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At present, the study of upper-limb posture recognition is still in the primary stage; due to the diversity of the objective environment
and the complexity of the human body posture, the upper-limb posture has no public dataset. In this paper, an upper extremity data
acquisition system is designed, with a three-channel data acquisition mode, collect acceleration signal, and gyroscope signal as
sample data. The datasets were preprocessed with deweighting, interpolation, and feature extraction. With the goal of
recognizing human posture, experiments with KNN, logistic regression, and random gradient descent algorithms were
conducted. In order to verify the superiority of each algorithm, the data window was adjusted to compare the recognition speed,
computation time, and accuracy of each classifier. For the problem of improving the accuracy of human posture recognition, a
neural network model based on full connectivity is developed. In addition, this paper proposes a finite state machine- (FSM-)
based FES control model for controlling the upper limb to perform a range of functional tasks. In the process of constructing
the network model, the effects of different hidden layers, activation functions, and optimizers on the recognition rate were
experimental for the comparative analysis; the softplus activation function with better recognition performance and the adagrad
optimizer are selected. Finally, by comparing the comprehensive recognition accuracy and time efficiency with other
classification models, the fully connected neural network is verified in the human posture superiority in identification.

1. Introduction

There are more than 10 million new strokes per year world-
wide [1], and stroke is still the leading cause of death and dis-
ability among adults [2]. With the accelerating aging of the
society and the prevalence of unhealthy lifestyles, stroke dis-
eases have shown explosive growth and are getting younger.
Strokes are characterized by high incidence and disability,
with World Health Organization data showing that strokes
have a disability rate of up to 80%. The economic burden is
10 times greater than that of myocardial infarction. There-
fore, prevention and treatment are urgent, and the rehabilita-
tion system for patients needs to be improved.

Stroke patients’ recovery of limb function is one of the
most important aspects of rehabilitation. At present, there
are several different types of rehabilitation therapy in clinic,
such as electromyographic feedback therapy, electrical stim-
ulation therapy, and motor imagery mental training therapy,
while the most highly regarded in clinical practice is func-
tional electrical functional electrical stimulation (FES), with
stimulation electrodes worn on the limbs of stroke patients
consisting of the controller send out stimulation signals to
electrically stimulate specific muscles to enable the limb to
perform various types of functional rehabilitation or to per-
form daily activity, which in turn leads to the recovery of
limb function. Stroke patients need to perform specific
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functional tasks in the process of rehabilitation, so an effi-
cient control strategy needs to be designed. At the same time,
due to the lack of existing public datasets, it is urgent to estab-
lish a database, design algorithms to analyze sensor device
data, and identify the upper-limb posture movement of
stroke patients. This can provide reference for the rehabilita-
tion and rehabilitation effect of stroke patients. It provides an
effective solution.

The paper is divided as follows: Section 2 presents the
related work on this field. Section 3 and Section 4 demon-
strate the methodologies. Section 5 shows the results and dis-
cusses the findings. Finally, Section 6 concludes the paper.

2. Related Work

The related work in this paper concerns FES control and
upper-limb posture recognition, and the following sections
will focus on these two components.

2.1. Related Work on FES Control. Functional electrical stim-
ulation (FES) is often used for rehabilitation treatment of
stroke or spinal cord injury. For individuals with motor ner-
vous system damage, FES can activate the skeletal muscle of
paralyzed patients by implementing low-level electrical
pulses on motor neurons [3] and activate corresponding
muscles according to different expected movements [4].
Since Liberson et al. first used FES to rehabilitate a prolapsed
foot in 1960 [5], FES has been proved to be one of the impor-
tant methods to treat stroke rehabilitation or spinal cord
injury. Sabut et al. proposed a combination of FES and gen-
eral rehabilitation program, which has a significant effect
on improving the muscle strength of patients [6]. It is not
easy to use FES to control the target skeletal muscle at a high
level. When FES stimulates the muscle, the muscle response
to the stimulation is nonlinear and time-varying, and indi-
viduals with nervous system damage are often accompanied
with time delay [7]. There are open-loop, closed-loop, and
state machine-based control strategies in FES system to deal
with the above problems.

Open-loop control strategy is a simple but reliable con-
trol strategy, which is widely used in various control systems.
However, due to the low precision of open-loop control and
the lack of automatic correction ability, closed-loop control
solves this problem [8]. The closed-loop FES control system
usually consists of feedback signals, error detection and cor-
rection processes, and a model used to determine the output
of the system. For example, Zhang et al. proposed an
electromyography-based closed-loop torque control strategy
of functional electrical stimulation [9], and FES-evoked elec-
tromyography (EMG) was used to reflect the state of the
stimulated muscle, so as to compensate the muscle strength
adaptively. Compared with open-loop control, the closed-
loop FES system using surface electronics (sEMG) biases
feedback from bilateral arms for enhancing upper-limb
stroke rehabilitation [10]. Dodson et al. used a closed-loop
controller to compensate for electromechanical delay
(EMD) to increase the energy expenditure of the hybrid neu-
ral prosthesis and prolong the onset of muscle fatigue [11].

Compared to open-loop control, closed-loop control strate-
gies have better automaticity and adaptivity.

Generally, a FSM controller is composed of a set of states,
state transition conditions, input signals, and output
functions [12]. Each “state” corresponds to a movement
stage, and the “state transition condition” realizes the exit
of FES from each movement. Condition, finite state control
usually contains multiple states, each action corresponding
to each state is predefined, and the transition between states
is determined by the current state and artificial signals. Finite
state machine has been proved to be an effective control
method to realize the functional tasks of upper limbs. For
example, the upper-limb auxiliary system designed by Wang
et al., which combines FES with robotic exoskeleton, realizes
the control of finite state machine based on embedded envi-
ronment. The finite state machine is designed as an advanced
controller, which sends commands to the embedded control-
ler in real time to assist the grasping task realized by the assis-
tant [13]. The experimental results proved the effectiveness of
this method.

2.2. Related Work on Posture Recognition. The human body
posture recognition mode is divided into vision-based
human body posture recognition and sensor-based human
body posture recognition [14, 15]. The first one mainly
uses support vector machine [16, 17], hidden Markov,
and other algorithms [18]. The recognition success rate or
the efficiency of the algorithm is ideal, but it is more envi-
ronment dependent, the conditions are limited, and the
sensor used to capture the human body posture has the
characteristics of small size, high sensitivity, and is easy
for users to carry [19, 20].

Abobakr et al. proposed a holistic posture-based analysis
model [21] that uses the Kinect. The sensor acquires the data,
estimates the joint angle of the human body by inputting the
depth image and uses a deep convolutional neural network
model for the joint perspectives for regression [22], uses
comprehensive training images to simulate different body
movement tasks, and obtains highly generalized learning
models to achieve higher attitude prediction rate [23]. In
2019, Xu et al. implemented depth information and skeletal
tracking based on Microsoft Kinect V2 sensors to perform
human posture recognition [24], and based on this, human
fall detection was implemented. First, a Kinect V2 sensor
was used to process the human joint data generated by the
skeletal tracker, and then, the optimized BP neural network
is used for posture recognition and based on this to detect
falls, by training the neural network using a dataset generated
by the Kinect tracker and using other body trackers for test-
ing. Finally, posture recognition and fall detection were
experimentally validated and tested in real time over the
entire operating range of the sensor. The overall accuracy of
the NITE tracker used for the drop test was experimentally
98.5%, and the worst accuracy was 97.3 percent. University
of Brahem et al. mounted an accelerometer on the foot to
track and identify foot movements [25]. University of
Schwarz et al. used a MEMS sensor to capture and recognize
hand movements, which in turn accomplished a medical
office doctors’ human-computer operation with a computer
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[26]. The feedback from the sensors effectively reduces the
possibility of injury during jumping [27]. Lim et al. at
Nanyang Technological University, Singapore, invented a
wearable wireless human armmotion capture sensing system
[28] that captures and recognizes human posture using accel-
eration sensors and bending sensors for human-computer
interaction in medical applications for stroke patients in
recovery training. Wang et al. analyzed the signal character-
istics of accelerometers and gyroscopes on representative
[29], the feature information is extracted, a DT model-
based classifier is proposed, and the angle deviation is
weighted by an improved PCA algorithm. On average, the
experimental results proved that the average accuracy of the
pose of other was close to 97.1%, improving the PCA-based
angular bias method judgment accuracy.

In 2018, Cai et al. presented a process analysis and Fisher
vector-based encoded human action recognition framework
[30]; first, by applying Procrustes analysis and local retention
projections, apply pose-based features extracted from silhou-
ette images. The distinguishing shape information and the
local manifold structure of the human pose are preserved
and remain invariant for translation, rotation, and scaling.
After the pose features are extracted, a recognition frame-
work based on Fisher vector coding and multiclass support
vector machines is used for the human motion classification,
and the experimental results demonstrated the effectiveness
of the method.

3. Control Strategies

The FES controller is generally composed of a series of preset
states and state transition conditions, input signals, and out-
put functions. In this case, each “preset state” corresponds to
a movement phase, and the “output function” of each state
performs a gradual change of muscle stimulation to its
respective targets (the target can be zero) and finally main-
tains it on these targets. “Condition of state transition”means
the precondition of exiting each movement stage. The poten-
tial “input signal” set of FSM controller can be the data mea-
sured by accelerometer units connected to different parts of
the body, angle data, button status, and clock time.

3.1. FSM Controller for Upper-Limb FES. The general exis-
tence form of FSM controller is composed of a series of
movement phases with time sequence (real rectangle) and
natural transition (solid arrow) between each movement
phase. Figure 1 shows the transition between states. There
is a neutral phase in FSM, that is, the first state, which does
not involve in stimulating any muscle parts. Users can cus-
tomize the total number of stages of FSM controller, but
not less than 2 states, which is determined by the selected
execution task. FSM returns to the first phase, the neutral
phase, whenever the transition conditions of the final phase
are met. Therefore, the execution of functional tasks is always
in the neutral state. Dashed arrows indicate transitions
between special phases (such as default timeout and emer-
gency stop), and any phase can transition to a neutral phase.
It is specified that normal transition has higher priority than
abnormal transition.

The timing of the transition between phases is deter-
mined by the condition of the state transition, and the timing
of the transition is expressed by the input signal and the cur-
rent state. GUI can be used to customize the parameters of
FSM, including the number of states, stimulus parameters
of each state (stimulation thresholds, ramps, and target),
and state transition conditions (timeout, combination logic,
angle triggers, etc.).

Ramp time is a user-defined parameter in FES, which
represents the ramp time from the current target to the new
target. Figure 2 illustrates the variation of pulse width. The
ramp rate is determined by the ramp time and two consecu-
tive nodes in the stimulus curve. In this way, when the stim-
ulus level is different, the shorter the ramp time, the higher
the ramp rate.

The realization of ramp is determined by the frequency of
FSM. In this paper, we decide to use 20Hz; then, the mini-
mum time step is 0.05 seconds. This prevents users from
noticing any delay.

Phase conversion is determined by the current input sig-
nal and conversion conditions. The FSM controller can
obtain up to four acceleration data to capture the motion of
each part of the upper limb (i.e., hand, upper arm, and lower
arm). In this case, the acceleration data of accelerometer will
be transmitted to FSM controller in real time during the exe-
cution of functional tasks. In order to improve the flexibility
of the system, this paper uses logical operators (N/A and OR)
to combine two Boolean conditions to create conversion
rules.

Let us discuss an example to show how FSM can custom-
ize settings for specific FES tasks. As shown in Figure 3, this
FES task consists of five phases: “neutral,” “reach for door,”
and “grass handle.” In stage 5, the forearm extensor is stimu-
lated to reach the state of releasing the door handle. The

State 1 State 2 State 3

State 5State n

State 4

Figure 1: The transition between each state.

Phase (i+1)

Pulse with (𝜇s)

Phase (i+2)

Target (i+2)
for muscle (k)

Target (i) dir
muscle (k)

Threshold (j)

Threshold (k)

Ramp time Ramp time Time (s)

Target (i+2)
for muscle (j)

Phase (i)

Figure 2: Rise to a threshold (before the rise) and fall from a
threshold (after the ramp down).

3Wireless Communications and Mobile Computing



transition between states is an instantaneous event after the
conditions are met. This example will be carried out in the
experimental part, and the realization of each part of FSM
is described in detail.

The execution of FES task is reflected in the FSM con-
troller, which can be regarded as the state transition of
each movement stage according to a certain time sequence
and transition conditions. Table 1 lists the Boolean condi-
tions of each phase transition in the door opening task.
Two accelerometers are used to record the movements of
the lower arm and the upper arm, respectively, which
can be used as the transition of phases 2 to 3 and 4 to 5,
and it can also be used as a condition for triggering phase
transition. In the transition from stage 4 to stage 5 in this
example, the logical operator is OR, which means that only
one of condition A and condition B is satisfied and the
phase transition be carried out, that is, the upper arm
angle is reduced by 45° and the phase 4 is kept for 5 sec-
onds, and the state transition can be triggered. It should
be noted that the transition between phases depends not
only on the state transition conditions, but also on the
current state.

3.2. Implementation of the Finite State Machine Controller.
This paper uses MATLAB and Simulink to implement a
real-time FSM controller under the Windows platform. The
real-time online data acquisition, processing, and stimulation
parameter control are realized by Simulink. The components
and input/output of the FES control system are described in
Figure 4. The FSM controller can input the button pressing
signal in real time, time-out clock and three-axis acceleration
data, and real-time output of stimulus pulse width (μ sec),
pulse amplitude (MA), and waveform. The waveform is pre-
set and fixed; the Simulink simulation system runs at 20Hz,
implementing real-time angle tracking, angle triggering,
FSM controller and security review.

The real-time input of FSM controller includes the abso-
lute angle value of x-axis and vertical direction measured by
Xsens unit, the “space bar” button in GUI is used as the
switch state button, the “enter” key is used as the emergency
state button, and the time-out clock time is also included.

The design of FSM controller includes the design of state
transition control, stimulation output control, and the
research of improving the robustness of angle trigger. The
output of FSMwill be transmitted to the safety module in real
time. The safety module is located between the controller and
the stimulator. The safety block can prevent the pain caused
by improper stimulation level. Because the safety block will
limit the pulse width of a single pulse, the pulse amplitude,
i.e., the total charge, and the maximum step size of the ramp,
the safety block will stop the stimulation of the stimulator
when any limit is exceeded to verify the security of the whole
system. Figure 5 is the flow chart of FES control system of
upper limb.

4. A Proposed Posture Recognition Algorithm

4.1. Data Acquisition Equipment. In this paper, the
MPU6050 sensor module that satisfies the above

Button press

Transition condition
For exiting phase:

Timeout – 4 sec

Transition condition
For exiting phase:

Angle change – lower
arm – decrease by 45°
OR
Timeout – 5 sec

Transition condition
For exiting phase:

Timeout – 4 sec

Transition condition
For exiting phase:

Angle change – upper
arm – increase by 53°

Transition condition
For exiting phase:

Grasp handle
(Phase 3)

(AD & Tr) + FF
Neutral phase

(Phase 1)

Reach for door
(Phase 2)

(AD & Tr) + FE

Open door
(Phase 4)
PD+FF

Release door
(Phase 5)

FE

Figure 3: Transition between phases.

Table 1: Transition rules of the “open a door” task.

Transition
between phases

LO (logical
operator)

Factor A Factor B

1 to 2 Not/and Press the space bar Invalid

2 to 3 Not/and
Increase upper
arm by 53°

Invalid

3 to 4 Not/and Hold for 4 sec Invalid

4 to 5 OR
Decrease upper
arm by 45°

Hold for
5 sec

5 to 1 Not/and Hold for 4 sec Invalid
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characteristics is used as a data acquisition device to provide
a reliable data source for subsequent research work.

The MPU6050 is a scalable digital motion sensor that
integrates a 3-axis MEMS accelerometer and a 3-axis MEMS
gyroscope processor, which accurately tracks fast and slow
movements. The data collection device is shown in
Figure 6. The measurement range of the sensor is user-defin-
able, and the accelerometer can sense ranges of ±2 g, ±4 g, ±
8 g, and ± 16 g. The angular velocity can be sensed in the

Button pressing:
(i) transition (space bar)

(ii) emergency stop (enter)

Hazomed stimulator

Angle tracking method,
angle triggering algorithm,
FSM controller and safety

check implementation
in Simulink

ClockXsens motion
trackers

Figure 4: The data flow in FES control system.

Data acquisition

Acceleration data input

Angle tracking

Button (transition
& emergency stop)Clock time

FSM controller

Safety check

Outputs to Hasomed
stimulator

Figure 5: The flow chart of upper-limb FES control system.

+Z

+Z +Y

+Y

+X+X

Figure 6: The data collection device.
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range of ±250, ±500, ±1000, and ± 2000°/sec (dps). In the
data acquisition process, the MPU6050 first puts the calcu-
lated values into registers, and then, the microcontroller
reads them via I2C.

4.2. Data Preprocessing. To further process the raw dataset,
the dataset was deweighted, using the gyroscope data as an
example, and the waveforms before and after deweighting
are shown in Figure 7.

Data sawtooth has been eliminated, but still not smooth
enough, in order to complete part of the missing value, the
need to interpolate the dataset to get a smoother interpola-
tion function and the use of three-sample interpolation on
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Figure 7: Sensor data waveforms before and after weight removal.
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Figure 8: Waveform diagram after preprocessing of the side lift data.
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Figure 9: Structural diagram of a fully connected neural network.
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the dataset to deal with the processing of A, B, C three sensors
of the attitude signal shown in Figure 8.

4.3. Fully Connected Neural NetworkModel. The experiments
are mainly conducted using time domain analysis for feature
extraction, with N denoting the number of rows of data in a
time window and i denoting the row of data, and the selected
variance, range, and interquartile range as features define as
follows:

σ2
X tð Þ = lim

n→∞

1
N
〠
N

i=1
Xi tð Þ − μX tð Þ½ �2 = E X2 tð Þ� �

− E X tð Þ½ �ð Þ2,

R = Xmax − Xmin,
IQR =Q¯3 −Q¯1:

ð1Þ

The simple structure of a fully connected neural network
is shown in Figure 9,

where ali denotes the output of the neuron, where l
denotes the number of layers and i denotes the neuron
number; zli denotes the output of the inactivated neuron,
where l denotes the number of layers and i denotes the neu-
ron number; wl

ij denotes the weighting factor of the neuron.
The fully connected neural network obtains the output as
the input of the next layer neuron through the multiplication
and accumulation of the input data and the weight and then
calculates the activation function to realize the forward prop-
agation calculation. According to the error between the final
output layer result and the expected result, the weight param-
eters are adjusted by the back propagation algorithm until the
error between the output and the expected result are
acceptable.

The experimental posture recognition scheme based on a
fully connected neural network is shown in Figure 10.

Hot codes are performed on the labels of the posture
dataset to convert the label variables into a form that the neu-

ral network can easily exploit to model operational efficiency
as well as the nonlinear capabilities of the model.

A fully connected neural network model is constructed.
The fully connected network model constructed in this paper
consists of four components. The first one is the input layer
module, which is responsible for inputting the format of the
posture data and the initialization task of neuron parameters
at each layer during the first execution, setting for each read-
ing of a set of 1590 × 6 pose matrix data. The hidden layer
module consists of a hidden layer containing 30 neurons,
the number of layers is determined by comparing the recog-
nition rate and is responsible for the upper layer neurons, the
output data are weighted and summed, and the activation
function is used to generate the input values from the lower
layer neurons. The output layer module is responsible for
obtaining the predicted probability values for the six postures
from the incoming data from the upper layer neurons. The
tuning module is responsible for calculating the activation
value for each neuron, the loss of each layer based on the acti-
vation value, and the parameter gradient from the output of
the layers start to make parameter adjustments going for-
ward. The posture dataset is trained by the above method
to derive the final recognition model.

5. Experiment

5.1. FES Control Test. This paper uses the “open door” task to
test the FSM controller. The output data of the main mon-
itoring controller includes the following: the accelerometer

Start

Error as expected
Class label hot-

codes

Input layer module

Hidden layer
module

Output layer
module

Reverse output
layer module

Inverted hidden
layer module

Parameter update

End
Y

N

Figure 10: Posture recognition schemes for fully connected neural networks.

Table 2: Stimulation parameters for each channel at different
phases.

Phase
1 2 3 4 5

Channel

1 0 108 108 0 0

2 0 54 0 0 72

3 0 0 72 72 0

4 0 0 0 90 0
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signal of the Xsens unit of the upper arm and forearm, the
change of the vertical angle after each state conversion,
and the phase number and pulse width of each part of
the muscle.

Before running FSM controller, it is necessary to install
the Xsens motion tracking software. The software can
directly collect the real-time acceleration data of Xsens iner-
tial sensor unit on MTX hub from MATLAB. Xsens system
samples the sensor data at the frequency of 100Hz. Refer to
Figure 3 for the muscle parts and transition conditions

involved in the transition of each stage. The specific stimula-
tion parameters can be seen in Tables 2 and 3. The “stimulus
threshold” and “maximum comfortable stimulation” are the
default values, which are 360μs and 0μs, respectively.

The data is collected by healthy subjects in real time when
executing the “open a door” task. The dotted lines in the fig-
ure below indicate the transition between states. Two Xsens
are, respectively, installed on the forearm and the upper
arm to trigger at the starting angle. The corresponding
acceleration data is shown in Figure 11.

Table 3: Stimulated muscles and their stimulation changes at various stages.

Phase Output

Neutral No stimulation

Reach for door Anterior deltoid, triceps, and forearm extensors ramp from threshold to target and then stay on the targets.

Grasp
Both triceps and anterior deltoid rise to the target. Forearm flexors go from threshold to target.

Both channels are at the target location. Forearm extensors shut down by climbing to a
threshold and then decreasing to zero.

Open door
Forearm flexors ramp towards the next target. Posterior deltoid goes from threshold to target.
Both channels stay at their target location. Anterior deltoid and triceps turn off by ramping

to threshold and then decreasing to zero.

Release
Forearm extensors ramp from threshold to target and stay at the target. Posterior deltoid

and forearm flexors turn off by ramping to threshold and then decreasing to zero.
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Figure 11: Acceleration data. (a) Upper arm and (b) forearm.
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Figures 12 and 13 show the stimulation of part of the
muscle tissue at all phases of movement in the example task
of “opening the door” (see Figure 3). The stimulated muscles
corresponding to each stage will ramp to the target level of
that phase.

5.2. Neural Network Test. In order to verify the effectiveness
of the fully connected neural network model for human pos-
ture recognition, this section takes the six human posture
data collected above as an example and performs experimen-
tal validation.

The experimental dataset contains the six classical pos-
tures of forward flattening, lateral flattening, upward elbow
bending, bent elbow backward, wrist upward bending, and
horizontal elbow flexion MEMS sensor signals; in order
for the pose dataset to be applied to the neural network
model, the dataset needs to be preprocessed first. Since
the completion time required for various postures varies,
the length of the sensor signals collected for the posture
samples is inconsistent, so as not to lose the original infor-
mation of the attitude, it requires adding the original signal
data to make the data window consistent. Before perform-
ing the experiments, this paper starts with a procedure to
find the longest pose sample for the prelift, with a comple-
tion time of 5.3 seconds, and to add all the sensor data
through three-sample interpolation for the dataset plus
windows, interpolation is complete, splicing three sensor
data, so that each attitude of the data sample then becomes
1590∗6 in the form of a two-dimensional matrix. When
solving multiclassification problems using neural networks,
the labels need to be digitized, and the digitized class labels
converted to binary matrix representation, such an opera-
tion is called creating dummy variables (one hot encoding)
from categorical variables. As an example, the anterior flat-

tened pose data used in this paper is transformed into the
following labels: [0, 1, 0, 0, 0, 0].

In order to study the effect of the number of hidden layers
on the recognition accuracy and recognition efficiency, this
paper investigates the recognition accuracy of hidden layers
1 to 6 and the time taken; the number of neurons was all
30, and the judgment index was the recognition accuracy.
The comparison results are shown in Table 4. In addition,
the effects of different activation functions and optimizers
on recognition accuracy are compared. The experimental
results are shown in Tables 5 and 6.

To summarize the above comparative experiments, the
fully connected neural network selected a 3-layer hidden
layer structure with an activation function of softplus as well

Phase 1 Phase 2 Phase 3

Stim target
in phase 2 Stim target

in phase 3

Stim target in phase 4 Stim target in phase 1
is always 0 (⇐

threshold)
& 5 ⇐ threshold

Phase 4 Phase 5 Phase 1

Figure 12: The stimulating curve of anterior deltoid and triceps at different phases.

Phase 2Phase 1 Phase 3

Stim target in
phase 2 Stim target in

phase 5

Stim target in phase
1 is always 0 (⇐

threshold)

Phase 4 Phase 5 Phase 1

Stim target in phase 3 ⇐
threshold

Figure 13: The stimulation curve of forearm extensors at each phase.

Table 4: Identification results for different numbers of hidden
layers.

Number of hidden
layers

Average recognition
rate

Time
(seconds)

1 91.27% 14.576

2 81.34% 18.743

3 94.08% 20.492

4 84.18% 26.533

5 89.87% 23.33

6 79.41% 31.106

Table 5: Identification results for different activation functions.

Activation
function

Relu Softplus Sigmoid Tanh Softsign

Average accuracy 91.31% 93.07% 37.84% 81.96% 90.33%
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as an adaptive gradient descent optimizer. And three ten-fold
cross-validation to take the mean value, the recognition rate,
and duration of each algorithm are calculated as shown in
Figure 14.

Known datasets without feature extraction retain good
pose information, and the KNN model has a very good han-
dle on such pose datasets, good recognition performance
(KNN-NFE) with up to 98% recognition accuracy. However,
due to the large sensor signal data, the resulting computation
time is costly and takes as much as 1 second. In contrast, the
calculation time of KNN classifier after feature extraction has
been shortened by an order of magnitude and improved
greatly, but due to the pose information was incomplete
and the average recognition rate dropped to 94%. The logistic
regression model outperformed the stochastic gradient
descent SGD using a linear support vector machine classifier
in terms of recognition rate and computation time classifier,
and the recognition rate is also improved compared to the
feature extracted KNN model. In addition, the fully con-
nected neural network model has a similar recognition rate
and takes less time to compute than the KNN-NFE, which
has the highest recognition rate. Therefore, combining the
recognition accuracy and time efficiency, fully connected
neural networks still have some superiority in pose
recognition.

FES control experiment designed the corresponding
finite state machine control strategy for the door opening
task. The experiment involved the muscle stimulation site,
stimulation parameters, the transition of each stage, and the
transition between each state. The experimental results

proved the effectiveness of the control strategy of finite state
machine, which provided a powerful solution for the clinical
design of rehabilitation plan and the implementation of reha-
bilitation training. The experiment of posture recognition is
based on the recognition of six basic upper-limb movements.
By comparing different classification methods, the practica-
bility of fully connected neural network in posture recogni-
tion is finally determined. This discovery can be combined
with the rehabilitation evaluation of patients in the later stage
and can be used as a reference basis for the evaluation of
patients’ rehabilitation degree, which is of great significance
to patients’ rehabilitation.

6. Conclusions

This paper proposes a FSM controller model that supports
clinical users to personalize settings according to different
FES upper-limb functional tasks, which can be used as a pow-
erful tool for clinicians to customize treatment plans for
patients with different degrees of nerve injury. The imple-
mented FSM controller was tested through the “door
opening” task, and the experimental results proved its effec-
tiveness and feasibility. The model is flexible and convenient,
which greatly improves the convenience of the rehabilitation
system for patients with upper-limb stroke.

In order to identify human posture, this paper starts with
building a posture data acquisition platform and collects 6 of
them in a three-channel data acquisition mode. The classical
posture is recorded in the MEMS sensor data. Then,
preprocessing such as deweighting and triple sample bar

Table 6: Identification results of different optimizers.

Optimizer adam rmsprop sgd adadelta adagrad adamax

Average accuracy 94.25% 96.01% 13.07% 93.17% 97.19% 94.35%
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Figure 14: Accuracy and computation time of each algorithm (blue represents the accuracy, and black represents the time).
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interpolation was applied to the acquired dataset, and time
domain analysis was applied from the sensor signal. Features
useful for posture recognition are extracted. Subsequently,
KNN, logistic regression, and random gradient descent were
performed using an experimentally validated classification
model with the goal of recognizing human posture experi-
ments of the algorithms. To verify the superiority of each
algorithm, the data window was adjusted to compare the rec-
ognition speed, computation duration, and accuracy of each
classifier. In order to improve the accuracy of human posture
recognition, a fully connected neural network-based model is
established. In the process of constructing the network
model, this paper investigates different activation functions
and optimizers, and after experimental comparative analysis,
it selects the better-performing softplus activation function as
well as adagrad optimizer. Finally, by comparing the com-
bined recognition accuracy and time efficiency with other
classification models, the adjusted fully connected neural
model in human is more effective and superior in posture
recognition.

In this paper, based on small sample data, we establish a
high-precision attitude recognition model, but there is still
room for improvement, especially for the problem that the
effect of small sample data in deep learning model is not as
good as large-scale data. In the future, we will try to study a
kind of attitude data that can generate typical attitude data
by learning the characteristics of attitude data, so as to
achieve the effect of expanding the sample data, and further
improve in solving the problem of insufficient training
samples.

Data Availability
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nodes developed by ourselves for collection.
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