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Abstract: Long-term exposure to air environments full of suspended particles, especially PM2.5, 
would seriously damage people's health and life (i.e. respiratory diseases and lung cancers). 
Therefore, accurate PM2.5 prediction is important for the government authorities to take preventive 
measures. In this paper, the advantages of convolutional neural networks (CNN) and long short-term 
memory networks (LSTM) model are combined. Then a hybrid CNN-LSTM model is proposed to 
predict the daily PM2.5 concentration in Beijing based on spatiotemporal correlation. Specifically, a 
Pearson's correlation coefficient is adopted to measure the relationship between PM2.5 in Beijing and 
air pollutants in its surrounding cities. In the hybrid CNN-LSTM model, the CNN model is used to 
learn spatial features, while the LSTM model is used to extract the temporal information. In order to 
evaluate the proposed model, three evaluation indexes are introduced, including root mean square 
error, mean absolute percent error, and R-squared. As a result, the hybrid CNN-LSTM model 
achieves the best performance compared with the Multilayer perceptron model (MLP) and LSTM. 
Moreover, the prediction accuracy of the proposed model considering spatiotemporal correlation 
outperforms the same model without spatiotemporal correlation. Therefore, the hybrid CNN-LSTM 
model can be adopted for PM2.5 concentration prediction. 

Keywords: convolutional neural networks; spatiotemporal correlation; long short-term memory 
networks; deep learning; PM2.5 prediction 

1 Introduction  

Air pollution has always attracted substantial attention in environmental sciences (Sun et al. 2017). 
Long-term exposure to haze has caused various diseases such as lung cancers, heart attacks, and 
respiratory diseases (Yu and Stuart 2017). Especially, severe haze episodes have erupted in Beijing 
since January 2013, resulting in excess deaths due to respiratory and circulatory diseases (Gao et al. 
2017; Chen et al 2013; David et al. 2014). PM2.5 is the most harmful suspended particle to human 
health. Thus, an accurate prediction approach is essential and positive for decision makers to 
formulate the prevention measures. 



 

In recent years, the PM2.5 concentration prediction approaches have been enriched. Generally, 
the existing methods designed for PM2.5 concentration prediction can be concluded as deterministic 
methods and statistical methods. Deterministic methods tend to focus on their temporal and spatial 
evolution process. Specifically, the evolution process consists of emission, dispersion, transformation 
and diffusion of air pollutants based on meteorological factors and chemical reaction (Bray et al. 
2017; Zhou et al. 2017; Woody et al. 2016). In addition, statistical methods widely applied in air 
pollutant prediction consist of multiple linear regression (MLR) (Donnelly et al. 2015), 
auto-regression integrated moving average model (ARIMA) (Jian et al. 2012), support vector 
regression (SVR) (Yang et al. 2018). Nevertheless, the regression models and time series models fail 
to handle stochastic uncertainty. Thus, the proposed methods have poor performance in extreme 
points. 

In order to handle the shortcomings of linear models, artificial neural networks (ANN) have 
been employed to predict air pollutants with satisfying performance in recent years. Gennaro et al. 
(2013) predicted the PM10 concentration in two contrasted sites by ANN, respectively. The results 
proved its availability in air pollutant prediction. To predict the air quality index in Ahvaz, Iran by 
ANN, Maleki et al. (2019) proved its applicability through the comparison tests. However, the data 
volume and dimension for model training have been grown rapidly in recent years. A deep learning 
method as a new artificial intelligence technology has been exploited in different fields such as 
computer vision (Chan et al. 2015), text processing (Liu et al. 2019) and time series prediction 
(Wang et al. 2019), etc. Likewise, the deep neural network was applied in air pollutant prediction 
with excellent performance (Ong et al. 2016; Soh et al. 2018; Li et al. 2016). Previous scholars used 
LSTM models to conduct the air pollutant prediction (Wen et al. 2019; Wu and Lin 2019). The 
LSTM model can deal with air pollutant prediction excellently due to its excellent performance in 
time series problems. Nevertheless, the single LSTM model fails to learn spatial information. 
Specifically, the air pollutant concentration would change with its emission, diffusion, and reaction 
with other suspended particles, which indicates the air pollutant is also related to space dimension. A 
convolutional neural network (CNN) (LeCun et al. 1998) has been proven its strong processing 
ability in the spatial dimension, which was widely applied in image recognition (Ren et al. 2015). 
Moreover, the monitoring data in this paper are also spatially relevant. Air pollutants in different 
areas will affect each other. Thus, the CNN model is a reasonable approach to solve spatial 
correlation in air pollutant prediction. 

Given the limitations of the above methods, a hybrid CNN-LSTM model is proposed, which 
could handle the air pollutants' complexity and variability. The CNN model can extract spatial 
features of air pollutants in different cities around Beijing. In this way, it can reflect the spatial effect 
of different cities when air pollutants diffuse and spread. Then, the output of the CNN model can be 
used as the input of the LSTM model. Meanwhile, LSTM is used to deal with time series prediction 
widely. LSTM will achieve better prediction performance due to its strong ability to handle gradient 
explosion and vanishing problems (Zhang et al. 2018; Zhao et al. 2017). Therefore, the LSTM model 
is employed to predict the daily average PM2.5 concentration by extracting the features of the time 
dimension. 

The remaining part of the article is organized as follows. The relevant literature on the methods 
of air pollutant prediction is introduced in Sect.2. Sect. 3 gives the data description and a specific 
modeling approach of CNN-LSTM. In Sect. 4, a detailed analysis of the experimental result is given. 
Finally, Sect. 5 makes a conclusion briefly. 



 

2 Related works 

Deep learning methods have been widely applied in the PM2.5 prediction instead of conventional 
prediction models (Ong et al. 2016; Soh et al. 2018; Li et al. 2016). Conventional prediction models 
consist of deterministic methods and statistical methods. Deterministic methods focus on the 
emission and diffusion process of air pollutants based on historical data. However, factors such as the 
lack of prior knowledge and incomplete data may add air pollutant prediction difficulty. Thus, the 
deterministic methods suffer from low precision and instability. Statistical methods focus on 
mathematical principles and probability models with flexibility and simplicity. Zhang et al. (2018) 
utilized the ARIMA approach to predict PM2.5 in Fuzhou, China, which indicated that PM2.5 
concentration experienced seasonal fluctuations. Metia et al. (2016) proposed a hybrid model to 
overcome the uncertainties related to emission inventory data by integrating a chemical transport 
model and the Kalman Filter approach. 

With the increase of data dimension, the above conventional methods fail to deal with the 
stochastic uncertainty and have poor performance in predicting the extreme points. Therefore, deep 
neural network (DNN) as an excellent deep learning method has been adopted widely. A restricted 
Boltzmann machine was used to predict time series data (Kuremoto et al. 2014). In addition, a deep 
recurrent neural network (DRNN) was adopted to predict air pollutant concentration with acceptable 
accuracy.  

However, the proposed approaches are usually a single prediction model and ignore air 
pollutants' spatiotemporal correlation. The prediction performance of a hybrid model outperforms a 
single model. Based on this viewpoint, a hybrid model called CNN-LSTM is exploited. The CNN 
model is adopted to extract features, while LSTM can deal with time series prediction well (Huang 
and Kuo 2018; Qin et al. 2019; Li et al. 2020). Huang et al. (2018) introduced the CNN-LSTM 
model to predict particulate matter concentration. The proposed model achieved the best prediction 
performance compared with other models. However, the above researchers only considered the air 
pollutant concentration and ignored the impact of air pollutants in different regions. As known to all, 
the concentration of air pollutants may change with its emission, diffusion, and reaction with other 
suspended particles. Therefore, it is necessary to consider the spatiotemporal correlation based on 
this paper's deep neural network. 

3 Materials and Methods 

3.1 Data description 

The study area in this paper is Beijing and its surrounding areas, including Tianjin, Hebei, and so on. 
Fig. 1 demonstrates the PM2.5 concentration distribution in China in Feb. 2014. It is well known that 
PM2.5 pollution is very concerning in Beijing and its surrounding cities. These areas have 
experienced industrialization and urbanization over the past years and their geographical location is 
very close to each other. 



 

 

Fig. 1 The PM2.5 concentration distribution in China  

In this paper, the historical data from Beijing can be divided into two subsets, including pollutant 
concentration and meteorological factors. The statistical information of the dataset is shown in Table 
1. The dataset contains 1887 samples ranging from Jan. 1st, 2015 to Mar. 1st, 2020. Among them, the 
pollutant concentration data is collected from the air quality online monitoring platform 
(https://www.aqistudy.cn/), and the meteorological data is obtained from the weather forecasting 
website (http://tianqi.2345.com/). Table 1 displays the statistics of different variables. It is seen that 
the range of different variables fluctuates wildly. Meanwhile, some character variables need to be 
converted into numerical variables. Therefore, in order to speed up the model training progress, 
feature processing techniques are applied as follows:  
(1) As shown in Fig. 2, the probability distribution of different continuous variables demonstrates the 
left-skewed distribution, which is unfavorable for prediction accuracy. Most of the models are based 
on the assumption of normal distribution. Thus, logarithmic transformation is a good solution of 
solving data with a biased distribution. The final probability distribution after the logarithmic 
transformation is shown in Fig. 11. 
(2) As for discrete variables, such as wind direction, weather, and wind, an approach called one-hot 
encoding is utilized to divide into different categories, which is beneficial to modeling. 
(3) The present dataset contained 20757 records for model studying. The dataset is divided into a 
training set and a test set. We use 80 percent of data as the training set, and the remaining data as the 
test set to verify the model's effect. 



 

 

Fig. 2 The probability distribution of different continuous variables 

Table 1 The statistical information of the dataset used in the model 
Variable Data Type Range Mean St.Dev Unit 

PM2.5 Numeric [3, 477] 60.53 56.36  

PM10 Numeric [7, 550] 86.97 63.95  

SO2 Numeric [2, 84] 8.03 9.20  

NO2 Numeric [5, 155] 43.76 21.71  

CO Numeric [0.2, 8] 1.00 0.81  

O3 Numeric [2, 311] 97.64 62.71  

Max Temperature Numeric [-11, 40] 18.58 11.51 ℃ 

Min Temperature Numeric [-16, 27] 8.24 11.12 ℃ 

Wind Direction Character - - - - 

Wind Grade Numeric [0, 6.5] 1.60 1.39 - 

Weather Character - - - - 
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3/g mµ
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3/g mµ
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3.2 Spatiotemporal correlation analysis  

Due to severe pollution in Beijing and its close geographical location, we consider the spatial 
correlation of PM2.5 concentration from different cities. Pearson's correlation coefficient is a common 
approach used in measuring the correlation between different variables. The model features can be 
filtered according to their correlation coefficients. Fig. 3 shows the calculation results of variables 
from different cities. The correlation coefficient values range from -0.289 to 0.761. It is observed that 
the further the distance is away from Beijing, such as Henan and Shandong, the smaller the 
correlation coefficient is. Besides, the correlation coefficient's threshold value is selected as 0.5 for 
feature selection in this paper. The coefficient is more than 0.5, indicating a significant correlation 
between variables (Li et al. 2017). Apparently, the CO, PM2.5 and PM10 from Tianjin and Hebei 
strongly correlate with PM2.5 in Beijing. Thus, the spatial correlation provides powerful support for 
improving the prediction performance instead of establishing a separate model for each city. 

 

Fig. 3 The correlation coefficients of different features from surrounding cities 

Then, we analyze the temporal correlations according to autocorrelation functions. The formula 
can be written as follows: 

  (1) 

where  represents the covariance,  denotes the standard deviation,  and  
represent the target time series at time  and the delayed time series with a time delay , 
respectively. 

Fig. 4 demonstrates the autocorrelation coefficients of PM2.5 from different cities. It is obvious 
that the curve shows a descending trend with the lag time. The trend reflects that the longer the time, 
the less impact the PM2.5 concentration data has on the current state. In addition, the rate of decline is 
also gradually slowed down with the increase of the lag time, and the descent speed at the beginning 
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is the largest. 
Based on the above research, it is readily observed that PM2.5 in Beijing has a significant 

spatiotemporal correlation with surrounding cities, which is beneficial to prediction accuracy. 

 

Fig. 4 The autocorrelation coefficients of different time lags 

3.3 The introduction of the Artificial Neural Network 

Artificial Neural Network is an effective mathematical model in the early stages due to its strong 
capacity of handling nonlinear problems, which simulates the structure of brain neurons. Among 
them, Multilayer Perceptron (MLP) as a typical neural network structure has been widely applied 
over the past years. MLP contains the input layer, output layer, and hidden layer. As shown in Fig. 5, 
the simplest neural structure of MLP consists of one hidden layer. However, with the increase of data 
volume and feature dimension, the traditional MLP model with a three-layer neural structure cannot 
achieve good performance. Therefore, popular neural networks such as CNN (Chu and Thuerey 2017) 
and LSTM (Song et al. 2019) are put forward by increasing network structure complexity. In this 
study, the CNN and LSTM models are combined to deal with the time series prediction problem. 

 



 

Fig. 5 The specific structure of three-layer perceptron network 

3.3.1 Convolutional Neural Network Model 

Convolutional Neural Network (CNN) comes from the lenet-5 neural network proposed by Lecun in 
1998 (Lecun et al. 1998). The proposed network has achieved remarkable recognition performance in 
the research of handwritten font recognition, which has aroused scholars' close attention. The 
network structure of the convolutional neural network is shown in Fig. 6. 

 

Fig. 6 The structure of simple convolutional neural network 

Different from the traditional neural network model (NN), CNN has multiple feature maps in 
every layer, and every feature map contains multiple neurons. The current neuron is convoluted by 
the output of the upper layer neuron and a convolutional kernel. The convolutional kernel is 
essentially a defined weight matrix, which is used to extract the features of local sensing domain. 

The structure of convolutional neural network mainly includes a convolutional layer, pooling 
layer and fully connected layer. The convolutional layer and pooling layer in the hidden layer are the 
essential modules of CNN. The convolutional layer is responsible for extracting local features of data 
while the pooling layer is employed to extract further features based on the down-sampling 
approach.  

Convolutional Neural networks (CNN) can automatically learn features from sequence data, 
such as text and image data. Its standard network structure contains 1D, 2D and 3D CNN. Given that 
PM2.5 data is one-dimension data, 1D CNN was utilized for feature learning in this study. The 
specific process of 1D CNN is demonstrated in Fig. 7. The blue part indicates a filter, which 
represents a sliding window that convolves across the data. The input data and the extracted feature 
after a sliding window have the same dimension. The green part denotes another filter, and its sliding 
process is the same as before. Suppose the dimension of input data is M and the number of filters is 
N, then the total number of the extracted features is M*N (Huang and Kuo 2018). 



 

 

Fig. 7 The learning mechanism of 1D CNN 

3.3.2 Long Short-Term Memory Model 

Another important neural network widely applied in sequential data is the Recurrent Neural Network 
(RNN). Unlike other neural networks, RNN tends to focus on the relationship between input data and 
output data. The basic structure of RNN is shown in Fig. 8. 

 

Fig. 8 The structure of a simple recurrent neural network 

As shown in Fig. 8,  denotes input data,  denotes output data,  represents weight 
matrix from input layer to hidden layer,  represents weight matrix from hidden layer to output 
layer,  represents weight matrix from hidden layer to the hidden layer,  is state value of hidden 
layer. 

However, gradient vanishing problem often occurs in the training process of RNN. Then the 
training parameters are reduced to zero. Therefore, Long Short-Term Memory Model (LSTM) was 
introduced to solve the problem of gradient vanishing. LSTM model was first proposed in 1997 and 
it is a special RNN model (Hochreiter and Schmidhuber 1997). Fig. 9 displays the specific network 
structure of the LSTM model.  

As shown in Fig. 9,  and  represent the activation function, where  is designed to 
map the value between 0 and 1, while  is adopted to map the output between -1 and 1. The 
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formulas of activation functions are written in equation (2) and (3). 

  (2) 

  (3) 

Unlike the internal structure of RNN, the state of LSTM is controlled by an input gate , a 

forget gate  and an output gate . Among them, the forget gate is designed to discard 
information of memory cell. The forget gate mechanism receives the output value  of the upper 
layer and the input value  of the current time. Then a probability value  is calculated 
through the sigma function, which is used to determine the retention of the unit state at the previous 
time. Also, the input gate is responsible for updating new information to the cell state. Specifically, 
the probability of state update is controlled according to the output value of  function, and then a 
new input value  is generated through  function. The output gate determines to control the 

output of external state  according to the internal state  at the current time. The specific 
process can be described as Eqs. (4)-(9). 
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where , ,  and  represent the weight matrices for input vector . , ,  

and  denote the weight matrices from the previous state to hidden state. , ,  and  are 

bias weights.  represents the multiplication of the matrix.  is input vector at time .  

denotes output vector at time .  represents the cell status at time . 
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Fig. 9 The specific network structure of LSTM model 

3.3.3 The hybrid CNN-LSTM model 

The hybrid CNN-LSTM model was applied in computer vision and text processing at an early stage. 
CNN was used as a feature extractor on image and text data, and then input to LSTM for further 
processing. Likewise, CNN is adopted to extract features of time series data, while LSTM is 
designed for prediction according to the output from the CNN model in this study. 

Fig. 10 demonstrates the specific structure of the CNN-LSTM model. A one-dimensional 
convolutional layer and a pooling layer are designed as the base layer of the hybrid model due to the 
particularity of time series. In order to input the output of CNN into LSTM, a flatten layer is 
constructed between CNN layer and LSTM layer. Also, the fully connected layer is constructed to 
decode the LSTM output. Finally, the prediction results can be obtained from the proposed model.  

Aimed at improving the robustness of the model, we use 336 samples as validation set to adjust 
model parameters and the remaining 28 samples to predict. The parameter selection method is 
determined by grid search. The specific parameters of CNN-LSTM in this paper are shown in Table 
2. Among them, we adopt the relu function as an activation function instead of other common 
activation functions. The relu function can solve the problem of gradient disappearance in neural 
networks due to its special structure. In addition, an efficient parameter optimizer called Adam is 
utilized in this study instead of the gradient descent approach. In Adam's parameter optimizer, the 
learning rate of parameters can be dynamically updated. Thus, the parameter has more opportunities 
to jump out of the local optimum. 

Table 2 The specific parameters of the hybrid CNN-LSTM model 
Parameter Value 

Number of convolutional filters 64 
Kernel size of convolutional layer 1 

Kernel size of pooling layer 1 
Number of pooling layers 1 
Number of LSTM neurons 200 

Number of epochs 100 
Batch size 8 



 

Activation function relu 
Training approach for parameters Adam 

 

Fig. 10 The specific network structure of CNN-LSTM 

The popular performance indices are employed to evaluate the model accuracy, which are 
expressed as follows: 
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  (12) 

where  is the sample size of test set,  represents the predicted value of PM2.5 at time ,  is 

the mean value of PM2.5, while  denotes the observed value of PM2.5 at time . 

4 Results and discussion 

4.1 Prediction Performance 

The hybrid CNN-LSTM model based on spatiotemporal correlation is conducted to predict the daily 
average PM2.5 concentration from February 2020 to March 2020. Fig. 11 displays the prediction 
performance. It is obviously seen that the predicted values are close to the observed values in the 
whole prediction range. The proposed model demonstrates an accurate performance, especially at 
local high points. This phenomenon indicates that the hybrid CNN-LSTM based on spatiotemporal 
correlation can deal with nonlinear characteristics and the sudden changes of time series excellently. 
More specifically, the performance indexes RMSE, MAPE and R2 of train set are 11.56, 41.91%, 
94.72%, while the RMSE, MAPE and R2 of test set are 10.60, 39.58%, 96.47%, respectively. The 
above performance indexes indicate that the proposed model obtains high prediction accuracy and 
avoid the model over-fitting issue. It is strongly proved that CNN can extract the inherent features 
efficiently and then improve the prediction accuracy of LSTM. 

 

Fig. 11 The daily average PM2.5 concentration prediction result 

4.2 Comparison with other neural network models 

To compare different models' performance, we select two commonly used neural networks, including 
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Multilayer perception (MLP) and Long Short-Term Memory (LSTM). Among them, MLP was 
widely used to predict air pollution with excellent performance at early stages. Table 3 shows the 
prediction performance of different evaluation indexes, while Fig. 12 demonstrates the specific 
prediction results. It is readily observed that the prediction performance of the hybrid model 
outperforms the single model. Especially, the forecasting values by CNN-LSTM are consistent with 
the observed values. In Table 3, the CNN-LSTM model achieves the lowest RMSE and MAPE 
values, while the highest R2 value in daily air pollutant prediction. More specifically, the 
performance indexes of LSTM are RMSE 14.84, MAPE 52.53% and R2 93.08%, while the RMSE, 
MAPE and R2 of MLP are 22.16, 87.43% 84.56%, respectively. It is observed that the prediction 
accuracy of deep neural network model including LSTM and CNN-LSTM are superior to MLP. 
Moreover, the prediction performance of CNN-LSTM outweighs LSTM. In general, the above two 
single models' prediction accuracy is less than that of CNN-LSTM according to the experimental 
results. In contrast, the CNN-LSTM model makes full use of both models' advantages to well 
account for the spatiotemporal correlation and reduce prediction error. Therefore, the hybrid 
CNN-LSTM model achieves much better prediction accuracy than the proposed neural networks. 

 

Fig. 12 Comparison of prediction results of different models 

4.3 Comparison of the spatiotemporal correlation results 

In this section, we train the same model with different data in order to evaluate the spatiotemporal 
correlation on the prediction performance (Russo and Soares 2014; PSoh et al. 2018). For the former, 
we train the proposed three different models with the air pollutant concentration data and 
meteorological factors in Beijing. In the latter case, the above input data is integrated with the air 
pollutant concentration data in other cities around Beijing. Then, the integrated data is put into the 
same model. The evaluation results are shown in Table 3 and Table 4. For the same model, the latter 
obtains the lower RMSE and MAPE values. 



 

Meanwhile, the model considering spatiotemporal correlation has a higher R2. Specifically, the 
RMSE, MAPE and R2 of the CNN-LSTM model without considering spatiotemporal correlation are 
16.46, 58.45%, 91.49%, respectively. Apparently, the approach has a higher error compared with the 
CNN-LSTM with spatiotemporal correlation. By comparing the above results, the hybrid 
CNN-LSTM model combined with spatiotemporal correlation has less error than other neural 
network models. It is proved that the spatiotemporal correlation plays an important part for higher 
accuracy. 

Table 3 The comparisons of different evaluation indexes in prediction performance 
Model RMSE MAPE (%) R2(%) 
MLP 22.16 87.43 84.56 

LSTM 14.84 52.53 93.08 
CNN-LSTM 10.60 39.58 96.47 

Table 4 The comparisons of different evaluation indexes in prediction performance without 
spatiotemporal correlation 

Model RMSE  MAPE (%) R2(%) 
MLP 27.30 96.79 78.98 

LSTM 18.19 67.85 89.60 
CNN-LSTM 16.46 58.45 91.49 

5 Conclusion 

An effective model with high accuracy and stability is essential to protect humans from suffering 
from the adverse effects of haze. In this study, a hybrid CNN-LSTM model based on spatiotemporal 
correlation is proposed to predict the daily PM2.5 concentration in Beijing. More specifically, we not 
only focus on the PM2.5 in Beijing, but also its surrounding cities with Beijing due to the fluidity of 
air pollutants. Moreover, meteorological factors could affect the transmission and diffusion of air 
pollutants. Thus, it is necessary to consider the meteorological data in model training for better 
prediction accuracy. To explore the spatiotemporal correlation of PM2.5 in Beijing, we adopt 
Pearson's correlation coefficient in this paper and find air pollutants with high correlation in its 
surrounding cities. It is shown that the model considering spatiotemporal correlation achieves an 
excellent prediction performance. Thus, the advantage of the proposed hybrid model is that the CNN 
model can acquire spatial features in input data while the LSTM model can deal with the time 
correlation in time series data. Generally, the CNN-LSTM model is verified to be suitable for PM2.5 
prediction. More attention could be paid on more training data to verify the generalization of the 
proposed model in future work. Besides, more meteorological factors related to PM2.5 concentration 
need to be taken into account. 
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Fig. 11 The probability distribution of different continuous variables after logarithmic transformation 
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