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Abstract 

Architectural designers and technologists are able to make an assessment on 
buildability, thermal and hygrothermal performance of design details. To process 
drawings, human vision segments, classifies and distinguishes the drawing objects on 
the basis of their knowledge. With the rapid advancement of Artificial Intelligence 
methods, vast opportunities become available for performing tasks that used to require 
human intelligence or assistance by humans. Image processing and analysis is one of 
these tasks that consists of the manipulation of images using algorithms. There are 
various applications in different fields, and the use of it is increasing exponentially.  
This paper explores the use of image processing in identifying building materials in 
order to check compliance with building regulations and identify anomalies. In this 
paper, an encoder-decoder based deep convolutional neural network (DRU-net) for 
image segmentation is applied on architectural images to segment various materials 
including insulations, bricks and concrete in the conceptual development phase. An 
experimental analysis is performed on numerous detail drawings and an evaluation is 
made by mathematical models.  
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1. Introduction 

Building regulations are an essential part of the UK government approach to protect 
health and well-being of users, conserve fuel and preserve environment. Building 
Control Bodies (BCBs) have the authority to ensure requirements are met in each 
construction project. However, variety of construction methods and complexity of 
drawings, unpredictable changes and pressure of time may cause an increase in human 
errors. No substantial studies exist (as of today) to adequately demonstrate the 
compliance level to regulations typically achieved in each project. However, numerous 
studies reported significant failures in complying with building regulations not only in 
the UK but also in other countries like Canada and Australia. They also reported 



complexity of regulations, lack of consistency and knowledge of detail drawings, 
adequate monitoring and time pressure, etc. are causes of non-compliance (1). 
 
Architecture and construction have significantly benefited from a wide range of 
computer programs from modelling to management and analysis. However, the 
industry still suffers from the lack of substantial digitization like other sectors and is 
among the least digitized (2). The industry still relies on paper to manage most of it 
processes that includes design drawings, procurement, daily progress reports, etc. The 
lack of a common and integrated platform in projects and the loosely coupled systems 
of tools where each component has limited knowledge of the other are known to be the 
main reasons for the industry’s insignificant productivity in digitization compared to 
other industries (3). 
 
The rapid development of Artificial Intelligence and deep learning as a subfield of it 
could help the construction industry in various aspects. Generally, deep learning is 
inspired by the human brain and learns from large amounts of data. It consists of 
networks capable of learning and the related algorithms perform a task repeatedly to 
improve the outcome similarly to how humans learn from an experience (4). The 
networks work on the basis of a collection of nodes (artificial neurons) that model the 
neurons in a human brain as shown in Figure 1. There has been numerous advantages 
to this method in fault tolerance, ability to learn very complex issues and development 
potential (5), industrial engineering inspection processes, quality control and detection 
of contaminants, in building performance to determine comfort level (6) (7) and in 
medical sciences (8).  
 
Image segmentation is a process of dividing an image into some categories of objects. 
Currently most of the segmentation methods depend on thresholding algorithms (9). 
Gunay et al. (10) conducted a study on detecting occupants’ presence in offices using 
image processing algorithms and correctly interpreted 95% of the occupied period and 
93% of the unoccupied period. Similar study is conducted by Benezeth et al. and they 
reported an accuracy of 97% (11) Further studies by Amin et al. on potential accuracy 
of people counting systems on low resolution images resulted an error of within 3% in 
eighteen experiments (12). Because of such reliability, in this paper, an image 
segmentation method based on deep learning is used to segment architectural images. 
In the following the method is described in detail. 
 



 
 

Figure 1: Structural of biological neuron, image on the left from (13) 
 
 

2. Methods 

In order to prove compliance with building codes it is vitally important to make a clear 
demonstration between the specification of the used materials and the relevant 
requirement from a building code (e.g how the design detail claim the required U-
Value). The framework for the programme is adjusted as follows and shown in Figure 
2: 

 

Figure 2: the overall scheme of our proposed method. 

       2.1 Data preparation: 

Numerous detail drawings from Robust Detailing Limited, Accredited Construction 
Details (ACDs) and Building Research Establishment (BRE) in compliance with 
the energy efficiency requirements (Part L) of the Building Regulations were chosen to 
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train the model. Each drawing is given a scale in order to determine the construction 
layer thicknesses. Each material in the drawing is given a colour that works as a 
reference code for material thermal specification. The colour can be mapped for a 
separate drawing by the model. 

2.2. Image segmentation: 

The goal of image segmentation is to label each pixel of an image. The output of the 
model is a high resolution image (the same size as input image) in which each pixel is 
classified to a particular class. Figure 3 presents some image examples and their 
corresponding ground truth labels.  

 

Figure 3: The images and the corresponding ground truth labels. a) natural  images 
(14), b) architectural images used in this study. 

The performance of computer vision systems has been significantly improved in a wide 
range of applications by the idea of deep convolutional neural network (DCNN) 
proposed by LeCun (15). DRU-net (16) is chosen to be used as the DCNN model in 
this paper. DRU-net is an encoder-decoder DCNN model for image segmentation. This 
network includes two paths, encoder and decoder. Encoder is used to extract the context 
and meaningful features from the input images, while the decoder enables an accurate 
localization by transforming these  features into  a  segmentation  map corresponding  
to  the  input  image. The structure of the encoder consists of a stack of convolutional 
and max pooling layers, and the decoder includes convolutional and transposed 
convolutional layers. Figure 4 presents this network. For more details about the 
network, the readers are encouraged to read (16). 

The input to this model is the architectural images and their corresponding ground truth 
labels, and the output is the segmentation results produced by the DRU-net as shown in 
Figure 4. 



 

Figure 4: The structure of DRU-net (16). 

    2.3 Evaluation: 

The accuracy of the proposed method needs to be evaluated to show how precise the 
proposed method is. The accuracy in image segmentation is measured based on the 
agreement between the estimated segmentation output and the ground truth 
segmentation mask. In this paper, the segmentation performance was assessed by using 
Precision, Recall, and Dice. These measures are often used to quantify the performance 
of image segmentation methods and reveal how similar the segmentation output of the 
method and the ground truth labels are. These measures are defined as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (2) 

𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 =  
2𝑇𝑇𝑃𝑃

2𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (3) 

where  true positive (TP) represents pixels that are correctly predicted according to the 
target mask, whereas false positive (FP) represents pixels falsely segmented as 
foreground, and false negative (FN) shows pixels falsely detected as background. The 
higher value of these measures shows the higher performance of the methods. In other 
words, a higher value shows a higher agreement between the segmentation output of 
the model and  the ground truth segmentation mask. 

    2.4 U-Value Measurement 

U-value measurement is for a building element made of uniform and parallel layers. 
The heat flow is straight from inside to outside through such an element. To measure 
the U-value, a sum of the thermal resistances of each layer is required, however all 
building components have non-uniformities (layers that are not parallel or plane) which 
means that the heat does not travel straight through them. For the purpose of U-Values, 
in numerical methods, construction is always considered as uniform in one direction 



meaning that three dimensional effects do not influence the overall U-Value 
significantly (17). BS EN ISO6946 suggested calculation as follows (18) where R is 
material resistivity, d is the material thickness and K is thermal conductivity coefficient 
(K-Value): 

𝑅𝑅 = 𝑑𝑑
𝑘𝑘
                                          (4) 

𝑈𝑈 𝑉𝑉𝑅𝑅𝑅𝑅𝑉𝑉𝑃𝑃 = 1
𝑅𝑅1+𝑅𝑅2+𝑅𝑅3…+𝑅𝑅𝑅𝑅

           (5) 

Furthermore, Approved document Part L1A sets out the concurrent notional dwelling 
specification as shown in Table 1, even though better fabric performance is likely to be 
required to achieve Target Emission rate (TER) and Target Fabric Energy Efficiency 
(TFEE) (19).  

Table 1: Concurrent notional dwelling specification 

Roof 0.13 W/𝑚𝑚2.K 
Wall 0.18 W/𝑚𝑚2.K 
Floor 0.13 W/𝑚𝑚2.K 
Party wall 0.20 W/𝑚𝑚2.K 
Windows  1.4   W/𝑚𝑚2.K 

 

By deriving data from the drawings, calculations take place for a section on each 
drawings. U-Value calculator follows to the numerical method (BR 443) and make 
calculations based on conductivity rates and layer thickness. The method has the 
capacity to calculate Psi (Ψ) value too which is a measurement of heat loss (W/m.K) 
across a given junction between the external wall and another element. The material 
specification should be given manually to the developed program due to diversity of 
materials thermal characteristic range especially insulations (figure 5 demonstrates the 
thermal conductivity rates for most commonly used insulation materials), the algorithm 
only detects the material on the basis of architectural hatch, understand the scale and 
runs the calculations.  



 

Fig. 5: Thermal conductivity of insulation materials. The dots represent average values 
and the bars indicate the available range. Image from (20) 

3. Experimental results: 

We trained the DRU-net on the pre-processed images and their corresponding ground 
truth labels of 2D architectural images. The datasets, training parameter settings and 
the experimental results are reported in this section.  

3.1 Materials and datasets: 

The model is trained to recognise standard hatching styles for construction materials. 
For the initial phases, insulation, bricks and concrete were used in the recognition. To 
train the model, we prepared 12 architectural images and their corresponding ground 
truth labels. The images were annotated manually by an expert. For all experiments, the 
dataset was randomly divided to 70%  for  training,  10%  for  validation  and  20% for  
testing.  Because the amount of data available is limited, 6-fold cross validation is used 
to reduce the sensitivity of the performance estimation to the partitioning of the data. 

The deep-learning model run on a graphics-processing unit NVIDIA GeForce GTX  
1080Ti. The  code  was implemented in Python based on Tensorflow 2.0, and the code 
is available at GitHub (https://github.com/MinaJf/DRU-net). 

The model was trained for 100 epochs. The learning rate was set to 10–3, and decayed  
by multiplying 0.8 for every 10 epochs. The initial feature channel number for the 
encoder-decoder architecture was 16, and the number of layers for both the encoder and 
decoder was 5. 

3.2 Pre-processing: 



The first step is to convert the image to grayscale image. In this process, a coloured 
two-dimensional image is transformed into a grayscale version of the image. Coloured 
images introducing unnecessary information which increase the amount of training 
time. Therefore, the main reason of this image conversion is that grayscale image 
simplifies the model training and reduces the computational time. 

Besides, all the images were resized to 256 × 256 pixels. Another important pre-
processing step is image normalization that rescales the pixel intensity values. In this 
work, all resized images were normalized to the range of -1 and 1 by using zero-mean 
normalization. 

4. Results 

In this section, DRU-net is compared with U-net (21) and Residual U-net (RU-net) (22) 
in terms of accuracy. U-net and RU-net are two DCNN models that are chosen here to 
compare their performance with DRU-net. Dice, Precision, and Recall for U-net, RU-
net, and DRU-net  are reported  in  Table 2. It can be seen from Table 2 that DRU-net 
outperformed U-net and RU-net (a higher value indicates a better performance). U-net 
and RU-net could not segment some of the materials resulting in zeros for Dice, 
precision and recall measures, while DRU-net segmented all the classes. 

Figure 6 shows one example of architectural images with its corresponding ground truth 
label, and the segmentation output of DRU-net. DRU-net produced a similar visual 
result to the ground truth label. 

Table 2: Segmentation results based on U-net, RU-net, and DRU-net. The results are 
reported based on dice, Precision, and Recall for all testing images. 

Method Dice Recall Precision 
C B I C B I C B I 

U-net 0.634 0.545 0.178 0.755 0.587 0.294 0.560 0.530 0.225 
RU-net 0.601 0.668 0.208 0.698 0.835 0.328 0.561 0.590 0.224 
DRU-
net 

0.754 0.654 0.227 0.863 0.789 0.444 0.678 0.620 0.335 

C: Concrete B: Brick I: Insulation 

 
(a) 

 
(b) 

 
(c) 



Figure 6: Visual results of one test example.  a) Original image, b) ground truth label, 
c) the segmented output of the proposed method. 

The level of accuracy achieved means the layer thickness for Brick and Concrete is 
detected correctly with very limited failure on some pixels. However, for insulation, the 
algorithm failed to achieve a high level of accuracy as the number of pixels for 
insulation layers is lower than the other two materials that makes the learning process 
more difficult for insulation segmentation. 

Conclusion 

 
Architectural detail drawings are of very different configurations and therefore human 
evaluations are prone to errors. In this study, a DCNN model is utilized to learn how to 
segment the most commonly used materials in construction on the basis of standard 
drawings and run the required calculations to check compliance with Part L1A of the 
UK building regulations. This article brings out a concept where image segmentation 
using deep learning can be considered in examining detail drawings. The framework 
development can address industry-wide problems in standard compliance, reduce 
human errors and deliver faster drawings check. The framework requires consistent and 
systematic review and feedback to improve the accuracy. 
 
Our future research focus on improving the accuracy of the algorithm used in this study 
by balancing the focus of model learning on materials with lower pixels. 
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