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Abstract 25 

CelerisTM Arginine (ARG) is a mixed-mode stationary phase recently released on the market. To 26 

characterize its analytical behavior, the retention factors of a pool (n=100, of which 36 neutrals, 26 27 

acids and 38 bases) of pharmaceutically relevant compounds have been measured on this phase over 28 

eight percentages (from 10 to 90% v/v) of acetonitrile (MeCN) as organic modifier. The ARG phase 29 

exhibited enhanced affinity for the molecules that are in their anionic form at the experimental pH, 30 

whilst basic compounds, albeit over a wide range of lipophilicity and pKa values, were on average 31 

poorly retained.  To dissect the separation mechanism of the ARG phase, the overall analytical 32 

retention has been deconvoluted into the individual contributions of intermolecular forces by a QSPR/ 33 

Partial Least Square (PLS)/Block Relevance (BR) analysis tool recently developed by us. 34 

For the neutrals, the most relevant blocks were found to be Size, describing the interaction due to the 35 

dimension of the molecule, and O, representing the solute’s hydrogen bond donor properties. The 36 

change in sign from positive to negative of the Size block, which occurs between 10% and 20% 37 

MeCN, allowed to visually appreciate the switch in the separation mode from reversed phase to 38 

normal phase. Some good statistic models for rationalizing the analytical behaviour of neutrals were 39 

developed from VS+ descriptors. However, their performance in modelling the analytical retention 40 

of acids was substandard, probably due to the intrinsic inefficacy of VS+ descriptors in handling 41 

electric charges. This instance was addressed by a complimentary MLR strategy, which led to 42 

successfully model the retention of acids on the ARG column and to shed light into their retention 43 

mechanism, which seemed to be substantially driven by electrostatics.   44 

 45 

Keywords: arginine; block relevance analysis; mixed-mode selectivity; liquid chromatography; drug 46 

analysis; chemometrics.    47 
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1.0 Introduction 48 

 49 

Nowadays liquid chromatography (LC) is one of the most essential and pervasive techniques in the 50 

toolbox of analytical chemists, allowing identification, quantification, and purification of the 51 

individual components from a mixture[1-3]. For instance, LC is widely applied in almost all stages 52 

of the drug discovery/development process[4] to check the identity and the purity of new chemical 53 

entities before testing their potency against the desired molecular target(s). Other noteworthy 54 

applications relate to therapeutic drug monitoring[5, 6], which is conducted by determining the 55 

analytes of interest in biological specimens, such as blood, urine or tissues during the preclinical and 56 

clinical phase. LC is also massively exploited to quality control, impurity checks, stability 57 

investigations, and many other purposes relevant in drug development[7]. 58 

Albeit LC is extremely widespread and of rather common use, analytical method development can be 59 

an extremely daunting process, as +1000 stationary phase chemistries are available on the market and 60 

their commercial offer keeps widening[8]. Moreover, the complexity of samples to screen is 61 

constantly increasing, posing to separation scientists unprecedented challenges.  62 

Whichever purpose the separation scientist pursues, a deep understanding of the intermolecular 63 

interactions establishing between the analytes and the stationary phase[9] should be regarded as 64 

mandatory not only to select the right analytical column for each sample composition, but also in the 65 

analytical method development[10]. However, the overall analytical retention results from the 66 

interplay and overlapping of rather complex molecular forces. In method development, the selectivity 67 

of two analytical columns is often compared to find out how they perform in separating a set of 68 

solutes. The separations achieved by two different columns are considered “orthogonal” if their 69 

mechanisms are independent from each other, therefore providing complementary selectivities. The 70 

separations achieved by two different columns are instead considered “equivalent” if separation 71 

mechanisms coincide, as for instance occurs when both are driven by solute’s hydrophobicity. It 72 

might be useful to have equivalent columns to identify an alternative column for running a method 73 

or to replace one that is no longer available commercially. Separations’ orthogonality has become 74 

increasingly sought after in recent years, also due to the introduction of two-dimensional liquid 75 

chromatography (2DLC). 2DLC allows the simultaneous combination of more separation modes, 76 

significantly expanding peak capacity of the separation. In that case, the increase in resolving power 77 

depends upon the degree of orthogonality exhibited by the separation mode in each dimension, being 78 

the greater the orthogonality, the higher the resolving power.  79 
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The CelerisTM Arginine column (from now onwards called ARG phase) is a recently marketed 80 

chromatographic column which is amenable both in LC (as detailed below in this paper), and in 81 

supercritical fluid chromatography (SFC) mode [11]. The arginine (ARG) phase (Figure 1) is a silica 82 

surface modified with the amino acid arginine, exhibiting both acidic and basic functionality. A priori, 83 

the ARG phase is expected to exhibit strong affinity for hydrophilic compounds as this supports a 84 

number of polar atoms. Moreover, the ARG phase is supposed to retain preferably anions as it has a 85 

positive (+1) overall charge and to support mixed-mode selectivity.  86 

To the best of our knowledge, the analytical retentive behaviour of the ARG phase has never been 87 

investigated before. Wu and co-workers developed an arginine functionalized stationary phase for 88 

hydrophilic interaction liquid chromatography back in 2015[12], however the chemistry of this phase 89 

is rather different and this analytical column is not commercially available.    90 

To study the separation mechanisms of chromatographic columns, it is necessary to deconvolute the 91 

individual contributions of intermolecular forces from the overall analytical retention.  Solid 92 

approaches to realize this include: Abraham’s Linear solvation energy relationships[13], the 93 

Hydrophobic-Subtraction Model[14], the Tanaka-parameter based approach[15] and the Geometric 94 

Approach to Factor Analysis[16]. Indeed, Quantitative Structure-Property Relationship (QSPR) 95 

strategies have been successfully applied to the modelling of chromatographic indexes[17] from a 96 

variety of separation modes. Recently we introduced the QSPR/ Partial Least Square (PLS)/Block 97 

Relevance (BR) analysis (hereafter named BR analysis), a chemoinformatic tool which affords an 98 

interpretation of QSPR models based on a selected pool of descriptors and a PLS algorithm[18-22]. 99 

The main readout of BR analysis is a couple of plots in which the main components of the 100 

intermolecular interactions are quantified and output as blocks. To model physicochemical properties 101 

five blocks of intermolecular interactions are essential: the DRY block (hydrophobic interaction), the 102 

OH2 block (interaction with water), the O block (the HB interaction between solute HBD and system 103 

HBA); the N1 block (between solute HBA and system HBD) and the Others block (additional 104 

molecular descriptors that represent the unbalance of hydrophilic and hydrophobic regions on the 105 

surface target). Molecular dimensions are also crucial to characterize drug-like candidates, therefore 106 

a sixth block of size and shape descriptors (the Size block) was added.  107 

The major drawback of BR analysis is due to the limits of the VolSurf+ descriptors when applied to 108 

completely ionised compounds. To overcome this limit, a second QSPR strategy based on a different 109 

pool of ad hoc physicochemical descriptors has been proposed[23]. In brief, after computing the 110 

Gasteiger-Marsili[24] charges of the compounds, an array of physico-chemical and topological 111 
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charge-dependent descriptors were calculated (Table S1) and subsequently used to develop statistic 112 

models for the various capacity factors.    113 

In this study, a systematic characterization of the main intermolecular forces driving analytical 114 

retention on the ARG column has been undertaken. To achieve this aim, we a) measured the capacity 115 

factors, in logarithmic scale (log k), of a number of pharmaceutically relevant compounds supporting 116 

acidic, basic, and no ionizable (neutral molecules) moieties at eight different concentration of organic 117 

modifier; b) studied whether or not the analytical retention on the ARG phase related with that on 118 

other stationary phases commercially available; c) applied BR analysis, to visually inspect the 119 

molecular interactions driving analytical retention, and d) performed multilinear regression (hereafter 120 

named MLR) implementing a pool of charge-based descriptors to model the retention of completely 121 

ionised compounds and to evaluate if and to what extent any prediction of chromatographic affinity 122 

was feasible.  123 

Our final aim is shedding light and systematically dissect the retention mechanisms of the ARG phase 124 

in LC setups to identify potential applications of this new phase in drug analysis/separation science. 125 

 126 

2.0 Materials and Methods  127 

 128 

2.1 Dataset  129 

The investigated dataset contains 36 neutral, 26 acidic and 38 basic pharmaceutically relevant 130 

compounds. The SMILES codes are reported in Table S2.  131 

 132 

2.2 Chemicals and sample preparation.  133 

The solutes were obtained from three commercial sources (Aldrich (www.sigmaaldrich.com, 134 

Darmstadt, Germany), VWR (www.vwr.com, Milano, Italy), Alfa Aesar (www.alfa.com, Kande, 135 

Germany), and their purity was equal to or higher than 98%. Acetonitrile (HPLC grade) was 136 

purchased from VWR, and Ammonium Acetate (reagent grade ≥ 98%) was purchased from Alfa 137 

Aesar. 138 

All the compounds were solubilised in the mobile phase, at a concentration range of 50-100 µg mL-139 
1.   140 

2.3 Chromatographic hardware  141 

An HPLC Varian ProStar chromatograph (Agilent, 5301 Stevens Creek Blv, Santa Clara, CA, USA) 142 

equipped with a 410 autosampler with a built-in thermostatable column compartment, a PDA 335 LC 143 

Detector and Galaxie Chromatography Data System Version 1.9.302.952 was used. The column was 144 

http://www.sigmaaldrich.com/
http://www.vwr.com/
http://www.alfa.com/
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a CelerisTM Arginine 100 × 4.6 mm, 5 μm, 100Å from Regis Technologies (Austin Avenue, Morton 145 

Grove, IL, USA).    146 

  147 

2.4 Chromatographic conditions  148 

All LC analyses were performed at 30°C with a 20 mM ammonium acetate buffer pH 7.0 in mixture 149 

with acetonitrile at various percentages (from 10 to 80%, v/v). Flow rate was 1.0 ml min-1 and the 150 

injection volume was 10 µL. Capacity factors results from the averages of at least three independent 151 

measurements.  152 

 153 

2.5 Postprocessing of chromatographic signals   154 

Capacity factors on the ARG phase were accounted for by Eq. 1:   155 

  156 

𝑘𝑘 =  𝑡𝑡𝑟𝑟−𝑡𝑡0
𝑡𝑡0

                                       Eq. 1 157 

  158 

In which tr is the retention time (min) of the analyte of interest and t0 the dead time, determined by 159 

monitoring the baseline disturbance. Plotting and data analysis was done by Microsoft Excel for 160 

Office 365 v 16.0 at 64 bits.  161 

 162 

2.6 Computational analysis 163 

  164 

2.6.1 Principal Components Analysis (PCA) 165 

PCA was performed with a MatLab script (ver. R2019a, https://it.mathworks.com/ ). 166 

 167 

2.6.2 Comparison between ARG selectivity and those of other marketed analytical columns  168 

A data matrix including log k of 36 neutrals obtained on the CelerisTM Arginine and those measured 169 

on other stationary phases/experimental conditions was submitted to Matlab to calculate the 170 

correlation matrix. The columns used for the comparison are the following: 171 

• ABZ[25] (Supelco, Bellefonte, PA, USA 5 μm, 5 cm × 4.6 mm, 120 Å)  172 

• X-Bridge[25] (Waters, Milford. MA, USA 5 μm, 5 cm × 4.6 mm, 130 Å)  173 

• PLRP-S[26] (Agilent, Santa Clara, CA, USA 5 μm, 5 cm × 4.6 mm, 100 Å)  174 

• IAM.PC.DD2[27] (Regis Technologies Inc., Morton Grove, IL, USA 10 µm, 100 × 4.6 mm 175 

300 Å)  176 

• IAM.SPH[18] (synthesized in house[28], 5 μm 10 cm × 2.1 mm, 300 Å) 177 

https://it.mathworks.com/
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• ZIC®-cHILIC[22] (Merck, Darmstadt, Germany,  3 μm, 10 cm × 4.6 mm, 100 Å)  178 

• ZIC®-HILIC[22] (Merck, Darmstadt, Germany, 5 μm 10 cm × 4.6 mm, 200 Å)  179 

• ZIC®-pHILIC[22] (Merck, Darmstadt, Germany, 5 μm 10 cm × 4.6 mm, 200 Å) 180 

 181 

2.6.3 BR analysis 182 

BR analysis was accomplished as detailed elsewhere[19]. The SMILES codes (Table S2) of the 88 183 

compounds were used as an input for VolSurf+ software (www.moldiscovery.com, ver 1.1.2). The 184 

electrical state was assigned by pKa calculations implemented in the software and an average 185 

conformation was build and minimised. The 82 descriptors directly obtained from 3D molecular 186 

interaction fields (MIFs) were then calculated. The data matrixes, including descriptors and 187 

chromatographic data, were submitted to Matlab to perform PLS and VIP analysis. As already 188 

discussed elsewhere[19], since here the PLS model is used for interpretative and not predictive 189 

purposes, only internal validation was performed. Outliers were identified from the residual plots, 190 

when exceeding ±0.5. 191 

Finally, an in-house Matlab script grouped the descriptors in blocks and processed the corresponding 192 

VIPs to draw the BR plots.  Processing was done on a laptop equipped with a 4 cores Intel i7-4700MQ 193 

and 12 GB of RAM operating with Windows 10.  194 

BR analysis interpretation is obtained by two graphical outputs: a) the absolute BR plot that shows 195 

the relevance of any block to the PLS model independently of the sign (the higher, the more relevant) 196 

and b) the BR plot with signs which splits the contribution of any block into positive BR (+) and 197 

negative BR (-) portions. BR (+) indicates how much the considered block favours the considered 198 

descriptor (e.g., log k ARG) whereas BR (-) shows how much the block lowers the descriptor. Blocks 199 

with small and comparable positive and negative contributions indicate the high noise and inter-200 

correlation of the descriptors of the block itself and thus are poorly relevant in the description of the 201 

investigated phenomenon. 202 

 203 

2.6.4 MLR  204 

MLR analysis was accomplished by VEGA ZZ x64 software 3.2.0.9[29] implemented on a one 8 205 

core i7 at 3.1 Ghz CPU and 32 GB of RAM Windows desktop machine. Physico-chemical and 206 

topological properties (Virtual log P[30], lipole[31], volume, polar surface area, surface accessible to 207 

the solvent, gyration radius, ovality, mass, number of atoms, angles, dihedrals, etc) were calculated 208 

by VEGA ZZ software (Table S1) and finally, all molecules were inserted into a Microsoft Access 209 

database. An additional number of descriptors (HLB, polarizability, log P) were calculated by 210 

http://www.moldiscovery.com/
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MarvinSketch v. 21.3 operated on an 8-core Mac computer.  Detailed information is reported in 211 

here[32]. In brief, the starting three-dimensional structures of the considered molecules were 212 

downloaded from PubChem database [33, 34], and they were considered in both zero atomic charge 213 

and ionized form (acids and bases). Furthermore, a weighted average according the the experimental 214 

pKa values was performed. The Gasteiger−Marsili method[24], along with CHARMM force field 215 

[35-37], was applied to calculate the atomic charges. After that, structures were minimized by AMMP 216 

software[38] (conjugate gradients, 3000 iterations, toler 0.01). The best independent variables were 217 

selected by calculating the correspondent equation with a single regressor. Regressions with r2 value 218 

less than 0.10 automatically determine the exclusion of the independent variable. Collinear 219 

independent variables were identified by calculating the Variance Inflation Factor (VIF) value for 220 

each regressor pair. Variable pairs with VIF > 5.0 were not considered in the model calculation. 221 

Statistic models with a number of regressors from one to three were developed by using either the 222 

zero-charge or the ionized forms of the compounds. For each model, a cross-validation procedure 223 

(leave-one-out) is performed. For the sake of conciseness, only LOO models were discussed.  224 

 225 

3.0 Results and discussion 226 

3.1 Relationships between selectivity of ARG phase and other phases on the market.  227 

The relationships between the various log k values measured on the ARG phase of the dataset of 36 228 

the compounds in Table S3 and that of other commercially available stationary phases have been 229 

studied. It is noteworthy that none of the tested phases supports mixed-selectivity. An exemplative 230 

chromatogram is shown in Figure S1.  231 

Results are shown in Table S3, which lists the r values of the correlation matrix. An r of -1 indicates 232 

a perfect negative linear relationship between variables, an r of 0 indicates no linear relationship 233 

between variables, and an r of 1 indicates a perfect positive linear relationship between variables. 234 

Consequently, r = 0 implies max orthogonality, which takes place when the separation mechanisms 235 

of each system are fully independent from each other.   236 

Data in Table S3 supports that only ARG affinity values measured at 90/10 buffer 20 mM ammonium 237 

acetate/MeCN exhibit some degree of similarity of retention on other octadecylsilyl (ODS)- and 238 

IAM.SPH- based chromatographic systems. In fact, r values range between 0.65 and 0.70 when we 239 

consider ABZ and X-Bridge. This suggests that the analytical selectivities overlap to some extent. 240 

However, for most chromatographic systems and for all the other eluent compositions tested on the 241 

ARG phase, values very close to zero are observed. This implies that the features of the ARG phase 242 

are not depicted by any other chromatographic system among those tested, suggesting strong 243 
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orthogonality and, therefore, originality in the separation process afforded by this phase. Consistently, 244 

an extensive characterization of the analytical behaviour of the ARG phase was deemed relevant and 245 

hereby undertaken.     246 

3.2 PCA analysis  247 

To verify the dataset distribution, we performed PCA using the VS+ descriptors (see 2.6.3). 248 

For the 36 neutral compounds, results show that more than 90% of the variance is explained by the 249 

first two principal components (Fig. S2A). The scores plot (Figure S2B) shows that the compounds 250 

are distributed in the four quadrants. For acidic compounds, more than 90% of the variance was found 251 

to be explained by the first two PCs (Figure S3A). The scores plot (Fig S3B) shows a good although 252 

not optimal compounds distribution. Similar results were obtained for basic compounds, which show 253 

an optimal distribution in the VS+ descriptors chemical space (Figure S4).  254 

3.3 Dependency of analytical retention on ARG column upon organic modifier concentration. 255 

Log kARG values of the 36 neutral compounds were isocratically obtained using mobile phases with 256 

MeCN content varying from 10 to 80%. ARG capacity factors (Table S4) evidence that retention 257 

values could be determined for most but not all the organic modifier concentrations, being a number 258 

of compound poorly retained over the 70/30 and 80/20 buffer/MeCN eluent compositions.   259 

When monitoring the dependency of log k versus organic modifier concentration, most compounds 260 

could be classified in four classes according to the different trends (descending, minimum, snake and 261 

bell, Figure S5). However, we could not associate trends with the presence of common substructures 262 

and compounds showing similar trends are not always clustered in the same region of the PCA scores 263 

plot (Fig. S2B). 264 

Capacity factors of 26 acids at eight concentrations of MeCN were also determined (Table S5). Acidic 265 

compounds were retained by the ARG column to a greater extent than neutral molecules, suggesting 266 

effectiveness of this phase in the retention and separation of anionic molecules. This is plausible, 267 

since the ARG phase bears a +1 total electric charge at the experimental pH (Figure 1). Figure 2, 268 

which reports log kARG of the 26 acidic compounds as a function of the mobile phase composition, 269 

suggests that most molecules feature a similar descending trend.  270 

The calculated pKa values, which are listed in Table S6, are in the 3-5 range for most monoprotic 271 

acids. This supports that these compounds interact with the ARG phase prevalently in their negatively 272 

charged forms. In fact, according to Henderson-Hasselbalch equation, they are in their 273 

undissociated:ionic form ratio to an extent spanning from 1 : 100 and 1: 10.000. The dataset does 274 

include some molecules featuring more than one acidic moiety e.g., captopril, citric acid, furosemide, 275 

valsartan. However, the lowest pKa value of these polyprotic acids lies again the in the same 3-5 276 
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range, supporting that also these compounds would interact with the ARG stationary phase 277 

preferentially in their anionic form. 278 

Log kARG of the 38 basic compounds (Table S7) at eight concentrations of MeCN were also measured 279 

(Figure S6 shows the log k vs mobile phase composition plot). Evidently, a number of basic 280 

compounds were poorly retained or not retained at all. A reason supporting this analytical behaviour 281 

might be the occurrence of repulsive electrostatic interactions between these molecules and the ARG 282 

phase. Moreover, the negative charge of the carboxy group is located only onto the outer part of the 283 

phase, allowing only a superficial interaction and preventing these basic solutes to establish a deeper 284 

engagement with the ARG phase. However, the bases considered span a wider calculated pKa range 285 

i.e., 6-10 (Table S8) than the studied acidic compounds. This implies that not all the compounds 286 

would interact with the stationary phase prevalently in their cationic forms, but some in their neutral 287 

forms. Since the analytical retention of many bases could not be measured at various organic modifier 288 

concentrations, no solid evidence could be drawn with regards to trends. However, data collected 289 

indicates that ARG stationary phase may not be the best choice if one aims at separating a mixture of 290 

bases.      291 

 292 

3.4. BR analysis 293 

The three dataset subclasses (neutrals, acids and bases) were submitted to BR analysis.  294 

3.4.1 Neutrals 295 

An overview of the statistics of the final PLS models is shown in Table 1. 296 

Table 1. PLS final models’ overview. Legend: LV (number of latent variables chosen), R2 (goodness-297 

of-fit measure), Q2 (statistical measure of the goodness of prediction of the model), RMSE_CV (how 298 

close the observed data points are to the model’s predicted values), N (number of compounds in the 299 

model) with the compounds eliminated as outliers listed in the brackets 300 

 301 

 302 

MeCN 

(v/v) %  

LV R2 Q2 RMSE_CV N (outlier) 

10  2 0.8769 0.5016 0.3536 27 (3,5-dichlorophenol, antipyrine, caffeine, diazepam, 

griseofulvin, nifuroxime) 

20  3 0.8952 0.5726 0.2028 28 (hydrocortisone, prednisone, testosterone, 

tolnaftate) 
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30  2 0.7326 0.5053 0.4091 26 (bromazepam, lorazepam, lormetazepam, 

prednisolone) 

40  2 0.6974 0.5698 0.2884 32 (hydrocortisone 21-acetate) 

50  2 0.7188 0.5072 0.2532 30 (antipyrine) 

60  2 0.7620 0.5103 0.2584 24 (3,5-dichlorophenol, antipyrine, hydrocortisone-21-

acetate, paracetamol) 

 303 

Notably, log kARG values achieved at 70% and 80% MeCN eluent compositions were not considered 304 

since many compounds were poorly retained and the size of their datasets was too limited to draw 305 

any solid conclusion. An analysis of the statistics listed in Table 1 suggest that more accurate models 306 

were achieved for ARG affinity values measured in prevalently aqueous eluents, and specifically in 307 

20% MeCN. It is reasonable to assume that in prevalently aqueous medium the tendency of the ARG 308 

phase to ionise is greater than that in eluents richer in acetonitrile. Since all these solutes are neutrals, 309 

this does not affect dipole-dipole interactions, being that all the molecules are zero charge. However, 310 

this may well play a role in dipole-dipole induced interactions, which are magnified at lower organic 311 

modifier concentrations. Indeed, most neutrals support polar atoms, and consequently, polarized 312 

bonds.  313 

Figure 3 shows the BR analysis graphical output for the retention data of the 36 neutrals over 314 

increasing concentration of acetonitrile. Overall, as schematized in Fig. 3G the plots show the 315 

relevance of any block to the model: the higher, the more important the block. Blocks which either 316 

show similar positive and negative contributions or are small (about less than 0.5) do not impact the 317 

investigated property. The reverse is true for large blocks. 318 

Figure 3 highlights two major results. First, the Size block changes its sign from negative to positive 319 

when switching from 10% to 20% MeCN and then the sign remains positive over all the other 320 

concentrations. In reversed phase (RP), analytical retention is positively related with molecular size, 321 

being the bulkier the molecules, the more hydrophobic and consequently longer retained in the 322 

chromatographic system. In normal phase (NP) instead, the mechanism is specular, given that the 323 

stationary phase is hydrophilic and exhibits greater affinity for polar solutes. In this instance, 324 

molecular size contributes subtractively to the analytical retention, and the higher the molecular mass, 325 

the shorter the retention time in NP. The change in sign of the Size block highlighted by the BR 326 
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graphical output allows to visualize that the separation mechanism switches from NP to RP at MeCN 327 

concentrations > 10%. This is not a common behaviour among the stationary phases so far studied. 328 

The reason of the change in sign of the Size block can be attributed to the mixed-mode selectivity of 329 

the ARG phase. Indeed, mixed‐mode phases have become increasingly popular in the last decades, 330 

[39] and the number of new mixed/multi‐mode sorbents is growing fast. Unlike single‐mode 331 

stationary phases, perfectly suited for the separation of the analytes possessing similar 332 

physicochemical properties, for instance reversed‐phase chromatography for hydrophobic solutes, 333 

mixed‐mode sorbents providing multimodal interactions can render better separation selectivity for 334 

complex mixtures of solutes differing significantly in their physicochemical characteristics, 335 

especially if performed in gradient elution programs. As Figure 1 displays, the ARG phase bears both 336 

polar and hydrophobic moieties and its folding might depend on the polarity of the mobile phase.  337 

A not common behavior is also observed for the O (HBD solutes properties) block. However, this 338 

trend is unclear. In fact, the O block shows a high negative value for the 10% of CH3CN. Conversely, 339 

in the presence of 20 and 30% MeCN, there is a high positive O block value. From 40% to 60% 340 

MeCN, the relevance of the O block is poor. Notably the N1 block, which represents the hydrogen 341 

bond acceptor (HBA) of the solute, shows a linear growth, from a negative value in the 10% of 342 

CH3CN to a positive one for the 60%. This agrees with the evidence of higher likelihood of molecules 343 

to engage H-bonds in a medium that is prevalently aqueous. The three remaining blocks (OH2, DRY 344 

and Others) do not show any particular trend. The other results of BR analysis, including error 345 

distribution, absolute BR and experimental vs calculated plots are shown in Figures S7-S12.  346 

3.4.2 Acids 347 

PLS models for acidic compounds were not statistically significant and thus BR analysis could not 348 

be performed. Since PCA showed that acidic compounds are sufficiently well distributed in the PC1 349 

vs PC2 chemical space (Fig. S3), we hypothesized that VS+ descriptors do not properly handle 350 

electric charges.  For this reason, we resorted to a complimentary modelling approach capable of 351 

better modelling the retention of compounds that are prevalently ionized at the experimental pH (see 352 

3.5). 353 

3.4.3 Bases 354 

As previously mentioned, the retention of basic compounds was often not experimentally accessible 355 

and thus PLS analysis was not performed. 356 

3.5 MLR 357 

3.5.1 Neutrals  358 
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The models with the highest predictive strength are listed in Table 2, along with their statistic 359 

validation. The plot predicted vs experimental log kARG of the best model is instead shown in Figure 360 

S13. The choice of the molecular descriptors (Table S1) operated by the script may incidentally 361 

provide valuable information about the nature of the interactions taking place between these neutrals 362 

and the stationary phase. Firstly, the change in the separation mode i.e., from RP to NP, that occurs 363 

upon increasing the MeCN concentration can be observed also from this approach. Indeed, in Eq.(2), 364 

the lipophilicity based- descriptor, which is chemaxon log P, has positive sign, implying that the 365 

higher the log P, the longer the retention.  However, from 40% to 60% MeCN, the lipophilicity based- 366 

descriptor, which is VirtualLogP, has in all cases a negative sign supporting that the degree of 367 

lipophilicity is inversely proportional to the analytical retention i.e., log kARG. Another descriptor 368 

which is listed three times in the best models is HLB, which is the hydrophilic–lipophilic balance 369 

(HLB) and represents a measure of the partitioning tendency of surfactant between oil and water. 370 

This can be calculated according to either Griffin or David methods[40].  The aspect that ARG 371 

analytical retention sounds dependent on HLB seems reasonable as ARG is an ampholyte which exist 372 

at the experimental pH prevalently in a form supporting 1 negative and 2 positive charges. Therefore, 373 

it is plausible to assume that the solute having HLB similar to that the ARG phase are more retained 374 

in the chromatographic system. Consistently, the sign of HLB is always positive, except in one case.  375 

Interestingly, analytical retention of a wide (n=205) range of pharmaceutically relevant compounds 376 

was found to be similarly driven by HLB on the main IAM.PC phases i.e., IAM.PC.MG and 377 

IAM.PC.DD2 in a recent study of ours[41]. These are similarly based on phosphatidylcholine (PC) 378 

but differ from each other in the end capping of the free aminopropyl groups, which is performed by 379 

reaction with either methyl glycolate (PC.MG) or with C3 and C10 anhydrides (PC.DD2). The PC 380 

based analytical columns share with the ARG phase the amphiphilic character, as both these support 381 

electric charges of opposite sign. This is consistent also with data presented in Table S3, as a r2 values 382 

equal to 0.64 was obtained when studying the correlation matrix between capacity factors of the 383 

neutrals on the ARG phase at 10% (v/v) MeCN and the capacity factors extrapolated to 100% aqueous 384 

phase on the IAM.PC.DD2 phase. These may suggest that the intermolecular forces involved in the 385 

separation mechanism overlap to some extent when the eluents are prevalently aqueous. The loss of 386 

correlation that takes place at higher organic modifier is reasonable as it is well-established[32] that 387 

the H-bonding and ionization is perturbed at lower dielectric constant of the medium.  The definition 388 

of the other molecular descriptors is listed in Table S1. 389 

 390 
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Table 2. Equations and statistics (SE = standard error and F = Fisher coefficients) of the models 391 

achieved for the subgroup of neutrals.  392 

 393 

MeCN (v/v) %  
(Model 
equation) 

Best optimized models (n – 1) R2 SE F 

10 (Eq 2) -0.9241 + 0.2964 chemaxon log P + 0.0437 Davies HLB – 
0.0230 Impropers 

0.80 0.268 38.00 

20 (Eq 3) -0.6307 – 0.0179 Angles + 0.0490 Torsions + 0.0976 
VirtualLogP 

0.61 
 

0.330 13.90 

30 (Eq 4) 5.1548 – 5.5762 Ovality + 0.0668 polarizability +0.1201 Davies 
HLB 

0.67 0.342 17.24 

40 (Eq 5) 0.2936 – 0.0027 MSA AS+ - 0.0042 Angles – 0.2067 
VirtualLogP 

0.82 0.199 42.50 

50 (Eq 6) 0.0121 – 0.1966 VirtualLogP – 0.0074 Griffin HLB – 0.0176 
Atoms 

0.83 0.152 41.68 

60 (Eq 7) -0.3652 + 0.0646 chemaxon log P – 0.3131 VirtualLogP – 
0.0068 Angles 

0.68 0.240 16.05 

70 (Eq 8) -1.1806 + 0.1514 chemaxon HLB – 0.0026 MSA AS 0.96 0.100 103.94 
 394 

 395 

3.5.2 Acids  396 

Predictive statistic models were achieved for acidic compounds and are listed in Table 3. Acids were 397 

considered both in their undissociated and in their anionic forms. Eventually, though, a weighted 398 

average of the physico-chemical descriptors according to the experimental pKa values was performed. 399 

This approach was the one that led to the development of models with the highest predictive strength, 400 

which are the only ones that are discussed hereby. Some of the developed models feature rather high 401 

r2 (up to 0.94 in the best optimized models) values. Notably, all the models are based on Charge_WA, 402 

which is the weighted average of the electric charge according to the pKa values of the solutes. This 403 

suggests that the retention of acidic compounds is heavily driven by electrostatics practically at any 404 

eluent composition.  405 

Another polarity- related descriptor that is selected by the script is dipole moment, however its role 406 

seems to be much more marginal as it appears in only one model.  407 

The enhanced selectivity of the ARG phase that was observed for the acids leaves much room for 408 

several considerations. First, since retention of the acids seems to be greatly affected by the average 409 

electric charge exhibited by the mixture of the species at the experimental pH (7.0), a hypothesis that 410 

needs further studies is that a more elegant control of analytical retention could be better achieved by 411 

modulating the pH of the eluent, rather than by playing with the organic modifier concentration. Of 412 
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course, the ARG phase offers superior stability when operated in a 3.0-7.5 range, so there are 413 

doubtlessly operational constrains when it comes to the pH ranges that could be accessed.       414 

Another point that seems interesting is that the selectivity of the ARG phase could be better exploited 415 

in LC by using gradient elution programs e.g., from 0 to 90% (v/v) MeCN. This would allow the 416 

sequential combination of opposite separation modes (RP and NP) which could in principle 417 

noticeably widen the separation window and provide usefulness in the determination of compounds 418 

with an ample range of ionization constants. Finally, since some of these models allow a rather 419 

accurate prediction, by using these equations it would be possible to assess to which extent a given 420 

acid is expected to be retained by the ARG phase, and since all the descriptors are calculated in silico, 421 

such assessment is feasible for hypothetical molecules or for compounds not yet synthesized as well. 422 

An exemplative experimental vs predicted log kARG plot is shown in Figure S14.  423 

 424 

Table 3. Equations and statistics (SE = standard error and F = Fisher coefficients) of the models 425 

achieved for the subgroup of acids.  426 

 427 

MeCN (v/v) %  
(Model number) 

Best optimized models (n – 1) R2 SE F 

10 (Eq 9) -0.9563 – 1.2784 Charge_WA + 0.2177 chemaxon log P 0.85 0.269 50.49 
20 (Eq 10) -1.3301 – 1.7797 Charge_WA + 0.0095 Dipole_WA 0.86 0.259 58.33 
30 (Eq 11) -0.5431 – 1.1330 Charge_WA – 0.0169 Impropers_WA 0.94 0.128 170.91 
40 (Eq 12) -0.5603 – 1.0259 Charge_WA – 0.0149 Impropers_WA 0.93 0.136 124.77 
50 (Eq 13) -0.6677 – 1.0481 Charge_WA – 0.0215 Impropers_WA 0.79 0.259 38.14 
60 (Eq 14) -0.6281 – 1.4040 Charge_WA – 0.2723 Rings 0.87 0.245 67.58 
70 (Eq 15) -0.7420 – 1.4714 Charge_WA – 0.2808 Rings 0.82 0.271 45.75 

 428 

3.5.3 Bases  429 

No regression was developed for bases due to the limited size of the bases featuring appreciable 430 

retention on the ARG column under the experimental conditions. 431 

 432 

4.0 Conclusions  433 

The CelerisTM Arginine is a mixed-mode stationary phase exhibiting a good degree of selectivity 434 

when compared with other stationary phases of common use. To characterize this phase, analytical 435 

retention of a pool of neutral, basic and acidic compounds was measured at various concentration of 436 

organic modifier. The phase was found to have greater affinity for molecules existing prevalently as 437 

anions at the experimental pH. Conversely, the retention of bases, albeit covering a wide range of 438 

both pKa and lipophilicity, seemed to be quite limited. This may support that electrostatic interactions 439 
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of repulsive nature realize in solution between the ARG phase and the basic solutes, which both 440 

feature a positive overall charge.  441 

BR analysis provided substantial assets in deconvoluting the overall analytical retention into its 442 

elementary blocks. Specifically, for the neutrals, the most relevant blocks were found to be Size, 443 

which describes the interaction due to the dimension of the compounds, and O, which represent the 444 

hydrogen bond donor (HBD) properties of the solute. The change in sign of the Size block allowed 445 

to visually appreciate the switch in the separation mode from RP – which occurs at 10% MeCN – to 446 

NP – which takes place at MeCN% > 10%. VS+ descriptors allowed the development of some good 447 

models for rationalizing the analytical behaviour of neutrals. However, their performance in 448 

modelling the analytical retention of acids was poor, probably due to their intrinsic inefficacy in 449 

handling electric charges. This was overcome by a complimentary MLR approach, which allowed to 450 

successfully model the retention of acids on the ARG column and to shed light into the retention 451 

mechanism of these compounds, which seemed to be overwhelmingly driven by electrostatics.   452 

Overall, the ARG phase proved to exhibit a selectivity that is not straightforwardly offered by any 453 

other phase of common use and whose separation mode holds potential for applications in drug 454 

analysis.  455 

  456 
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