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Abstract: The health status of an elderly person can be identified by examining the additive effects
of aging along with disease linked to it and can lead to ‘unstable incapacity’. This health status is
determined by the apparent decline of independence in activities of daily living (ADLs). Detecting
ADLs provides possibilities of improving the home life of elderly people as it can be applied to
fall detection systems. This paper presents fall detection in elderly people based on radar image
classification by examining their daily routine activities, using radar data that were previously
collected for 99 volunteers. Machine learning techniques are used classify six human activities,
namely walking, sitting, standing, picking up objects, drinking water and fall events. Different
machine learning algorithms, such as random forest, K-nearest neighbours, support vector machine,
long short-term memory, bi-directional long short-term memory and convolutional neural networks,
were used for data classification. To obtain optimum results, we applied data processing techniques,
such as principal component analysis and data augmentation, to the available radar images. The
aim of this paper is to improve upon the results achieved using a publicly available dataset to
further improve upon research of fall detection systems. It was found out that the best results
were obtained using the CNN algorithm with principal component analysis and data augmentation
together to obtain a result of 95.30% accuracy. The results also demonstrated that principal component
analysis was most beneficial when the training data were expanded by augmentation of the available
data. The results of our proposed approach, in comparison to the state of the art, have shown the
highest accuracy.

Keywords: activity detection; machine learning; radar sensing; wireless sensing

1. Introduction

The growing numbers of elderly people present numerous challenges within the
healthcare industry. These new challenges demand new methods which can be imple-
mented in a cost-effective manner [1]. Assistive technology can serve to improve the care
of elderly people. The healthcare industry is looking to technology to support growing
needs, as demonstrated in [2–4]. Advances in sensor technology are currently being used
to support the elderly population [5] and can be used to detect large-scale body movements
such as walking, sitting down on a chair, standing up from a chair, picking up objects, fall
events, etc.

The World Health Organization (WHO) has reported that 42% of people over 70 years
old experience fall at least once a year [6], which can be caused by various hazards such as
slippery floors and low lighting conditions, and the damage can be greater due to elderly
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people’s bodies being fragile [7]. The risk of falling also increases with age. Falls in elderly
people can cause more serious injuries than in younger people [8]. Conditions such as
arthritis and visual impairment can increase the chance that an elderly person will fall [9].
Arthritis is a condition that causes pain in the joints [10]. This pain when moving could
potentially result in elderly people falling as they struggle to move. Visual impairment
can cause the elderly to struggle to see hazards and thus trip and fall. Conditions such
as nocturia, which causes older people to wake up during the night with a need to go
to the toilet, can pose a greater risk of falling as they try to manoeuvre around the home
when tired and under poor lighting [8]. Falling can risk serious injury which can result in
hospital visits or permanent disabilities [11]. This can lead to sufferers of falls to no longer
be able to live independently for fear of further injury. Moreover, fall events are the second
leading cause of accidental death [12].

In this context, various sensing technologies, such as wearable accelerometer devices,
vibration sensing, visual sensing and radar-based sensing [13], have been used to monitor
daily routine activities of elderly people. Wearable devices use accelerometers to be
able to detect the movement of the person wearing the device and several factors must be
considered, as elderly people may not wear the devices if they find them uncomfortable [14].
Additionally, elderly people may suffer from conditions that inhibit their memory. They
may forget to wear the device at times, and it will no longer be able to sense the movements
of that person. Vibration, visual sensing and radar-based sensing work without having
any devices introduced to the body. These methods are classified as non-invasive sensing
methods. Vibration sensing works using a microphone to record the vibrations on the
floor as a person experiences a fall [15]. Visual sensing can be achieved by leveraging
camera-based technology. Cameras can be used to record elderly people and frames can be
analysed using machine learning techniques to assess if a fall has occurred. It also allows
for caregivers to view the situation and decide if further care is required [16]. Cameras
may not be ideal as some elderly people will not agree to be under constant surveillance.
Radar-based sensing works by exploiting the Doppler signatures created on radar when
a fall occurs [17]. This paper aims to implement different machine learning and data
processing techniques to improve the existing results of an available dataset containing
radar micro-Doppler spectrograms of human activities. The research detailed in this study
focuses on the effectiveness of radar-based sensing in detecting activities of daily living.
Machine learning (ML) algorithms are applied to a dataset to predict if these activities
can be classified using artificial intelligence (AI). The machine learning algorithms used
are random forest (RF), K-nearest neighbours (KNN), support vector machine (SVM),
long short-term memory (LSTM), bi-directional Long short-term memory (BiLSTM) and
convolutional neural network (CNN).

The paper is organised into the following sections. Section 2 provides detailed related
work within the field of radar-based motion detection. Section 3 presents the methodology
of how the experimentation of this research has been achieved. Section 4 discusses the
results obtained through the experimentation. Section 5 gives the conclusion.

2. Related work

The following section provides details with regard to state-of-the-art work in the field
of human activity recognition using radar sensing technology in conjunction with machine
learning methods that have been applied for classification purposes. The work of [18] used
the same dataset used in this paper. The paper used SVM, KNN and GoogleNet algorithms
to classify the data. The results produced using these algorithms had 78.25% accuracy for
SVM, 77.15% accuracy for KNN and 74.70% accuracy for GoogleNet. The work of our
paper seeks to improve on these results. The paper [19] included radar spectrograms of
activities such as walking, falling, sitting down and bending down. The spectrograms
were used for image classification and images were converted to greyscale for data pre-
processing. The algorithms deep neural network (DNN) and SVM were applied to the
pre-processed data. DNN achieved accuracy results of 87.00% while SVM achieved an
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accuracy score of 78.00%. Research in [20] used spectrograms for image classification
using greyscale. The images were then classified using the SVM algorithm. The authors
developed sequential forward selection (SFS) for feature selection. The results of the
classification achieved between 92.00% and 95.00% accuracy depending on the number of
features used. The paper [21] included the algorithms stacked recurrent neural network
(RNN) with LSTM and deep CNN to classify six human motions using radar Doppler
images. The six motions were boxing, hand clapping, hand waving, piaffe, jogging and
walking. The results achieved in these experiments showed that the stacked recurrent
neural network (RNN) with LSTM achieved 92.65% accuracy, with the deep CNN achieving
82.33% accuracy. Erol and Amin [22] used spectrograms and range maps of human motion
and fused them together for classification. The spectrogram results are similar to the
experiments conducted in our study. The study investigated five human motions, namely
bending, falling, sitting, kneeling and walking. The spectogram experiment used obtained
a result of 82.24% accuracy using KNN with PCA. With fusion methods of the spectrograms
and range maps, we were able to achieve a result of 93.94% using KNN with PCA. The
work of [23] used impulse-radio ultra-wideband (IR-UWB) radar to capture 12 kinds of
motions. The data processing used KNN to define the features in the spectograms. Then,
the power spectrum and Doppler shifts were extracted and sent to a CNN algorithm for
classification. This was run using five-fold cross validation and achieved up to 98% for
detecting the human motions. The study [24] used IR-UWB radar with CNN to be able to
identify between falling and activities of daily living. This work used binary classification
and focused on differentiating between the falling motion and any other type of activity
around the home. The CNN algorithm was able to provide an accuracy score of 96.35%. The
authors of [25] made use of UWB radars to create a dataset that contained 10 subjects aged
between 22 and 39 years old, performing 15 different activities. The data were collected
while other people were still active in the building behind walls. This was to simulate a
realistic care home environment where other residents reside in neighbouring apartments.
The experiment achieved an accuracy score of 80% using the random forest algorithm. The
work of [26] used a UWB radar with seven subjects carrying out four activities, namely
walking, sitting, standing and simulated falling. The collected data were run using 10-fold
cross validation and it was found that KNN performed the best with a result of 94.90%
accuracy. The authors of [27] used UWB radars to collect data for binary classification of
falling and non-falling events. Data were collected using 10 volunteers in three different
locations within a proposed apartment. They validated their results by using the leave one
subject out method and found that the achieved accuracy was 90.00% using a CNN–LSTM
architecture deep learning model.

3. Methodology

In this section, we discuss our proposed methodology for fall detection in elderly
people. This study makes use of radar micro-Doppler spectrograms of human activities.
These data were taken from [18] and are publicly available The data were collected for
99 elderly people at nine different locations, namely the University of Glasgow, a north
Glasgow elderly care home and Age UK West Cumbria. The dataset can be found at
http://researchdata.gla.ac.uk/848/, accessed on 20 April 2020. The dataset consists of
six motions: walking, sitting down, standing up, picking up an object, drinking water
and falling. The dataset of the radar spectrograms is in the format of 227 by 227-pixel
PNG image files. There is a total of 1633 spectrograms in the dataset. Table 1 shows the
breakdown of how many spectrograms are present for each motion.

http://researchdata.gla.ac.uk/848/
http://researchdata.gla.ac.uk/848/
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Table 1. Number of spectrograms per motion in the dataset.

Algorithm Number of Samples

Walking 286

Sitting Down 289

Standing Up 287

Picking Up an Object 287

Drinking Water 286

Falling 198

Total 1633

Figure 1 shows spectrogram examples of each activity. The Skimage Python package
was used to convert the image files into data based on pixel information and store this data
in Python arrays [28]. The image data array was in the shape of [227,227,3]. This represents
the 227-pixel width and 227-pixel height of the PNG file. The 3 represents the red, green
and blue (RGB) values of the pixels. The images were then converted into greyscale which
removed the colour and changed the array shape to [227,277,1]. This array of data was
saved in a CSV format for machine learning processing. The conversion to greyscale
was used to reduce the dimensions. The RGB channels were thus converted to a single
intensity value [29]. Greyscale images have been shown to have improved classification
accuracy over coloured images [30] and this method has been used in various related works
involving radar image classification [20,31]. The experiments conducted in this study used
four different data processing methods. The first method used the raw greyscale pixel data
only. The second method then applied principal component analysis (PCA) to the raw
greyscale pixel data. PCA is a technique used to reduce dataset dimensions [32]. PCA finds
common components of the data which can summarise the variation of the data [33]. The
third method used data augmentation of the raw greyscale pixel data. Data augmentation
is the process of increasing the training data by transforming an existing sample [34]. The
original and transformed samples can then be part of the same dataset and thus the amount
of training data is increased. The transformed samples must keep the variance intact that
defines original sample labels within the dataset. PCA is applied in this study by using
sklearn. Sklearn provides a function that can fit and transform the image data using PCA.
PCA is configured to use all components of the data. Data augmentation in our study
tripled the size of the dataset. The data augmentations contain the original greyscale
images, blurred greyscale images and horizontally flipped greyscale images. Using blurred
and flipped images increases the size of the dataset but these occurrences are unlikely to
happen in real life systems. The reason this was carried out in this work is that it allows
for more data to be produced while still maintaining some of the original features of the
data without causing duplicates in the dataset. The fourth and final method used data
augmentation and PCA combined. Figure 2 shows the process followed when creating the
data augmentation dataset. Using these four data processing techniques, four different
datasets were produced that could then have machine learning and applied and results
analysed. The datasets were divided into 90% for training data and 10% for testing data.
This was achieved by using the train_test_split function included in the sklearn python
package. The function parameters were used to define the percentage of testing data and
the rest was used as training data. The data were shuffled but the random seed parameter
was always the same to ensure all algorithms used the same samples as testing and training
data. This allowed for the results to reflect the model generalisation of the algorithms due
to the specific training data remaining consistent and ensuring that the testing samples
were the same unseen samples in every experiment conducted.
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Figure 1. Raw spectrogram examples of each activity [18].

Figure 2. Flow graph of how data augmentation dataset was created.

Machine Learning

We have used different machine learning algorithm, such as random forest, KNN,
SVM, LTSM, BiLTSM and CNN. The Scikit python package was used to implement random
forest, KNN and SVM. Scikit is widely used in industry and research within the field of
data science [35]. To implement the neural network algorithms LTSM, BiLTSM and CNN,
the Tensorflow Python package was used. Tensorflow was used for this research as it is
open source and can be used with a graphics processing unit (GPU) [36]. The use of a GPU
allows for neural network processes to run faster than if the processes were to be run on
a CPU.

The random forest algorithm is a collection of decision trees. Each individual decision
tree will make a decision on which classification to assign to new data based on key features
learnt in the training phase. The classification each tree reaches is considered a vote. The
final classification decided by the random forest algorithm is the ensemble classification of
the combined decision trees [37]. In these experiments, the random forest was configured
to use 200 trees in the forest. This number of trees resulted in the best results in the
initial experimentation.
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The KNN algorithm simply looks to compare training data to new unseen data [38].
The features of the training data are assigned K values. The features of the new data are
then assigned a K value which best matches the features of the training data [39]. The
parameter used for KNN in this study was set to use 10 neighbours.

SVM aims to create boundaries between each classification. These boundaries are
known as hyper planes. The hyper plane is positioned as far as possible from the closest
data points of the classes present in the data. These points are known as the support
vectors [40]. The hyper planes are used to divide the support vectors into the different
categories. The training data features are used to place the hyper planes. Then, the features
of the new data are used to place the new data between the hyper planes and provide
classification [41]. The SVM parameters included the gamma set to auto and the use of the
RBF kernel in these experiments.

The LSTM deep learning algorithm is an extension of a recurring neural network (RNN).
A recurring neural network is a type of neural network which models the dynamic be-
haviour of sequences of data between nodes of the neural network. LSTM expands on
this concept by adding three different gates to the nodes. One gate is used to decide if the
current state should be forgotten. Another gate is used to control if input should be read or
not and the final gate decides if the state should be added to the node output. These gates
allow for LSTM to decide if the sequence of data is relevant to the output of the node [42].
In this experiment, LSTM was used with 50 nodes, also known as units. The learning rate
was set to 1 × 10−6 using ReLU activation and ran for 200 epochs. Figure 3 shows a visual
representation of how LSTM works.

Figure 3. Visual representation of how LSTM works.

The bi-directional long short-term algorithm is an extension of the LSTM deep learning
algorithm. Where LSTM only makes use of the past behaviours of data sequences, the bi-
directional long short-term algorithm can look at data in two directions. The two directions
look at past and future data in a sequence. This is achieved by using two LSTM networks.
One LSTM network, the forward LSTM network, can review past data sequences and the
backward LSTM network can review future data sequences [43]. BiLSTM was configured
to use the same parameters as the LSTM set up. Figure 4 shows a visual representation of
how BiLSTM works.

The CNN algorithm is an emerging technology which is a powerful solution for image
classification problems which were initially thought to require human intelligence [44,45].
The CNN algorithm is made up of densely connected layers that take the activations of all
the previous layers as input. The layers produce feature maps from this input which are
known as growth rates [46]. The convolution neural network architecture used in this study
consisted of multiple convolutions and pooling layers followed by multiple connected
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layers (ReLU) and finally a softmax layer for creating the output classes. The convolution
and pooling layers were used to capture the features of the images. The weight and bias of
the features were parameters of the CNN which were configured automatically during the
training process [47]. Figure 5 displays the CNN model used in this experiment.

Figure 4. Visual representation of how BiLSTM works.

Figure 5. Visual representation of CNN model used in experiment.

4. Results and Discussion

This section presents the weighted average results of each of the classifications carried
out in each experiment. Each experiment includes the weighted average accuracy in bar
chart format and then the weighted average accuracy, precision, recall and F1-score.

4.1. Original Dataset
4.1.1. Raw Images

The accuracy results of each machine learning algorithm using just the raw images
are visually displayed in bar chart format in Figure 6.

The results of the machine learning algorithms show that KNN has superior per-
formance using the raw image data. KNN has an accuracy of 90.85%. Although KNN
performs the best, all the algorithms can classify the majority of the images correctly. These
results show that the machine learning algorithms applied to the image data are able to
identify the differences in the image data, with KNN being able to distinguish the differ-
ences at a higher rate than the other algorithms. The other algorithms were still able to
recognise differences in the images, however, CNN was the second-best performer with
85.97% accuracy. SVM is the weakest performer out of all algorithms but still achieved
71.34% accuracy.

Table 2 shows the accuracy and the average precision, recall and F1-score of the
machine learning algorithms using the raw images.
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4.1.2. Principal Component Analysis

The accuracy results of each machine learning algorithm using PCA are visually
displayed in bar chart format in Figure 7.

The results of the PCA described a drop in comparison to using the raw image
data. KNN maintained its status as being the highest performer of the machine learning
algorithms but it dropped by 13.42% in accuracy from 90.85% when using raw data to
77.43% when using PCA. SVM had the smallest drop in performance compared to the
other algorithms when using PCA with a drop of 1.22%, from 71.34% down to 70.12%.
These results show that using PCA decreases the accuracy compared to the results of using
raw data. The deep learning algorithms were still ultimately able to differentiate between
human motions using PCA despite the drop in accuracy.

Table 2 shows the accuracy and the average precision, recall and F1-score of the
machine learning algorithms and Table 3 shows the average precision, recall and F1-score
of the machine learning algorithms using PCA for the image data.

Figure 6. Machine learning results using raw image data.

Table 2. Machine learning results using raw image data.

Algorithm Accuracy Precision Recall F1-Score

Random Forest 84.75% 0.86 0.85 0.85

KNN 90.85% 0.91 0.91 0.91

SVM 71.34% 0.74 0.71 0.71

LSTM 80.48% 0.83 0.80 0.80

BiLSTM 83.53% 0.87 0.84 0.84

CNN 85.97 % 0.86 0.86 0.86
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Table 3. Machine learning results using raw image data with PCA.

Algorithm Accuracy Precision Recall F1-Score

Random Forest + PCA 76.21% 0.78 0.76 0.76

KNN + PCA 77.43% 0.78 0.77 0.77

SVM + PCA 70.12 % 0.71 0.70 0.70

LSTM + PCA 75.00% 0.76 0.75 0.75

BiLSTM + PCA 73.78% 0.74 0.74 0.74

CNN + PCA 76.82% 0.78 0.77 0.77

4.2. Data Augmentation
4.2.1. Raw Images

The accuracy results of the machine learning algorithms using data augmentation is
visually displayed in bar chart format in Figure 8.

Figure 7. Machine learning results using raw image data with PCA.

Figure 8. Machine learning results using data augmentation.
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The results of using data augmentation have shown that random forest increased
in accuracy with the benefits of having more training data in comparison to only using
raw images with no data augmentation. The accuracy of random forest increased by
8.1%, from 84.75% to 92.85%. KNN and SVM showed decreased accuracy scores with the
added training data. The accuracy of KNN dropped by 1.67%, from 90.85% to 89.18%. The
drop in accuracy with SVM was 2.16%, from 71.34% down to 69.18%. SVM still remains
the lowest performer out of all the machine learning algorithms, whereas random forest
outperformed KNN and was the only algorithm that benefited from the larger dataset. The
BiLSTM algorithm showed increased accuracy by 6.67%, from 83.53% to 90.20%, making
it the second best-performing algorithm. The CNN algorithm had an accuracy of 88.97%
when using the data augmentation dataset. It had an accuracy increase of 3.00% compared
to using the raw image dataset. The LSTM did improve slightly when using the data
augmentation dataset with an increase of 0.74%, from 80.48% to 81.22%. Table 4 shows the
accuracy and the average Precision, recall and F1-score of the machine learning algorithms
using data augmentation techniques.

Table 4. Machine learning results using data augmentation.

Algorithm Accuracy Precision Recall F1-Score

Random Forest 92.85% 0.93 0.93 0.93

KNN 89.18% 0.89 0.89 0.89

SVM 69.18% 0.70 0.69 0.69

LSTM 81.22% 0.83 0.81 0.81

BiLSTM 90.20% 0.90 0.90 0.90

CNN 88.97% 0.91 0.89 0.89

4.2.2. Principal Component Analysis

The accuracy results of the machine learning algorithms using data augmentation
with PCA are displayed in Figure 9.

Figure 9. Machine learning results using data augmentation with PCA.

The machine learning results using PCA and data augmentation have shown that
KNN, SVM, LTSM and CNN improved when using PCA and data augmentation in com-
parison to just using data augmentation. The KNN results increased from 89.18% to 91.63%
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compared to using only data augmentation techniques. SVM results increased from 69.18%
to 74.28% compared to using only data augmentation techniques. LSTM showed an in-
creased accuracy result from 81.22% up to 87.14% and CNN showed increased accuracy
from 88.97% up to 95.30%. The result from CNN is the highest achieved result in all
experiments undertaken throughout this study.

When the KNN, SVM, LTSM and CNN algorithms were applied to the PCA dataset
without data augmentation, the results decreased in performance. These results show
that for KNN, SVM, LTSM and CNN, the additional training data help to improve the
performance. The random forest and BiLTSM algorithms showed a decrease in performance
when using PCA and data augmentation in comparison to only using data augmentation.
The accuracy only fell by 2.24%, from 92.85% down to 90.61%, for random forest and
BiLTSM fell from 90.20% to 89.59%. This drop is significantly less severe compared to
the drop observed in the results of random forest and CNN when using raw images to
then using the raw images with PCA. Random forest dropped in accuracy by 8.54% and
BiLTSM dropped in accuracy by 9.75%. This shows that PCA performs better in most of
the machine learning algorithms when the amount of training data is increased, with the
exception being the random forest and CNN algorithms. Table 5 shows the accuracy and
the average Precision, recall and F1-score of the machine learning algorithms using data
augmentation techniques paired with PCA.

Table 5. Machine learning results using data augmentation with PCA.

Algorithm Accuracy Precision Recall F1-Score

Random Forest + PCA 90.61% 0.91 0.91 0.91

KNN + PCA 91.63 % 0.92 0.92 0.92

SVM + PCA 74.28 % 0.75 0.74 0.74

LSTM + PCA 87.14% 0.88 0.87 0.87

BiLSTM + PCA 89.59% 0.90 0.90 0.90

CNN + PCA 95.30% 0.95 0.95 0.95

4.3. Ablation Studies

This section details ablation. Ablation is the process of removing activities within the
dataset and an analysis of how the reduced number of classifications compares to results
achieved using the complete dataset. For this section, the best performing dataset when
using data augmentation and PCA was reduced from six activities down to three. The
three activities used were walking, sitting and standing. Figure 10 shows the accuracy of
the comparison of each algorithm between three and six activities. Most of the algorithms
achieved higher results when using fewer classifications, however, KNN and CNN algo-
rithms performed worse with three activities. The difference with KNN was negligible and
the difference in performance with CNN was likely due to the reduced amount of training
data. In experiments using six activities, it was observed that CNN performs better with
more training data.
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Figure 10. Ablation study results using data augmentation paired with PCA.

5. Comparison to State-of-the-Art Approaches

The results of our proposed approach can be directly compared to the results of [18],
as this work used the same dataset used in the experiments of this study. The authors
of [18] used SVM and KNN algorithms and these algorithms achieved an accuracy score
of 78.25% and 77.15%, respectively. SVM, in the results presented in this paper, achieved
the highest result of 74.28%, which was lower than the work shown in [18]. However, we
were able to improve the KNN results in our work. In our experimentation, KNN achieved
its highest result of 91.63% when using data augmentation paired with PCA. The data
processing techniques used in this study have allowed for the KNN algorithm to improve
the accuracy results by nearly 15%. The work conducted in this study even expanded on
the improvements in accuracy using the dataset with the use of CNN. The accuracy score of
95.30% achieved when using CNN with data augmentation and PCA was the best accuracy
score achieved in this work, showing an accuracy score increase of around 17% from the
best accuracy score achieved by [18] when using the KNN algorithm.

6. Conclusions

This paper presented results obtained when machine and deep learning techniques
were applied to a radar dataset that was previously generated containing radar micro-
Doppler spectrograms for various human activities. The research work has shown that
using PCA paired with augmentation of the available data achieved the best results of
95.30% using the deep learning algorithms, namely CNN. These results have outperformed
the state-of-the-art approaches. The results also highlighted how PCA can achieve better
results when the training data are expanded using data augmentation. Without data
augmentation, it was found that PCA had a negative effect on the results. Although
the highest machine learning result was obtained using random forest without PCA, the
rest of the machine learning algorithms displayed higher results when PCA was used
with data augmentation. The results of this paper have shown that AI can identify the
different activities of daily living that are detected by radar sensing by performing image
classification on acquired micro-Doppler signatures. Future work of this research can seek
to implement systems that make use of the data processing and deep learning techniques
presented in the findings of this paper to improve the lives of elderly people.
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