functions and modifying entries in the pairwise comparison
matrix.
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