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Abstract 
One of the tasks of plant taxonomy is the creation of 
classifications of organisms that allows the understanding 
of the evolutionary relationships between them. In this 
paper we describe two different data models that have 
been designed to support two aspects of taxonomic work: 
the storage of the information and the visualisation of that 
information. We show that these two models are different 
because of their constraints and aims, and we compare 
their abilities using a number of typical tasks users 
perform. We also show that although different and able to 
perform different tasks, each of these models is well 
adapted to its purpose and tight integration is difficult. 

1. Introduction 

Plant taxonomy involves the definition and 
manipulation of classifications of plants. These 
classifications allow a better understanding and 
cataloguing of the living world by grouping plant 
specimens that exhibit a common set of properties (e.g. 
morphology, DNA), which can then be used to name and 
refer to organisms (e.g. legal documents, conservation 
strategy). Taxonomic classifications are peculiar in that 
they must capture the fact that some specimens and some 
groups referred to by a name are used in different contexts 
over time, i.e. the classifications are multiple and overlap. 

A common way to represent classifications is to use 
graph structures. During the development of the 
Prometheus project, whose aim was to build a database 
(DB) and visualisation tool (VT) to support the working 
practices of plant taxonomists, two distinct data models 
emerged: a node-based model for the VT, and an arc-
based model for the DB system. Although different in 
their philosophy, these two models represent the same 
conceptual data. This document compares these two 
approaches and shows that with complex DB applications 
the provision of an interactive VT is a major challenge. 

We show that these two models differ because of their 
requirements and aims in terms of interactivity, 
expressiveness, and features. 

This paper is structured as follows : section 2 presents 
the particularities of plant taxonomy classifications. 
Sections 3 and 4 present the two models that have been 
designed and explain their respective rationales. Section 5 
compares the two approaches and shows their respective 
advantages  and limits. Finally, we conclude in section 6. 

2. Particularities of plant taxonomy  

Classifications in plant taxonomy are peculiar and 
unlike many other kinds of classifications (e.g. library 
classifications). Here we give a succinct description of 
plant taxonomy that will be useful to understand the 
mechanisms we describe in this paper and our motivation. 
The interested reader is referred to [1; 2; 3] for more 
information. 

Plant taxonomy classifications are population-based, 
i.e. they categorise populations of specimens in a 
hierarchy of concepts (taxa). The concepts (taxa) that are 
used for describing the categories are entities that have a 
life and an importance in themselves, they are not entities 
that only classify other objects, as is often the case in 
other classification problems (e.g. [4]). Taxa are therefore 
objects/instances (e.g. names with their publication, 
authority, taxonomic type information, and their rank or 
level) that a taxonomist manipulates and publishes. They 
are volatile and can be redefined (republished with a new 
taxonomic type for example) or moved in classifications 
during the process of a revision. 

The rank or level of a taxon  is important, as it forms 
the basis on which the International Code of Botanical 
Nomenclature (ICBN [5]) can be applied. The order of the 
ranks is strict (e.g. Species always below Genus), but not 
all ranks are compulsory (e.g. Section can be inserted 
between Species and Genus). As a consequence, the 
number of levels in plant taxonomy classification 
hierarchies can vary from 2 or 3 to 20. The variation in 



ranks used in a classification must be taken into account 
when comparing different classifications. 

Unlike other population-based classifications and 
indeed most classifications, plant taxonomy 
classifications are not is -a or is -of classifications. Indeed, 
taxa are abstract names, e.g. Apium, and it would be 
wrong to say that graveolens at rank Species is-a Apium at 
rank Genus just because it has been placed in Apium. 
Although ranks are central to the process of classifying, it 
would also be wrong to say that a Species is -a Genus. 
Rather, plant taxonomy classifications are placement 
classifications, i.e. we can say that graveolens has been 
placed in Apium (and therefore becomes Apium 
graveolens after application of the ICBN). 

In addition, because the characters on which 
classifications are based are arbitrary, many 
classifications of the same specimens, possibly but  not 
necessarily involving the same taxa, occur throughout 
history, i.e. specimens and taxa are placed in other taxa 
and classifications. It is important to be able to trace the 
decisions that led to particular classifications. 

Plant taxonomy classifications therefore imply the 
manipulation of names that can become classification 
elements (taxa), the classification of specimens in a non-
strict manner but also the classification of the elements 
used to classify the specimens, and the ability to move all 
thes e concepts around. Moreover, the classifications 
appear at instance level, not class level. 

3. The database approach 

The DB side of the project was to support the creation, 
representation, and manipulation of all details of plant 
classifications. The following requirements were noted. 
Firstly objects should be able to capture all taxonomic 
data and support all taxonomic processes, secondly 
objects should be independent from the classification, and 
thirdly the system should provide general-purpose DB 
functionality and an ad-hoc query language. 

Representing the complexity of objects is necessary in 
order to support taxonomic data, therefore the semantics 
must be modelled in the DB. In addition, the system must 
be able to support complex processes such as derivation 
of information (e.g. deriving names from sets of 
specimens), integrity constraints (application of the 
ICBN), and complex processes (e.g. searches). 

The representation of classifications independently 
from the objects that are actually classified is important 
because these objects are entities that are clearly defined 
as existing independently from any kind of classification. 
In addition, this allows the classification system to be 
implemented on top of an existing DB system and 
taxonomic schema; requiring the redesign of the DB in 
order to include a classification would not be practical.  

The provision of a generic system is important because 
of the complexity of the processes associated with 
taxonomy. Indeed, these processes require frequent 
recursiv e exploration of the DB, the reorganisation of the 
graphs, or the assignment of names to sets of specimens 
according to the ICBN rules. These processes must be 
supported by an ad-hoc query language. 

 
 
 
 
 
 
 
 
 
 

Figure 1. DB - classifications 

These requirements led to the definition of an arc-
based model for the DB system [6]. Several graph-based 
DBs exist (e.g. Telos [7], ConceptBase [8], Progres [9], 
Hyperlog [10]). However, these graphs are simple graphs 
(especially in the case of Hyperlog where attributes 
cannot be defined on arcs). They do not support the 
definition of overlapping graphs that need to be 
unambiguously identified, as they do not support the 
definition of semantics for relationships. Our approach is 
to use relationships as classifying concepts with the 
equivalent of weights (in weighted graphs) to represent 
the classification information. We use classes/objects as 
nodes, and relationship classes/ relationship objects as 
arcs in an OODB as these are more expressive and 
provide us with a general-purpose system. These weights 
(relationship attributes) are not limited to simple integer 
values: they can be of any type defined in the system 
(including other arcs). The definition of weights on 
relationships allows us to describe the distinct trees with 
their overlaps. Indeed, by following relationships with 
specific values (e.g. publication information), it is 
possible to follow a path of a spe cific graph. But by 
switching between these values, it is possible to compare 
and navigate within and among classifications. Figure 1 
shows an instance representation of three distinct 
classifications: a dashed line classification, a thin line 
classification, and a thick line classification. In taxonomy, 
these classifications would have been published by 
distinct authors (the type of arrow in our example 
represents the publication). The leaf nodes in these 
classifications could be for example specimens. The other 
nodes could be taxa that are used to classify the leaf 
nodes. We can see in the diagram that the classifications 
have elements in common: node 3 appears in the thin line 
and in the dashed line while node 4 appears in all three 
classifications. Leaf nodes can appear in one classification 
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(node a), in two classifications (node b), or in all three 
(node e). It is possible to compare nodes 3 and 4 and see 
that they have some leaf nodes in common. This can give 
insight in the data (e.g. when two groups partially contain 
the same specimens, they are partial synonyms). It is also 
possible to contrast the different meanings of a node 
according to different classifications: node 4 contains 
nodes d and e in the thin line classification, nodes e, f and 
g in the dashed line classification, and nodes b, c and e in 
the thick line classification. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Sample database schema 

The provision of relationships as first-class concepts 
also allows us to clearly distinguish between object and 
classification information. Our model supports the 
definition of semantically rich relationships (e.g. 
aggregation with specific semantics such as lifetime 
dependency or sharing) which can be used in order to 
describe the contents of a composite object. The presence 
of first-class relationships allows us to create specific 
relationships to represent classifications and manipulate 
them independently from the classified objects (e.g. tree 
reorganisation due to the application of the ICBN). 

Relationships effectively act as classifiers (or 
classifying mechanism). The action of creating such 
relationships between two objects implies that these 
objects are classified. Furthermore, these relatio nships are 
the only objects in the system that are aware of the 
classifications and they contain all the necessary 
information to distinguish them from each other. Figure 2 
shows a small portion of the DB schema that uses this 
mechanism and that will be used in the next section where 
diamond boxes represent relationship classes, square 
boxes represent object classes. Relationships are directed. 
Lines that start with a diamond represent aggregation. 
Thick arrows represent inheritance. 

4. The visualisation approach 

The visualisation side of the project was to provide a 
mechanism for the comparison of finished classifications 
(i.e. where the names of all taxa are defined and fixed). 

The aim of the VT was to enable taxonomists to 
interactively search and browse the relationships of and 
correlations between these multiple taxonomic 
classifications. Rather than rely on traditional GUI 
approaches such as scrolling lists of results, the interface 
is instead based on the Information Visualization (IV) 
[11; 12] approach to interface construction. IV interfaces 
tend to be highly graphic and designed so that a user can 
perceive information, rather than having to process it 
cognitively, which for some information can prove an 
overwhelming task. Simply put, IV aims to allow people 
to ‘see’ information and inferences rather than having to 
think about it. Our visualisation displays distinct 
classifications separately, as earlier testing [13] had 
shown that integrating them into a full global visualisation 
of the overall graph was incomprehensible to the 
taxonomists for all but the simplest tasks.  

The data used in the visualisation is a simplified subset 
of the taxonomic data used by the DB model. The 
structures of all classifications are known in advance and 
matching elements between them is done on the basis of 
names only. There is no provision for searching on 
attributes such as herbarium. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. VT - classifications  

As taxon names are re-used (albeit in different 
contexts) across classifications, the visualisation data 
model concentrates name and classification information 
within nodes. These 'name' nodes are represented as the 
labelled elliptical entities shown in Figure 3. Data 
concerning these names but unique to specific 
classifications, such as parent and child relationships, are 
allocated to multiple sub-objects within these nodes, with 
one sub -object describing the state of one taxon name 
within a classification. This data is represented by the 
inner, circular representations. Figure 3 shows the same 
classification as in Figure 1, that span the name nodes. 
Edges themselves are defined as either child (multiple) or 
parent (one per sub-object) pointers internal to a particular 
classification, and have no information attached to them. 
These relationships are shown by the lines between the 
circles. For example in Figure 3 we can see that 4 is a 
child of the 1 in the dashed and thin classifications, but a 
child of 2 in the thick classification. The edges themselves 
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are merely pointers, not objects or 'decision-makers' in 
their own right. In essence, all the classifications are 
described separately, and bundled together at given points 
by the 'name' nodes. 

Together the classifications and the linking between 
them afforded by the nodes  build an overall structure we 
call a DAMG (Directed Acyclic MultiGraph), a restricted 
class of general graphs related to DAGs (Directed Acyclic 
Graphs) with the following properties: Directed when 
following links exclusively from parent to child links. i.e. 
direction has meaning. Acyclic if and only if directed. 
Following parent-child links recursively through the 
structure will never bring a path back to where it started. 
Accordingly, self-loops are not allowed on a node (an 
edge with the same end and start node.) Multigraph – 
Multiple edges can exist between any pair of nodes. This 
would indicate the same immediate relationship existing 
between two elements in different classifications. Self-
loops are not allowed (a restriction on general multigraph 
theory to help achieve acyclicity). Layered – The 
structure can be broken into distinct layers, where no 
direct links exist between nodes of the same layer. This is 
implicit in the taxonomy example, where taxa at a certain 
rank are composed only of, and therefore linked to, taxa 
from lower ranks. 

Searching and linking within this structure can now 
take place using the following traversal techniques. 
Traversal from a particular node for a given classification 
is simply a question of performing standard depth-first 
and breadth-first searching mechanisms for trees. Only 
the tree in which traversal takes place, indicated by a 
simple integer index, is tracked to keep traversal 
operations within the correct node sub-objects. Traversal 
between classifications is simply a matter of switching 
between the sub -object within the nodes that hold 
relationship information, and in this way relationships 
between the classifications can be explored. Perhaps a 
useful metaphor can be given by describing the 
classification links as different underground or metro 
lines as displayed on a map, and the name nodes as 
“transfer stations” that allow a traversing algorithm to hop 
off one “line” (classification) and onto another. 

This approach to modelling the taxa data gives access 
to ready-made hierarchies within the overall graph 
structure, as in effect we construct a restricted graph from 
hierarchies rather than vice versa, eliminating the problem 
of extracting individual taxonomic classifications from 
the overall graph. It also makes display of the 
visualisation easier, as due to the fact the classifications 
are kept separated, drawing them separately is a matter of 
display layout rather than model processing. Furthermore, 
speed is an important factor for an interactive 
visualisation, and having all the classifications connected 

together but easily distinguished makes the operations 
performed on the visualisation’s data model extremely 
efficient compared to the case for a general graph. 

5. Comparison 

This section looks at common operations that are 
performed by users, compares how they are supported by 
the two systems, and shows the implications of the two 
models. In the comparison, we concentrate on the 
mechanisms of the VT and the query language and model 
of the DB system. 

As shown, the VT and DB models are different due to 
their different requirements. The VT displays information 
in an intuitive and simple way that allows users to quickly 
understand the information presented and to allow 
exploration. It benefits from the fact that the equivalent of 
a “select * from each classification” is permanently 
displayed and requires no processing after initialisation. 
This is in contrast to the DB where a query must be 
executed each time any data is to be returned to the user. 
In addition it reduces complex objects to simple text 
strings for which there is no sub-string searching. The DB 
however captures complete information, i.e. any ad-hoc 
query a taxonomist may need to perform. Therefore the 
underlying schema is more complex, e.g. the description 
of a taxon name is a composite object that contains at 
least six other composite objects. This is necessary to 
support features such as the automatic calculation of 
names. The DB is therefore able to generate data suitable 
for the visualisation, but the reverse is not true. 

The comparison of classifications requires the 
consideration of groups that appear at similar ranks. For 
example, if one classification contains ranks Family, Sub-
family, Tribe, and Genus, and another Family, Tribe, and 
Genus, the Sub-family rank in the first is ignored to aid 
comparison. The VT can work on arbitrary ranks, with 
bottom level nodes being regrouped accordingly to which 
ranks are currently marked as active. This enables users to 
compare directly two classifications with differe nt 
structures, as long as the leaf nodes are of equal rank. This 
feature requires more work in the DB and can be achieved 
via an operator designed to work on graph structures and 
able to reconstruct graphs after a query has been executed 
(the follow operator [2]). (Q1) shows such a query 
returning all classifications defined using the 
theCircumscription relationship restricted to elements that 
are not at ranks Sub-family. 
(Q1) select * from theCircumscription c where 

c.origin.theRank.destination != “Sub-family” and 
c.destination.theRank.destination != “Sub-family” 
follow theCircumscription 



 

Figure 4. Selection of one node and a group of 
nodes across four distinct classifications.  

When users want to see the occurrence of a particular 
taxon or specimen across other classifications, they can 
click on that element in one classification using the VT. 
When this happens, the element is highlighted not only in 
that classification, but also in its appropriate positions 
within other classifications. This results from the selection 
of one node within the underlying restricted graph, and is 
therefore a very simple procedure for the visualisation 
model. The node selection attribute, which determines 
display colour in the visualisation, is global for that node 
across all classifications, so all its representations are 
automatically drawn in the same colour. This can be seen 
in Figure 4 by the representative node, Coriandreae, 
which is highlighted across all classifications. This feature 
can be achieved in the query language by querying arcs 
and selecting those that target the specified specimen and 
returning all the classifications that contain it. (Q2), which 
is based on the sample schema shown in Figure 2, shows 
such a query for a specimen identified by X (e.g. OID). A 
similar query can be written for taxa . Note that origin  and 
destination represent the direction of arcs/relationships 
and are reserved keywords.  
(Q2) select c.destination, c.theCircPublication, 

c.theCircAuthor from theCircumscription c where 
c.destination = X 

When users want to see the distribution of a group and 
its member groups and specimens across classifications, 
the whole group in one classification can be visually 
selected. The selected taxon is highlighted along with all 
the taxa and eventually specimens that are its 
descendants. As the selection attribute is global across all 
classifications for a node, this operation involves only a 
depth-first traversal of one classification tree from the 
node selected to set the attribute in the relevant nodes. 

This can also be seen in Figure 4. These groups’ nodes are 
then highlighted in the other classifications, showing their 
distribution. Using the DB, this  query can be written as 
shown in (Q3). It shows the mechanism for a group or 
specimen identified by X (e.g. its OID). The query first 
finds recursively all the groups and specimens that were 
placed in the selected group and then finds all the 
classifications in which these groups appear. Finally it 
returns triples that contain a group (taxon), information 
about the classification, and the group associated with it. 
(Q3) select c.origin, c.theCircPublication, 

c.theCircAuthor, c.destination from theCircumscription 
c where c.origin.(theCircumscription.origin)* = X or 
c.destination.(theCircumscription.destination)* = X 

When users want to dynamically explore the 
distribution of specimens or groups, brushing can be 
selected and the mouse moved over the display. Brushing 
is a temporary visual marking of nodes as the mouse 
passes over (‘brushes’) node representations. The nature 
of the visualisation model, being pre -calculated and 
enabling node objects to span many classifications, 
enables these two operations to be performed sufficiently 
quickly to allow this behaviour. The same processes 
would be too expensive for a DB system, as a large 
number of queries would need to be run at each move of 
the mouse with the display immediately updated. Running 
a query involves parsing the query, making syntactic and 
semantic checks, accessing the data dictionary and 
indexes, fetching objects from the disk, resolving 
references, and returning objects possibly through a 
network. On the contrary, the VT only requires pointer 
following in memory to find the necessary data. 

Users sometimes need to see which nodes are unique 
to a particular classification. In the VT this requires 
selection of the top taxa of all classifications except the 
one we wish to find unique nodes in. This sequence of 
events results in the model setting the selection attribute 
for all nodes, except those that only occur in the 
classification of interest. The VT can then display this 
information, usually inverting selection values to 
highlight the unique nodes. This is the heftiest operation 
in terms of processing for the visualisation model, 
involving n-1 (where n equals the total number of 
classifications) depth-first traversals from the root nodes 
of classifications. The same feature can be achieved in the 
DB system by first finding the set of all nodes in a single 
classification, then checking the nodes that are not 
referenced by arcs from other classifications. 
(Q4) select n from Name n where n in (select c.origin 

from theCircumscription c where c.theCircPublication 
= X or c.theCircAuthor = Y) and n not in (select 
tc.origin from theCircumscription tc where 
tc.theCircPublication != X and tc.theCircAuthor != Y)  

When users want to see how specimens that are 
grouped together evolve across time, i.e. whether the 
groups are broken or not in different classifications, the 



sibling  mode can be activated. The sibling  mode 
operation is more complicated than previously mentioned 
operations for the visualisation model. The user selects a 
specimen, and all the specimen’s siblings are highlighted 
using a colour specific to the classification in which the 
specimen’s sibling relation occurs. In the event of 
specimens being related in two or more classifications, 
the first classification is taken to decide the colour. 
Traversal of the tree is limited to one edge up to a node’s 
parent within a classification and then down to possible 
multiple children within that same classification 
(performed on every classification related sub-object 
within the chosen node). Therefore, this selection set is all 
nodes that share a parent node in at least one classification 
with the chosen node. The algorithm necessary to perform 
this task in the DB is a recursive algorithm. Most query 
languages do not allow queries to call themselves in a 
parameterised way. Although supporting recursion, the 
DB system is unable call queries recursively. The only 
solution would be writing specific code, i.e. it could not 
be done with an ad-hoc query language. 

6. Conclusion 

We have described two models designed to support 
different aspects of taxonomic work which both represent 
multiple overlapping classifications. They are graph-
based, but are radically different: one is node-based and 
the other is arc-based. The differences in philosophy are 
due to the way the two systems interact with users and 
their requirements. 

The model influences the ability of the system to 
respond to specific user requests. For example the 
visualisation interface is a fast, efficient system that 
supports rapid response to user actions. This is achieved 
by specialised, optimised code written as the interface is  
hard-coded with knowledge of what users expect to do. 
However, we have also seen that this specialised code 
does not support all information useful to taxo nomists. On 
the contrary, the DB system is slower than the 
visualisation interface due to the lack of specialised code, 
which makes it unsuitable to support some of the features 
of the VT. This general-purpose approach allows the 
system to support a wider range of information (e.g. 
updates) and to answer a broader range of queries. 

We have also seen that the degree of interactivity with 
the user is important. If it is high (e.g. during exploration 
in the VT), the user acts as a processing unit. If the 
visualisation makes use of user perception, e.g. by 
representing classifications explicitly, processing 
regarding classifications is moved from the VT to the 
user. An earlier prototype where the visualisation was a 
graph similar to the arc approach used by the DB was 
shown to be ineffectual by taxonomists [13]. The DB 
however is more independent from the user, therefore 

needs to capture more concepts, making the queries more 
difficult to express and process. 

The choice of model depends on the requirements 
defined for the system. In Prometheus, both are used: the 
DB is used to assist taxonomists in the process of creating 
classifications by checking data, deriving additional data 
and manipulating it; the VT uses data exported from the 
DB for exploratory purposes. However, a major challenge 
in DB/visualisation research is developing VTs that 
interact directly with the DB and accommodate updates in 
the data dynamically. 
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