

Two Approaches to Representing Multiple Overlapping Classifications: a
Comparison

Cédric Raguenaud, Martin Graham, Jessie Kennedy
School of Computing, Napier University, 219 Colinton Road, Edinburgh EH14 1DJ, UK

{cedric, marting, jessie}@dcs.napier.ac.uk

Abstract
One of the tasks of plant taxonomy is the creation of
classifications of organisms that allows the understanding
of the evolutionary relationships between them. In this
paper we describe two different data models that have
been designed to support two aspects of taxonomic work:
the storage of the information and the visualisation of that
information. We show that these two models are different
because of their constraints and aims, and we compare
their abilities using a number of typical tasks users
perform. We also show that although different and able to
perform different tasks, each of these models is well
adapted to its purpose and tight integration is difficult.

1. Introduction

Plant taxonomy involves the definition and
manipulation of classifications of plants. These
classifications allow a better understanding and
cataloguing of the living world by grouping plant
specimens that exhibit a common set of properties (e.g.
morphology, DNA), which can then be used to name and
refer to organisms (e.g. legal documents, conservation
strategy). Taxonomic classifications are peculiar in that
they must capture the fact that some specimens and some
groups referred to by a name are used in different contexts
over time, i.e. the classifications are multiple and overlap.

A common way to represent classifications is to use
graph structures. During the development of the
Prometheus project, whose aim was to build a database
(DB) and visualisation tool (VT) to support the working
practices of plant taxonomists, two distinct data models
emerged: a node-based model for the VT, and an arc-
based model for the DB system. Although different in
their philosophy, these two models represent the same
conceptual data. This document compares these two
approaches and shows that with complex DB applications
the provision of an interactive VT is a major challenge.

We show that these two models differ because of their
requirements and aims in terms of interactivity,
expressiveness, and features.

This paper is structured as follows : section 2 presents
the particularities of plant taxonomy classifications.
Sections 3 and 4 present the two models that have been
designed and explain their respective rationales. Section 5
compares the two approaches and shows their respective
advantages and limits. Finally, we conclude in section 6.

2. Particularities of plant taxonomy

Classifications in plant taxonomy are peculiar and
unlike many other kinds of classifications (e.g. library
classifications). Here we give a succinct description of
plant taxonomy that will be useful to understand the
mechanisms we describe in this paper and our motivation.
The interested reader is referred to [1; 2; 3] for more
information.

Plant taxonomy classifications are population-based,
i.e. they categorise populations of specimens in a
hierarchy of concepts (taxa). The concepts (taxa) that are
used for describing the categories are entities that have a
life and an importance in themselves, they are not entities
that only classify other objects, as is often the case in
other classification problems (e.g. [4]). Taxa are therefore
objects/instances (e.g. names with their publication,
authority, taxonomic type information, and their rank or
level) that a taxonomist manipulates and publishes. They
are volatile and can be redefined (republished with a new
taxonomic type for example) or moved in classifications
during the process of a revision.

The rank or level of a taxon is important, as it forms
the basis on which the International Code of Botanical
Nomenclature (ICBN [5]) can be applied. The order of the
ranks is strict (e.g. Species always below Genus), but not
all ranks are compulsory (e.g. Section can be inserted
between Species and Genus). As a consequence, the
number of levels in plant taxonomy classification
hierarchies can vary from 2 or 3 to 20. The variation in

ranks used in a classification must be taken into account
when comparing different classifications.

Unlike other population-based classifications and
indeed most classifications, plant taxonomy
classifications are not is -a or is -of classifications. Indeed,
taxa are abstract names, e.g. Apium, and it would be
wrong to say that graveolens at rank Species is-a Apium at
rank Genus just because it has been placed in Apium.
Although ranks are central to the process of classifying, it
would also be wrong to say that a Species is -a Genus.
Rather, plant taxonomy classifications are placement
classifications, i.e. we can say that graveolens has been
placed in Apium (and therefore becomes Apium
graveolens after application of the ICBN).

In addition, because the characters on which
classifications are based are arbitrary, many
classifications of the same specimens, possibly but not
necessarily involving the same taxa, occur throughout
history, i.e. specimens and taxa are placed in other taxa
and classifications. It is important to be able to trace the
decisions that led to particular classifications.

Plant taxonomy classifications therefore imply the
manipulation of names that can become classification
elements (taxa), the classification of specimens in a non-
strict manner but also the classification of the elements
used to classify the specimens, and the ability to move all
thes e concepts around. Moreover, the classifications
appear at instance level, not class level.

3. The database approach

The DB side of the project was to support the creation,
representation, and manipulation of all details of plant
classifications. The following requirements were noted.
Firstly objects should be able to capture all taxonomic
data and support all taxonomic processes, secondly
objects should be independent from the classification, and
thirdly the system should provide general-purpose DB
functionality and an ad-hoc query language.

Representing the complexity of objects is necessary in
order to support taxonomic data, therefore the semantics
must be modelled in the DB. In addition, the system must
be able to support complex processes such as derivation
of information (e.g. deriving names from sets of
specimens), integrity constraints (application of the
ICBN), and complex processes (e.g. searches).

The representation of classifications independently
from the objects that are actually classified is important
because these objects are entities that are clearly defined
as existing independently from any kind of classification.
In addition, this allows the classification system to be
implemented on top of an existing DB system and
taxonomic schema; requiring the redesign of the DB in
order to include a classification would not be practical.

The provision of a generic system is important because
of the complexity of the processes associated with
taxonomy. Indeed, these processes require frequent
recursiv e exploration of the DB, the reorganisation of the
graphs, or the assignment of names to sets of specimens
according to the ICBN rules. These processes must be
supported by an ad-hoc query language.

Figure 1. DB - classifications

These requirements led to the definition of an arc-
based model for the DB system [6]. Several graph-based
DBs exist (e.g. Telos [7], ConceptBase [8], Progres [9],
Hyperlog [10]). However, these graphs are simple graphs
(especially in the case of Hyperlog where attributes
cannot be defined on arcs). They do not support the
definition of overlapping graphs that need to be
unambiguously identified, as they do not support the
definition of semantics for relationships. Our approach is
to use relationships as classifying concepts with the
equivalent of weights (in weighted graphs) to represent
the classification information. We use classes/objects as
nodes, and relationship classes/ relationship objects as
arcs in an OODB as these are more expressive and
provide us with a general-purpose system. These weights
(relationship attributes) are not limited to simple integer
values: they can be of any type defined in the system
(including other arcs). The definition of weights on
relationships allows us to describe the distinct trees with
their overlaps. Indeed, by following relationships with
specific values (e.g. publication information), it is
possible to follow a path of a spe cific graph. But by
switching between these values, it is possible to compare
and navigate within and among classifications. Figure 1
shows an instance representation of three distinct
classifications: a dashed line classification, a thin line
classification, and a thick line classification. In taxonomy,
these classifications would have been published by
distinct authors (the type of arrow in our example
represents the publication). The leaf nodes in these
classifications could be for example specimens. The other
nodes could be taxa that are used to classify the leaf
nodes. We can see in the diagram that the classifications
have elements in common: node 3 appears in the thin line
and in the dashed line while node 4 appears in all three
classifications. Leaf nodes can appear in one classification

a b c d e f g

5 4 3

2 1

(node a), in two classifications (node b), or in all three
(node e). It is possible to compare nodes 3 and 4 and see
that they have some leaf nodes in common. This can give
insight in the data (e.g. when two groups partially contain
the same specimens, they are partial synonyms). It is also
possible to contrast the different meanings of a node
according to different classifications: node 4 contains
nodes d and e in the thin line classification, nodes e, f and
g in the dashed line classification, and nodes b, c and e in
the thick line classification.

Figure 2. Sample database schema

The provision of relationships as first-class concepts
also allows us to clearly distinguish between object and
classification information. Our model supports the
definition of semantically rich relationships (e.g.
aggregation with specific semantics such as lifetime
dependency or sharing) which can be used in order to
describe the contents of a composite object. The presence
of first-class relationships allows us to create specific
relationships to represent classifications and manipulate
them independently from the classified objects (e.g. tree
reorganisation due to the application of the ICBN).

Relationships effectively act as classifiers (or
classifying mechanism). The action of creating such
relationships between two objects implies that these
objects are classified. Furthermore, these relatio nships are
the only objects in the system that are aware of the
classifications and they contain all the necessary
information to distinguish them from each other. Figure 2
shows a small portion of the DB schema that uses this
mechanism and that will be used in the next section where
diamond boxes represent relationship classes, square
boxes represent object classes. Relationships are directed.
Lines that start with a diamond represent aggregation.
Thick arrows represent inheritance.

4. The visualisation approach

The visualisation side of the project was to provide a
mechanism for the comparison of finished classifications
(i.e. where the names of all taxa are defined and fixed).

The aim of the VT was to enable taxonomists to
interactively search and browse the relationships of and
correlations between these multiple taxonomic
classifications. Rather than rely on traditional GUI
approaches such as scrolling lists of results, the interface
is instead based on the Information Visualization (IV)
[11; 12] approach to interface construction. IV interfaces
tend to be highly graphic and designed so that a user can
perceive information, rather than having to process it
cognitively, which for some information can prove an
overwhelming task. Simply put, IV aims to allow people
to ‘see’ information and inferences rather than having to
think about it. Our visualisation displays distinct
classifications separately, as earlier testing [13] had
shown that integrating them into a full global visualisation
of the overall graph was incomprehensible to the
taxonomists for all but the simplest tasks.

The data used in the visualisation is a simplified subset
of the taxonomic data used by the DB model. The
structures of all classifications are known in advance and
matching elements between them is done on the basis of
names only. There is no provision for searching on
attributes such as herbarium.

Figure 3. VT - classifications

As taxon names are re-used (albeit in different
contexts) across classifications, the visualisation data
model concentrates name and classification information
within nodes. These 'name' nodes are represented as the
labelled elliptical entities shown in Figure 3. Data
concerning these names but unique to specific
classifications, such as parent and child relationships, are
allocated to multiple sub-objects within these nodes, with
one sub -object describing the state of one taxon name
within a classification. This data is represented by the
inner, circular representations. Figure 3 shows the same
classification as in Figure 1, that span the name nodes.
Edges themselves are defined as either child (multiple) or
parent (one per sub-object) pointers internal to a particular
classification, and have no information attached to them.
These relationships are shown by the lines between the
circles. For example in Figure 3 we can see that 4 is a
child of the 1 in the dashed and thin classifications, but a
child of 2 in the thick classification. The edges themselves

Taxonomic type

Specimen Name

Publication Collector Circumscription

collectors

theCircumsc
ription

Type

n

n

Author

theCirc
Publication

theCirc
Author

n
Rank

theRank

b

g

1 2

3 4 5

a c

e

d f

are merely pointers, not objects or 'decision-makers' in
their own right. In essence, all the classifications are
described separately, and bundled together at given points
by the 'name' nodes.

Together the classifications and the linking between
them afforded by the nodes build an overall structure we
call a DAMG (Directed Acyclic MultiGraph), a restricted
class of general graphs related to DAGs (Directed Acyclic
Graphs) with the following properties: Directed when
following links exclusively from parent to child links. i.e.
direction has meaning. Acyclic if and only if directed.
Following parent-child links recursively through the
structure will never bring a path back to where it started.
Accordingly, self-loops are not allowed on a node (an
edge with the same end and start node.) Multigraph –
Multiple edges can exist between any pair of nodes. This
would indicate the same immediate relationship existing
between two elements in different classifications. Self-
loops are not allowed (a restriction on general multigraph
theory to help achieve acyclicity). Layered – The
structure can be broken into distinct layers, where no
direct links exist between nodes of the same layer. This is
implicit in the taxonomy example, where taxa at a certain
rank are composed only of, and therefore linked to, taxa
from lower ranks.

Searching and linking within this structure can now
take place using the following traversal techniques.
Traversal from a particular node for a given classification
is simply a question of performing standard depth-first
and breadth-first searching mechanisms for trees. Only
the tree in which traversal takes place, indicated by a
simple integer index, is tracked to keep traversal
operations within the correct node sub-objects. Traversal
between classifications is simply a matter of switching
between the sub -object within the nodes that hold
relationship information, and in this way relationships
between the classifications can be explored. Perhaps a
useful metaphor can be given by describing the
classification links as different underground or metro
lines as displayed on a map, and the name nodes as
“transfer stations” that allow a traversing algorithm to hop
off one “line” (classification) and onto another.

This approach to modelling the taxa data gives access
to ready-made hierarchies within the overall graph
structure, as in effect we construct a restricted graph from
hierarchies rather than vice versa, eliminating the problem
of extracting individual taxonomic classifications from
the overall graph. It also makes display of the
visualisation easier, as due to the fact the classifications
are kept separated, drawing them separately is a matter of
display layout rather than model processing. Furthermore,
speed is an important factor for an interactive
visualisation, and having all the classifications connected

together but easily distinguished makes the operations
performed on the visualisation’s data model extremely
efficient compared to the case for a general graph.

5. Comparison

This section looks at common operations that are
performed by users, compares how they are supported by
the two systems, and shows the implications of the two
models. In the comparison, we concentrate on the
mechanisms of the VT and the query language and model
of the DB system.

As shown, the VT and DB models are different due to
their different requirements. The VT displays information
in an intuitive and simple way that allows users to quickly
understand the information presented and to allow
exploration. It benefits from the fact that the equivalent of
a “select * from each classification” is permanently
displayed and requires no processing after initialisation.
This is in contrast to the DB where a query must be
executed each time any data is to be returned to the user.
In addition it reduces complex objects to simple text
strings for which there is no sub-string searching. The DB
however captures complete information, i.e. any ad-hoc
query a taxonomist may need to perform. Therefore the
underlying schema is more complex, e.g. the description
of a taxon name is a composite object that contains at
least six other composite objects. This is necessary to
support features such as the automatic calculation of
names. The DB is therefore able to generate data suitable
for the visualisation, but the reverse is not true.

The comparison of classifications requires the
consideration of groups that appear at similar ranks. For
example, if one classification contains ranks Family, Sub-
family, Tribe, and Genus, and another Family, Tribe, and
Genus, the Sub-family rank in the first is ignored to aid
comparison. The VT can work on arbitrary ranks, with
bottom level nodes being regrouped accordingly to which
ranks are currently marked as active. This enables users to
compare directly two classifications with differe nt
structures, as long as the leaf nodes are of equal rank. This
feature requires more work in the DB and can be achieved
via an operator designed to work on graph structures and
able to reconstruct graphs after a query has been executed
(the follow operator [2]). (Q1) shows such a query
returning all classifications defined using the
theCircumscription relationship restricted to elements that
are not at ranks Sub-family.
(Q1) select * from theCircumscription c where

c.origin.theRank.destination != “Sub-family” and
c.destination.theRank.destination != “Sub-family”
follow theCircumscription

Figure 4. Selection of one node and a group of
nodes across four distinct classifications.

When users want to see the occurrence of a particular
taxon or specimen across other classifications, they can
click on that element in one classification using the VT.
When this happens, the element is highlighted not only in
that classification, but also in its appropriate positions
within other classifications. This results from the selection
of one node within the underlying restricted graph, and is
therefore a very simple procedure for the visualisation
model. The node selection attribute, which determines
display colour in the visualisation, is global for that node
across all classifications, so all its representations are
automatically drawn in the same colour. This can be seen
in Figure 4 by the representative node, Coriandreae,
which is highlighted across all classifications. This feature
can be achieved in the query language by querying arcs
and selecting those that target the specified specimen and
returning all the classifications that contain it. (Q2), which
is based on the sample schema shown in Figure 2, shows
such a query for a specimen identified by X (e.g. OID). A
similar query can be written for taxa . Note that origin and
destination represent the direction of arcs/relationships
and are reserved keywords.
(Q2) select c.destination, c.theCircPublication,

c.theCircAuthor from theCircumscription c where
c.destination = X

When users want to see the distribution of a group and
its member groups and specimens across classifications,
the whole group in one classification can be visually
selected. The selected taxon is highlighted along with all
the taxa and eventually specimens that are its
descendants. As the selection attribute is global across all
classifications for a node, this operation involves only a
depth-first traversal of one classification tree from the
node selected to set the attribute in the relevant nodes.

This can also be seen in Figure 4. These groups’ nodes are
then highlighted in the other classifications, showing their
distribution. Using the DB, this query can be written as
shown in (Q3). It shows the mechanism for a group or
specimen identified by X (e.g. its OID). The query first
finds recursively all the groups and specimens that were
placed in the selected group and then finds all the
classifications in which these groups appear. Finally it
returns triples that contain a group (taxon), information
about the classification, and the group associated with it.
(Q3) select c.origin, c.theCircPublication,

c.theCircAuthor, c.destination from theCircumscription
c where c.origin.(theCircumscription.origin)* = X or
c.destination.(theCircumscription.destination)* = X

When users want to dynamically explore the
distribution of specimens or groups, brushing can be
selected and the mouse moved over the display. Brushing
is a temporary visual marking of nodes as the mouse
passes over (‘brushes’) node representations. The nature
of the visualisation model, being pre -calculated and
enabling node objects to span many classifications,
enables these two operations to be performed sufficiently
quickly to allow this behaviour. The same processes
would be too expensive for a DB system, as a large
number of queries would need to be run at each move of
the mouse with the display immediately updated. Running
a query involves parsing the query, making syntactic and
semantic checks, accessing the data dictionary and
indexes, fetching objects from the disk, resolving
references, and returning objects possibly through a
network. On the contrary, the VT only requires pointer
following in memory to find the necessary data.

Users sometimes need to see which nodes are unique
to a particular classification. In the VT this requires
selection of the top taxa of all classifications except the
one we wish to find unique nodes in. This sequence of
events results in the model setting the selection attribute
for all nodes, except those that only occur in the
classification of interest. The VT can then display this
information, usually inverting selection values to
highlight the unique nodes. This is the heftiest operation
in terms of processing for the visualisation model,
involving n-1 (where n equals the total number of
classifications) depth-first traversals from the root nodes
of classifications. The same feature can be achieved in the
DB system by first finding the set of all nodes in a single
classification, then checking the nodes that are not
referenced by arcs from other classifications.
(Q4) select n from Name n where n in (select c.origin

from theCircumscription c where c.theCircPublication
= X or c.theCircAuthor = Y) and n not in (select
tc.origin from theCircumscription tc where
tc.theCircPublication != X and tc.theCircAuthor != Y)

When users want to see how specimens that are
grouped together evolve across time, i.e. whether the
groups are broken or not in different classifications, the

sibling mode can be activated. The sibling mode
operation is more complicated than previously mentioned
operations for the visualisation model. The user selects a
specimen, and all the specimen’s siblings are highlighted
using a colour specific to the classification in which the
specimen’s sibling relation occurs. In the event of
specimens being related in two or more classifications,
the first classification is taken to decide the colour.
Traversal of the tree is limited to one edge up to a node’s
parent within a classification and then down to possible
multiple children within that same classification
(performed on every classification related sub-object
within the chosen node). Therefore, this selection set is all
nodes that share a parent node in at least one classification
with the chosen node. The algorithm necessary to perform
this task in the DB is a recursive algorithm. Most query
languages do not allow queries to call themselves in a
parameterised way. Although supporting recursion, the
DB system is unable call queries recursively. The only
solution would be writing specific code, i.e. it could not
be done with an ad-hoc query language.

6. Conclusion

We have described two models designed to support
different aspects of taxonomic work which both represent
multiple overlapping classifications. They are graph-
based, but are radically different: one is node-based and
the other is arc-based. The differences in philosophy are
due to the way the two systems interact with users and
their requirements.

The model influences the ability of the system to
respond to specific user requests. For example the
visualisation interface is a fast, efficient system that
supports rapid response to user actions. This is achieved
by specialised, optimised code written as the interface is
hard-coded with knowledge of what users expect to do.
However, we have also seen that this specialised code
does not support all information useful to taxo nomists. On
the contrary, the DB system is slower than the
visualisation interface due to the lack of specialised code,
which makes it unsuitable to support some of the features
of the VT. This general-purpose approach allows the
system to support a wider range of information (e.g.
updates) and to answer a broader range of queries.

We have also seen that the degree of interactivity with
the user is important. If it is high (e.g. during exploration
in the VT), the user acts as a processing unit. If the
visualisation makes use of user perception, e.g. by
representing classifications explicitly, processing
regarding classifications is moved from the VT to the
user. An earlier prototype where the visualisation was a
graph similar to the arc approach used by the DB was
shown to be ineffectual by taxonomists [13]. The DB
however is more independent from the user, therefore

needs to capture more concepts, making the queries more
difficult to express and process.

The choice of model depends on the requirements
defined for the system. In Prometheus, both are used: the
DB is used to assist taxonomists in the process of creating
classifications by checking data, deriving additional data
and manipulating it; the VT uses data exported from the
DB for exploratory purposes. However, a major challenge
in DB/visualisation research is developing VTs that
interact directly with the DB and accommodate updates in
the data dynamically.

7. References

[1] M.R. Pullan et al., “The Prometheus Taxonomic Model: a
practical approach to representing multiple taxonomies,” Taxon,
vol. 49, no. 1, 2000, pp. 55-75.
[2] C. Raguenaud, J. Kennedy and P.J. Barclay, "The
Prometheus Taxonomic Database," Proc. IEEE International
Symposium on Bio-Informatics and Biomedical Engineering
(BIBE 2000), Arlington, Virginia, USA, November 2000, pp.
63-70.
[3] C. Raguenaud, J. Kennedy and P.J. Barclay, "The
Prometheus Database for Taxonomy," Proc. Scientific and
Statistical Database Management (SSDBM 2000), Berlin,
Germany, February 2000, pp. 250-252.
[4] A. Pirotte et al., "Materialization: a powerfull and ubiquitous
abstraction pattern," Proc. Very Large Data Bases (VLDB'94) ,
Santiago, Chile, 1994, pp. 630-641.
[5] W. Greuter et al., International code of botanical
nomenclature (Tokyo Code), Koeltz Scientific Books, 1994.
[6] C. Raguenaud and J. Kennedy, “Relationships as classifiers,”
Submitted to DEXA, 2001.
[7] J. Mylopoulos et al., “Telos: Representing Knowledge About
Information Systems,” ACM Transactions on Information
Systems, vol. 8, no. 4, 1990, pp. 325-362.
[8] M. Jarke et al., “ConceptBase - a deductive object base for
meta data management,” Journal of Intelligent Information
Systems. Special Issue on Advances in Deductive Object-
Oriented Databases , vol. 4, no. 2, 1995, pp. 167-192.
[9] A. Schürr, PROGRES, A Visual Language and Environment
for PROgramming with Graph REwriting Systems , Technical
Report AIB 94-11, RWTH Aachen, Aachen, Germany, 1994.
[10] A. Poulovassilis and M. Levene, “A nested-graph model for
the representation and manipulation of complex objects,” ACM
Transactions on Information Systems, vol. 12, no. 1, 1994, pp.
35-68.
[11] N. Gershon and S.G. Eick, “Visualizations new tack:
Making sense of information,” IEEE Spectrum, vol. 32, no. 11,
1995, pp. 38-56.
[12] S.K. Card, J.D. Mackinlay and B. Shneiderman, Eds,
Readings in Information Visualization: Using Vision to Think.
The Morgan Kaufmann Series in Interactive Technologies,
Morgan Kaufmann, San Francisco, 1999.
[13] M. Graham, J.B. Kennedy and C. Hand, "A Comparison of
Set-Based and Graph-Based Visualisations of Overlapping
Classification Hierarchies," Proc. AVI 2000, ACM Press,
Palermo, Italy, May 23-26, 2000, pp. 41-50.

