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Abstract: Satellite images have drawn increasing interest from a wide variety of users, including
business and government, ever since their increased usage in important fields ranging from weather,
forestry and agriculture to surface changes and biodiversity monitoring. Recent updates in the field
have also introduced various deep learning (DL) architectures to satellite imagery as a means of
extracting useful information. However, this new approach comes with its own issues, including
the fact that many users utilize ready-made cloud services (both public and private) in order to
take advantage of built-in DL algorithms and thus avoid the complexity of developing their own
DL architectures. However, this presents new challenges to protecting data against unauthorized
access, mining and usage of sensitive information extracted from that data. Therefore, new privacy
concerns regarding sensitive data in satellite images have arisen. This research proposes an efficient
approach that takes advantage of privacy-preserving deep learning (PPDL)-based techniques to
address privacy concerns regarding data from satellite images when applying public DL models.
In this paper, we proposed a partially homomorphic encryption scheme (a Paillier scheme), which
enables processing of confidential information without exposure of the underlying data. Our method
achieves robust results when applied to a custom convolutional neural network (CNN) as well as to
existing transfer learning methods. The proposed encryption scheme also allows for training CNN
models on encrypted data directly, which requires lower computational overhead. Our experiments
have been performed on a real-world dataset covering several regions across Saudi Arabia. The
results demonstrate that our CNN-based models were able to retain data utility while maintaining
data privacy. Security parameters such as correlation coefficient (−0.004), entropy (7.95), energy
(0.01), contrast (10.57), number of pixel change rate (4.86), unified average change intensity (33.66),
and more are in favor of our proposed encryption scheme. To the best of our knowledge, this
research is also one of the first studies that applies PPDL-based techniques to satellite image data in
any capacity.

Keywords: privacy-preserving deep learning; deep learning; remote sensing; privacy-preservation;
convolutional neural network; homomorphic encryption; paillier scheme

1. Introduction

Satellite images of earth are generated by imaging satellites, which may be operated
by governments or enterprises. These images are captured through remote sensing (RS)
technologies and, generally, RS can be described as the process of collecting and analyzing
information about an entity, region or event without being in physical contact with it [1].
RS data is considered a very useful source of information for many applications, such
as land use classification, especially when integrated with artificial intelligence technol-
ogy [2–4]. The size of satellite images is increasing because of the growing demand for
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better resolution of images, and along related lines, the growing amount of RS data has
enabled the study of various complex research topics [5–7]. However, producing ade-
quate RS images typically requires applying emerging DL-based techniques with complex
architecture and computational workload. To provide this, many researchers use cloud
computing platforms to apply DL techniques that enable them to extract insights and
useful information. However, in such cases, data workflows can be subject to privacy
concerns because of the public nature of that data processing and the tools used to manage
it. Here, data privacy cannot be ensured, and data leakage may occur. However, there are
still several benefits of using cloud computing, such hiding architecture complexity, cost
savings, flexibility, and scalability. Thus, the optimal solution is one that can balance the
downsides in order to reap the benefits. However, there are also several privacy challenges
that require addressing, particularly in cases where satellite images are transmitted or
stored using public DL techniques [8]. Al-Rubaie and Chang provide an overview of the
privacy-preservation deep learning (PPDL) techniques that can be adopted to safeguard the
privacy of either individual or business users [9]. From such work it becomes apparent that
PPDL techniques can be used to benefit from public data analytics while also preventing
data leakage and keeping sensitive information private from unauthorized access and
illegal usage.

DL is commonly used to build predictive models for image processing and both speech
and text recognition applications. These models are more precise, especially when trained
on large data sets. Prediction is a method of studying available data and then using that
expertise to produce new information that was not available before then. In many cases,
though, these data also contain sensitive information that likewise requires preservation.
Therefore, an important challenge here is to preserve the privacy of such data when they
are sent to the public cloud for processing and analysis. In most cases, personnel computers
lack the performance capabilities needed to process massive satellite images. Therefore, in
order to extract useful knowledge and insights from such RS data, there is a greater need to
perform big data analysis using public cloud servers. With this growing reliance on cloud
services, the privacy of data collected and processed by cloud service providers during DL
training is also becoming a more challenging concern [10]. Satellite images could contain
sensitive information, such as oilfield, airport, and military locations, that can be stolen
and misused. Likewise, if such images are processed without protection, then this makes it
easy for sensitive information to be extracted and used for illegal purposes. This indicates
the need to find a reliable privacy method that will ensure that big satellite images are
encrypted over cloud servers in ways that cannot be compromised. Thus, exploring PPDL
techniques applied to satellite images becomes both a challenging topic and a potentially
rewarding one.

The motivation driving this specific research project is to link two cutting-edge re-
search topics, which are DL and privacy. Indeed, the progress of machine learning (ML)
and its subfield of deep learning (DL) need not come at the expense of privacy or data
security. Therefore, this research work proposes a powerful approach based on PPDL
utilized on big satellite images in order to maintain anonymity and safeguard privacy
related to data. Our main contribution is to apply PPDL for satellite images’ data, which,
to the best of our knowledge, is an approach that has not been proposed or attempted
anywhere in the literature. In particular, the contributions of this study are:

• Proposing a PPDL technique, namely partially homomorphic encryption (PHE), for
privacy-preserving satellite image classification.

• Applying the PHE technique on a proposed DL-based CNN model and existing trans-
fer learning models. (As our results later will demonstrate, this results in promising
performance for two test cases.)

• Testing the performance of the proposed PPDL technique on a real-world satellite
image dataset.

The remainder of this paper is organized as follows: Section 2 describes the theoretical
background, specifically by introducing DL and PPDL as techniques. A review of related
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work is presented in Section 3, while Section 4 details the proposed method of using
PPML for satellite image classification. Experimental results are reported and discussed in
Section 5. Concluding remarks and directions for future work are presented in Section 6.

2. Background

This section introduces general background information about DL and PPDL tech-
niques, including their advantages and disadvantages.

2.1. Convolutional Neural Network

There are several different DL approaches commonly used for data processing [11],
but the CNN is one of the most common specifically for image-based data processing.
CNN is a category of deep neural networks (DNN), which itself is a substantial model of
machine learning (ML). CNN is often applied to visual image processing and computer
vision [12]. The most substantial presumption regarding issues addressed by CNN is
regarding spatially-based characteristics. For instance, in a n object recognition system,
we do not need to give thought to the objects’ location in the images. The main concern
is to detect them throughout the provided images, regardless of their actual location
therein. Another essential characteristic of CNN is found in how it acquires conceptual
characteristics as data spread into the deeper layers. For instance, the edge could be
identified throughout the first layer of the image classification, and then simple features
could be identified in the second layer before the top-level features such as objects are
identified in the next layers [13]. In this way, CNN addresses the over-fitting issue wherein
the neuron within a layer will be connected to the previous layer with a small region rather
than all neurons, as usually happens in fully-connected neural networks.

The architecture of CNN models is composed of a set of layers. This set begins with
an input layer, continues with a stack of hidden layers, and concludes with an output
layer, and in this arrangement, the output of one layer becomes an input of the next layer.
Therefore, the basic architecture of CNN consists of three layers, namely convolutional
(CONV) layers, pooling (POOL) layers and fully connected (FC) layers, as described
below [12,14]. Any middle layers are considered hidden since the activation function
and final convolution cover their inputs and outputs [15]. Figure 1 illustrates the basic
architecture of a CNN model.

Figure 1. CNN Basic Architecture [16].

• Convolutional (CONV) layer: This is the first layer and key component of the
CNN [17]. Most of the intensive computational loading is done in such layers. In
CONV layers, the image is converted using filters, which are small units applied
across the data via a sliding window. CONV layers elicit various features from the
input image and, in this way, one image becomes a stack of filtered images.
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• Pooling (POOL) layer: CONV layers are followed by POOL layers, which involve
sub-sampling of features. Pooling layers progressively reduce the spatial size of the
representation, which further decreases the computational load on the network.

• Fully connected (FC) layer: Fully connected layers are used in the last few layers and
serve as a classifier. FC layers involve converting the complete pooled feature map
matrix into one column, which is then loaded for processing to the neural network.

Transfer Learning

Transfer learning (TL) is a DL approach for transferring knowledge from one pre-
trained model to another [18]. TL is commonly used when training a small dataset where
the CNN’s weights are initialized before being fine-tuned with the new dataset [19]. TL
aids in adapting current models trained on large datasets to work in a specific context [20].
There are several pre-trained models approaches based on this research, including VGG16,
ResNet-50, Xception and DenseNet121. Each of these common TL approaches is de-
scribed below:

• VGG16: Simonyan and Zisserman (2014) proposed the architecture of the VGG16
model. VGG16 is a CNN model that consists of 16 hidden layers, including a total with
convolutional, max pooling and fully connected layers. VGG16 was trained on the
ImageNet dataset, which consists of 1,000,000 images. VGG16 is constructed of five
blocks of convolutional layers with a 3× 3 filter and stride of 1. After each convolution,
an activation function (ReLU) is executed, followed by a max-pooling process with
a 2 × 2 max filter and stride of 2. At the end of the five blocks, three FC layers are
added: the first two layers with 4096 neurons and an ReLU activation function each,
and the third layer with 1000 neurons and a SoftMax activation function [21]. The
default input size is 224 × 224 × 3 [22].

• ResNet-50: The ResNet model’s architecture was proposed in 2015 by He et al. ResNet-
50 is a 50 convolutional neural network layers pre-trained on the ImageNet dataset [23].
The fundamental concept behind the ResNet model is to use shortcut links to bypass
blocks of convolutional layers (bottleneck). The CONV layers each have a 3 × 3 filter
and are designed according to two rules: (1) the layers have the same number of filters
with the same output feature map size and (2) the number of filters is multiplied if the
feature map size is halved. The convolutional layers conduct the downsampling with
a stride of 2. The network ends with an average POOL layer and 1000 FC layers with
a SoftMax activation function. The default input size is 224 × 224 × 3 [24].

• Xception: The Xception model’s architecture was proposed by Chollet (2017). This
model is a CNN-based architecture also trained on the ImageNet dataset. The Xception
architecture comprises 36 CONV layers with a 3× 3 filter and stride of 2. These CONV
layers are structured into 14 modules, all of which have the ReLu activation function
except for the first and last modules. The FC layer is replaced with a global average
POOL layer and the default input size is 299 × 299 × 3 [25].

• DenseNet121: Huang et al. (2017) proposed the architecture of the DenseNet121 model,
another CNN-based architecture trained on the ImageNet dataset. DenseNet121 is
composed of 5 dense blocks. The first block consists of a convolution layer with
a 7 × 7 filter and stride of 2 and a MaxPooling layer with a 3 × 3 max filter and
stride of 2. The remaining blocks consist of BatchNormalization, the ReLU activation
function, and two CONV layers with 1 × 1 and 3 × 3 filters. A transition layer follows
each block except for the last, which instead is followed by a classification layer. In
DenseNet121, all previous feature-maps are used as input in each layer. The default
input size is 224 × 224 × 3 [26].

2.2. Privacy-Preservation Deep Learning

Several privacy-preservation techniques focus on allowing different entities to train
DL models without revealing secure data. The existing privacy-preserving techniques
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already developed in this field, including encryption and differential privacy, are reviewed
in this section.

2.2.1. Privacy-Preservation through Encryption

Cryptographic methods could be used to conduct DL training and testing on en-
crypted data [9]. Such methods allow for privacy protection, but specialized techniques
are needed to do useful statistical analysis on encrypted data [27]. To achieve PPDL, the
most commonly used cryptographic methods are homomorphic encryption, secret sharing,
and secure multi-party computation.

Homomorphic Encryption

Homomorphic encryption (HE) is a cryptographic technique that preserves the ability
to process and produce data in encrypted forms as if it were unencrypted [28]. Due to its
flexibility and its highly desirable outcomes, HE is a unique technique for encryption that
can address both privacy and security concerns more easily than some other techniques.
Rivest et al. [29] introduced this technique and its four crucial security procedures: key
generation, encryption, decryption, and evaluation algorithm, as illustrated in Figure 2.
With HE, if the user wants to request information from the cloud server, then that data is
first encrypted and saved in the cloud before the user then sends request information to
the cloud server. Without identifying the data’s characteristics, the cloud server performs a
predictive model on encrypted data and sends back that encrypted output to the requesting
user. Only by utilizing a unique secret key can the user decrypt the obtained data, which is
still encrypted; thus, the data’s privacy and security are maintained [30].

Figure 2. Homomorphic Encryption Technique [30].

Based on the number of mathematical processes performed on the encrypted data, HE
techniques can be classified into three types: (1) Fully Homomorphic Encryption (FHE),
(2) Somewhat Homomorphic Encryption (SHE), and (3) Partially Homomorphic Encryption
(PHE). The three types are described in more detail below [30].

• Fully Homomorphic Encryption (FHE): enables the performance of various types of
assessment operations on the encrypted data with unbounded range.

• Somewhat Homomorphic Encryption (SHE): all addition and multiplication opera-
tions are permissible in SHE, but with only a limited range.

• Partially Homomorphic Encryption (PHE): Only one form of mathematical operation
on the encrypted data is permitted in the PHE scheme, such as a multiplication or
addition procedure, with an unbounded range.

As previously mentioned, HE is a suite of four functions: key generation, encryption,
decryption and evaluation. These are described in further detail below [31].

• Key generation: the client will generate a pair of public keys (PK) and secret keys (SK)
to encrypt the plaintext (PT).

• Encryption: the client will encrypt the PT using the PK, and the ciphertext (CT) will
be submitted to the server along with the PK.

• Decryption: the client will decrypt the generated evaluation using its SK, and the
result will be obtained.
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• Evaluation: the server has a ciphertext evaluation function (F) and executes it as
in-demand using the PK.

The encryption mechanism in HE is homomorphic; that is, if it is possible to compute
Enc(f (PT1, PT2)) from Enc(PT1) and Enc(PT2), where f can be: +, × and without utilizing
the secret key (SK) [32]. Therefore, HE has two main properties: multiplicative HE and
additive HE.

Multiplicative HE: an HE is multiplicative if it satisfies the following equation [16,32]:

Enc(PT1× PT2) = Enc(PT1)× Enc(PT2). (1)

Additive Homomorphic Encryption: an HE is additive if it satisfies the following
equation [16,32]:

Enc(PT1 + PT2) = Enc(PT1) + Enc(PT2). (2)

Secret Sharing

The secret sharing (SS) technique was proposed by Shamir and Blakley in 1979 [33].
This technique is the process of distributing a secret between several entities, each holding
a share of the whole. Single shares are not useful independently, but the secret can be
reconstructed if the shares are merged [9]. Figure A1 illustrates a secret share (S) held by
several people (P). The secret can be retrieved if all participants work together [34].

Secure Multi-Party Computation

Secure Multi-Party computation (SMPC) is a set of techniques that allow two or more
parties to separate data among themselves in order to perform collaborative computations.
As illustrated in Figure A2, SMPC allows each party to acquire its corresponding output
without obtaining any other information [35]. This technique can be used to conduct dataset
analyses in an encrypted domain without perturbing or compromising the data [36].

2.2.2. Differential Privacy

Differential privacy (DP) is a technique that enables the perturbation of a dataset to
hide individual data while preserving the ability to do statistical analysis on that same
dataset. This is a method of preserving the dataset’s global statistical distribution while at
the same time minimizing personally identifiable information [36]. In the context of our
research, privacy is the property of both the output and the computation producing that
output. DP can be used to resolve most user privacy concerns, since the user can guarantee
that the analysis results will not reveal anything specific to him. In addition, if the user
information is excluded from the analysis, user privacy is protected because the result of
the analysis does not rely on the user-specific information, as illustrated in Figure A3 [37].

2.2.3. Hybrid Techniques

This is a combination of two different PPDL techniques, and thus can provide greater
privacy protection than either one used individually. Truex et al. proposed a hybrid
approach as a means of overcoming existing PPDL disadvantages by combining both DP
and SMPC to minimize noise injection without losing privacy as the number of parties
rises [38].

2.2.4. Comparison between PPDL Techniques

PPDL techniques such as HE, SS, SMPC, and DP can guarantee data processing
without revealing any information about the input data. However, these techniques also
come with limitations. Table 1 depicts advantages and limitations of the PPDL techniques
already discussed in this study. Overall, HE is extremely useful for processing sensitive
data on a cloud server. Although it is costly in terms of computational overhead, it is
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also the most secure approach. SMPC does have certain advantage over HE, such as
the possibility of obtaining input from different parties and higher practicality due to
higher velocity and less overhead, but it also requires communication during computation
where HE does not and thus retains higher degrees of protection. Meanwhile, DP has
considerable benefits in terms of practicality. It is faster than both HE and SMPC since
no computationally overhead encryption is required. In certain situations, though, DP
accuracy can be lower because of the additional noise and the method has some limitations
when it comes to security. All PPDL techniques have strengths and limitations, often
in terms of greater privacy protection coming at the cost of lower practicality in terms
of speed and ease of deployment. In our work, though, privacy is considered the most
important aspect. To that end, this research utilizes HE, which offers higher data security
and protection.

Table 1. Comparison of PPDL Techniques.

Techniques Advantages Disadvantages

HE

• Performs inference analysis on en-
crypted data
• Does not require interactivity be-
tween the data and model owners
• Perceives data privacy and security

Extensive computation
overhead

SS

• Hides data from participants
• Offers protection from attacks
• Does not require all the shares to
reconstruct the secret, but only
the threshold

• Does not protect the private
key from being stolen if an
adversary is involved during
the setup
• The private key is no longer
secure once reconstructed

SMPC

• Eliminates the trade-off between
data accessibility and data protection
• No authorized third parties can see
the data

Requires interactivity between
data and model owners

DP Ensures the privacy of input data and
the privacy of learning models

Requires broad noise to obtain
significant privacy

3. Related Works

This section reviews relevant research concerning PPDL. It also provides a comparison
between previous research works and the current research.

Phong et al. [39] have proposed an HE-based approach. In their work, the authors
considered the main issues of the Shokri and Shmatikov system, which tends to leaking
users’ local data to the cloud server as many users perform neural network-based DL.
Phong et al. address this by building an enhanced DL system using additive HE. This
system can prevent information leakage while still preserving accuracy. The results of
Phong et al.’s work demonstrate that the system does not leak any user information to an
honest-but-curious cloud service. Meanwhile, the use of HE adds a reasonable amount of
overhead to the DL system.

Another solution based on data encryption using FHE was proposed by Vizitiu et al. [40].
Here, the authors proposed to encrypt the input data and send it to the server to predict
their results. Their approach took advantage of the MORE framework, which does not
reveal patient records. The model performance was evaluated using medical imaging
and the MINST dataset. Compared to the plain form, the experiment results indicated
that Vizitiu et al.’s proposed solution achieves similar accuracy over the clinical dataset
and approximately identical precision over the MNIST dataset. As for performance, the
encrypted approach improved latency relative to unencrypted approaches, while as for
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privacy, the authors noted that while the MORE framework gives a certain degree of
privacy, it is still susceptible to chosen plaintext attacks.

Wang and Chang [41] also developed an approach based on DP techniques. The
authors considered a two-party image classification issue where the data owners retain the
images, and unreliable data users train the ML model with any of these images as input.
Wang and Chang aimed to preserve data usability on image classification while at the same
time maintaining data privacy. The authors proposed to use a randomized reply to perturb
the image locally, which satisfies local DP. They also introduced DCA-Conv, a supervised
image feature extractor, to manage the trade-off between usability and privacy. The results
they achieved demonstrated that DCA-Conv can achieve a high degree of data usability
while still maintaining privacy.

Abadi et al. [42] have proposed another work based on DP. Here, the authors consid-
ered the training models problem, which may expose private and sensitive information in
image datasets. Within the framework of DP, Abadi et al. introduced techniques to enhance
the computational performance of DP, including computing gradients algorithms, dividing
works into smaller batches, and applying differentially private principal projection at the
input nodes. This experiment was conducted on a ML TensorFlow framework, and the
results indicated that the training model can achieve relatively high efficiency, privacy
protection, and model consistency.

Huang et al. [33] have proposed a framework-based on the SS technique. These
authors considered mobile sensing data protection and response time on cloud computing.
Using an encryption-based secret exchange strategy, they developed a privacy-preserving
CNN for feature extraction. Instead of cloud servers, the massive computational process
was moved to edge servers in order to reduce delays between the cloud server and the
mobile device. The results they achieved demonstrated the safety, efficacy, and reliability
of their scheme based on theoretical analysis and empirical studies.

Another work based on the SS technique has been proposed by Ma et al., who consid-
ered the privacy of facial image data on cloud servers [43]. They proposed an AdaBoost-
based system for face recognition (POR), which was designed to protect users’ facial charac-
teristics and the service providers’ privacy based on additive secret sharing techniques. This
system consisted of two edge servers assigned to the complex POR computing operation.
The authors enhanced the additive secret sharing-based technique features by increasing
the efficient input domain. Through theoretical analysis, they demonstrated the consis-
tency and security of the technique. The results of their experiment indicated a decrease in
computational error as compared to the current differential privacy-based framework.

Xia et al. [44] have proposed a scheme inspired by additive secret sharing techniques.
They considered the encrypted image problem, which restricted the effectiveness of the
image usage. They also proposed a set of additive protected computation protocols on
numbers and equations with higher efficiency. With the assistance of their protocols,
including the total operation of image classification in the unencrypted domain, they
extracted CNN characteristics, reduced the dimension of characteristics, and generated the
index safely. They also evaluated the execution of the suggested scheme in terms encryption
reliability, recovery precision, and recovery efficiency using the Corel image dataset. The
experiment’s results showed the higher reliability and efficiency of this new scheme.

Erkin et al. [45] have proposed a framework based on the SMPC technique. The
authors considered a case in which one party provides a facial image while the other
party has access to a facial database, then introduced an extreme privacy-enhanced facial
recognition framework that effectively protects both the input data and the server output
that is running the matching function. The experiment’s results proved that the privacy-
preserving framework is accurate, and also that it is possible to perform the protocol on
modern hardware platforms.

According to the literature summarized here, we can conclude that many studies have
used different PPDL techniques as well as diverse image datasets. However, as shown in
Table 2, none of these works discuss PPDL in satellite images data.
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Table 2. Comparison of Relevant Studies about PPML Techniques.

Ref. Domain of Application DL Models PPDL Techniques Dataset

Phong
et al. [39]

• Grayscale images
• Labeled street view images

Deep neural
networks (DNNs)

Additively
homomorphic
encryption

•MNIST
• SVHN

Vizitiu
et al. [40]

• Grayscale
•Medical imaging

Deep neural
networks (DNNs)

Additively
homomorphic
encryption

•MNIST
•X-ray coronary
angiographies

Wang &
Chang. [41]

• Frontal facial images
• Grayscale images
• Grayscale fashion images

• Naive Bayes
• K-nearest
neighbors (KNN)

Local differential
privacy

• Yale Face B
•MNIST
• Fashion-MNIST

Abadi
et al. [42]

• Grayscale images
• Color images Neural networks Differential privacy •MNIST

• CIFAR-10

Huang
et al. [33]

• Color images
• Grayscale images

Convolutional
neural network
(CNN)

Additive secret-sharing
technique

• CIFAR-10
•MNIST

Ma et al. [43] Face images Neural networks Additive secret-sharing
technique FERET Database

Xia et al. [44] Concept images such as castle
Convolutional
neural network
(CNN)

Additive secret-sharing
technique

• Corel-1k
• Corel-10k

Guajardo
et al. [45] Face images GNU GMP library Secure multi-party

computation ORL Database

This research Vegetation, road, bare soil
and urban images

Convolutional
neural network
(CNN)

Partially homomorphic
encryption Satellite Dataset

All previous studies do demonstrate the ability to maintain data privacy while pre-
serving data usability when processing DL models, though. Thus, based on those works,
our research will be evaluated on a proposed DL model, namely CNN, with a new dataset
of real-world satellite images. Additionally, several experiments will be conducted us-
ing state-of-the-art DL transfer techniques to evaluate the performance of the method
we propose.

4. Proposed Method

This section will describe the proposed method for PPDL in the specific case of
satellite image classification. The proposed workflow, which is based on PHE and CNN,
is illustrated in Figure 3. Pre-processing, the data is encrypted on the client side with a
public key and cannot be decrypted without knowing the private key. Therefore, only the
encrypted data is accessible to the CNN-based model (cipher-images). Direct training on
cipher-images data is achieved through the partially homographic feature of the Paillier
encryption scheme; more details about PHE and Paillier scheme are presented in Section 4.1.
After the training process is completed, the model will undergo the testing phase with new
cipher-images data, which are encrypted using the same public key as the training process:
the proposed CNN-based model architecture is presented in Section 4.2. Finally, since the
cloud server operates directly on cipher-images data, data privacy is maintained during
both training and testing. As a result, satellite image data processing is carried out securely
and unauthorized parties cannot decipher the data.
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Figure 3. The Proposed Workflow.

4.1. The Proposed Encryption Method for Satellite Images

As previously mentioned in Section 2.2.1, the HE technique has three sub-types that
can be used for preserving data privacy. In this paper, the technique used for encrypting
the data is PHE, which we selected because it does not require as much overhead required
for executing computations. However, FHE requires a lattice-based cryptosystem, and it is
not a realistic scheme either conceptually or technically. Especially in terms of computation,
the bootstrapping section (which is the intermediate refreshing method of a processed
ciphertext), is expensive and considerably more complicated than most other options.
On the other hand, SHE allows for the performance of a limited number of sequential
ciphertext multiplication and addition operations while PHE allows for an unbounded
number of times [16,46].

The phases of the PHE technique will be described in Section 4.1.1.

4.1.1. Partially Homomorphic Encryption Schemes

There are many PHE schemes, each of which enhances a particular aspect of PHE. The
first achievement of the public key (PK) cryptosystem is Rivest-Shamir-Adleman (RSA).
Public-key encryption is asymmetric key encryption, which is a type of algorithm that
demands two different keys, one being private and unique to certain users while the other
is public [47]. The RSA scheme was established by Rivest, Shamir and Adleman (1977) as
the first public-key cryptosystem for asymmetric-key encryption with the homomorphic
property. It also defined the properties of multiplicative HE. However, strong security
principles are not necessarily fulfilled here because, in order to accomplish semantic
security, RSA must pad a message with random bits before encryption, which results
in losing the homomorphic property [48]. Since RSA does not fulfill strong security
requirements, then, this research implementation is based on the Paillier scheme. The
cryptosystem of Paillier is created by Pascal Paillier (1999) as a probabilistic asymmetric
algorithm for public-key cryptography [47]. The Paillier scheme has a homomorphic
property, unlike RSA, and it is limited to addition. So, the property of additive HE is
realized by the Paillier cryptosystem. Electronic voting is an implementation of additive
HE. Each vote will be encrypted, and only the total will be decrypted [32].

Paillier Scheme

The encryption scheme of Paillier is composed of three phases: key generation, en-
cryption, and decryption, as depicted in Algorithms 1, 2, and 3 respectively [32,47].

The decryption of a Paillier scheme requires a cipher-text that is generated by the en-
cryption process. The public key for encryption is (n, g) and the private key for decryption
is (λ, µ ).
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Algorithm 1: Key generation (p, q)
Input: Generate two unique prime numbers, p, and q and confirm that:

gcd(p× q, (p− 1)(q− 1)) = 1, where gcd represents the greatest common
divisor.

Output: (pk, sk)
1 if length(p)==length(q). then
2 Compute n = p× q, λ = lcm(p− 1, q− 1), where lcm represents the least

common multiple.

3 Choose a random integer g ∈ Z∗n2 ( between 1 and n2 )
4 Define the function: L(x) = ((x− 1)/n).
5 Verify the existence of the following modular multiplicative inverse to ensure that

n divides g’s order: µ = L(gλ mod (n2))−1 mod (n)

Algorithm 2: Encryption (m, pk)
Input: Message to encrypt where m ∈ Zn
Output: c ∈ Zn2

1 Choose a random integer r ∈ Z∗n2 ( between 1 and n2)
2 Compute the ciphertext as: c = (gm × rn) mod (n2)

Algorithm 3: Decryption
Input: c ∈ Zn2

Output: m ∈ Zn2

1 Calculate the plaintext message as: m = L(cλ mod (n2))× µ mod (n)

The Paillier cryptosystem is characterized by the following homomorphic proper-
ties [47]:

• Addition of plaintexts: the result of multiplying two ciphertexts would decrypt the
sum of their respective plaintexts, as described in the following formula:

Dpriv(Epub(m1)Epub(m2) mod (n2) = m1 + m2 mod (n). (3)

• The ciphertext results through raising g to the plaintext would decrypt to the sum of
their respective plaintexts, as described in the following formula:

Dpriv(Epub(m1)gm2 mod (n2) = m1 + m2 mod (n). (4)

4.2. Proposed Convolutional Neural Network (CNN)

As previously discussed, the main goal of this study is to ensure the privacy of satellite
images when using public DL methods. Thus we propose to develop a custom CNN model
and test its performance on satellite images encrypted using the proposed technique. The
proposed CNN model is composed of the following layers: three convolution layers,
three polling layers, a dropout layer, a flattening layer, two fully connected layers, and an
activation function (ReLu, Softmax). Table 3 presents the proposed CNN architecture.

Here the CNN was trained on encrypted data and passed through a stack of three
convolution layers with 32 filters for the first and the second convolution and then 64 layers
for the third convolution. The max-pooling layers that subsample the image by filters
of 2 × 2 were placed after each convolution layer with 32, 32 and 64 filters, sequentially.
The last two fully connected layers were loaded with 64 and 4 nodes sequentially, and the
ReLu activation functions were utilized throughout the network, except for the last layer.
For regularization, the dropout layer was utilized after the last pooling layer to prevent
overfitting. A flattening layer was placed after the dropout layer and before the first fully
connected layers in order to adjust the whole pooled feature map into one column. A
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Softmax activation function was placed in the last fully connected layer (output layer) to
provide a class prediction.

Table 3. CNN Architecture.

No. Layers Output Shape Parameters Dropout Rate

1 Input 128 × 128 × 3 — —
2 Convolutional 128 × 128 × 32 896 —
3 Activation (ReLu) — — —
4 MaxPooling 64 × 64 × 32 — —
5 Convolutional 64 × 64 × 32 9248 —
6 Activation (ReLu) — — —
7 MaxPooling 32 × 32 × 32 — —
8 Convolutional 32 × 32 × 64 18,496 —
9 Activation (ReLu) — — —

10 MaxPooling 16 × 16 × 64 — —
11 Dropout 16 × 16 × 64 — 0.4
12 Flatten 16,384 — —
13 Fully Connected 64 1,048,640 —
14 Activation (ReLu) — — —
15 Fully Connected 4 — —
16 Activation (softmax) — 260 —

4.2.1. Data Augmentation

Data augmentation is a technique for increasing the amount of data available for train-
ing the proposed CNN model without actually acquiring new data [49]. This technique is
used to expand the dataset into a larger one more appropriate for DL model training. There
are various strategies used for data augmentation, including rotation, zoom, horizontal,
and vertical shift. These techniques assist in enhancing the efficiency of CNNs [50].

Different data augmentation strategies have been utilized in this research. For instance,
we applied a 90-degree rotation range, a zoom and shear range of 20%, a brightness scale
between 0.2 to 1.0 and a shift range of 20% in height and width. Finally, a horizontal flip
and vertical flip have also been applied. Table 4 shows the detailed parameters of our data
augmentation processes

Table 4. Augmentation Parameters.

Augmentation Parameter

Rotation 90°
Zoom 20%
Shear 20%

Horizontal shift 20%
Vertical shift 20%
Brightness [0.2, 1.0]

Horizontal flip Yes
Vertical flip Yes

5. Experiments

This section describes the dataset we utilized as well as the environment in which our
experiment took place. It will also present image encryption results, clarify the encryption
schema’s efficiency, and examine the CNN model’s performance with both encrypted
and plain data in order to evaluate the efficiency of the proposed encryption method.
Experiments with pre-trained models will also be presented as another means of evaluating
the efficiency of the proposed encryption method.
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5.1. Dataset Description

In this study, experiments are conducted using satellite images produced by the
French Satellite pour l’Observation de la Terre (SPOT) satellite. These satellite images were
acquired using Spot 6 and Spot 7 with a spatial resolution of 2.5 m. They have been corrected
both radiometrically and geometrically using ortho-rectification and spatial registration
with sub-pixel accuracy and through close comparisons against a global reference system.
Four land-cover types are identified in these regions, namely: urban, bare soil, vegetation,
and road.

The dataset used in this paper is comprised of 37,774 images, as further illustrated in
Table 5.

Table 5. Land cover types with number of samples.

Land Cover Type No. of Samples

Urban 9730
Vegetation 8440
Bare soil 9124

Road 10,480

The considered dataset is further divided into three datasets, resulting in 22,666 images
for training the model (training set), 7554 images for validating the trained model (valida-
tion set), and 7554 images for assessing the model performance (testing set).

To obtain this dataset, a semantic segmentation is conducted using our previous
works [51–53]. The four classes—namely, urban, bare soil, vegetation and road—are
extracted from the satellite images, meaning that the resulting images each contain both
the real value of pixels of the extracted class and zero for the values of the other classes.
Then, each image containing a given class is divided into non-overlapping blocks of
256 × 256 pixels and saved into folders, each with the name of the corresponding class. A
sample of this dataset is depicted in Figure 4, wherein the white represents a given land
cover class and the black represents the values of other classes.

5.2. Experimental Set-Up

The hardware configuration and software used for the encryption process are:

• Graphics processing unit: Intel Core i5-3210M (2.50 GHZ).
• Memory: 4 GB.
• Operating system: Windows 10 Professional.
• Visual Studio Code with Python 3.9 extension.

These CNN experiments are conducted using the Google Colab repository, which
allowed us to execute Python code through the browser and also provided access to
NVIDIA graphics processing unit (GPUs). The libraries used to conduct these experiments
are the Keras DL library and TensorFlow backend, a DL platform. The proposed model
was trained using Stochastic Gradient Descent (SGD) optimizer with a learning rate of
0.001, 32 batch size and 100 epochs.

5.3. Experimental Results
5.3.1. Images Encryption

This section presents the results of image encryption we obtained using the Paillier
scheme, or PHE. In addition, it also evaluates the efficiency of the encryption in terms of
its reliability.
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Figure 4. Sample of the dataset.

The Paillier encryption scheme enables researchers to train and test the CNN model
without visual information. From this, Figure 5 shows the results of image encryption for
four samples representing the four-land cover classes: namely urban, vegetation, bare soil,
and road. The original images were encrypted using the public key and decrypted using
the private key. The measurement of encryption efficiency and security is a significant
feature of image encryption scheme. Visual observation is appropriate in certain situations,
but it does not indicate the amount of information hidden. Therefore, the correlation
coefficient measurement has been utilized in order to evaluate the Paillier encryption
scheme’s efficiency.
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Figure 5. (a) Bare soil class; (b) Road class; (c) Urban class; (d) Vegetation class.
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Security Evaluation

In this section, different security measurement has been utilized to evaluate the Paillier
encryption scheme’s efficiency.

The correlation coefficient (CC) is used to measure the degree to which two variables
are related. The CC value range is between −1.0 and 1.0. A negative correlation is repre-
sented by a correlation of −1.0, while a positive correlation is represented by a correlation
of 1.0. The correlation coefficient is calculated using the following equation [54–57]:

CC = ZN
i=1(xi − x̄)(yi − ȳ)/

√
ZN

i=1(xi − x̄)2(yi − ȳ2), (5)

where x represents a plain-image, and y represents an encrypted image, and x̄, ȳ are the
mean of the plain-image and encrypted image, respectively.

An image cryptosystem is considered efficient if the encryption scheme covers all
features of a plaintext image, while the encrypted image is also completely unpredictable
and strongly uncorrelated. Therefore, the encryption scheme’s efficiency can be determined
if the correlation coefficient between the encrypted image and plain-image close to zero
or −1.

The CC result of the plain image and its corresponding encrypted image from the
satellite image dataset is −0.0041, which is a negative relationship. This result indicates
the efficiency of this encryption scheme where there are no visual features identified in the
encrypted image.

Moreover, a number of other security parameters are evaluated, and the results are
shown in Table 6. From Table 6, it is clear that the encrypted images are secure and an
intruder cannot get any idea from the encrypted information. Ideally, entropy should be
close to 8, and we can see from Table 6 that the value of entropy for ciphertext is 7.9596,
much higher than 3.12 for plaintext image. The higher value of contrast (10.57) indicates
a secure image. Low energy and homogeneity values show that an encryption scheme
is robust and highly secure. In our case, energy and homogeneity values are 0.0156 and
0.3884, respectively. These values are lower than for plain images. For MSE key sensitivity
and unified average change intensity, higher values are required. From Table 6, higher
values are evident. Additionally, the lower value of peak signal to noise ratio and structural
similarity index highlighted the security of the encrypted image.

Table 6. Security evaluation.

Parameter Plain-Images Cipher-Images

Entropy [55] 3.1206 7.9596
Contrast [58] 5.3191 10.5767
Energy [55] 0.5363 0.0156

Homogeneity [55] 0.9044 0.3884
Mean Square Error (MSE) [54,59] - 2.1236× 104

Peak signal to noise ratio [55] - 4.8601
Key sensitivity [60] - 99.5725

Unified average change intensity [58] - 33.66
Structural similarity index [61] - 0.0018

5.3.2. CNN Performance

This section will present the performance of the custom CNN proposed in this study
over both encrypted and plain data.

Data Augmentation

The first step in presenting the performance of this CNN model is to describe the
results of our data augmentation processes. This latter operation is ensured by using the
ImageDataGenerator function from the Keras deep learning library. The results obtained
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from our selected data augmentation techniques, including rotation, zoom, shear, height
and width shift, brightness, and horizontal and vertical flip, are illustrated in Figure 6. A
sample image from the satellite dataset was used to demonstrate these results. As shown
in Figure 6a, the rotation results in pixels out of the images frame, leaving blank areas
with no pixel details, while zoom augmentation in Figure 6b results in making the images’
objects larger. As shown in Figure 6c, shearing has been used to shift one part of the images,
resulting in a parallelogram shape. Figure 6d,e shows that all images’ pixels have been
moved in one direction, either horizontally or vertically, while maintaining the original
images’ dimensions. Furthermore, as shown in Figure 6f, images have been randomly
darkened or brightened to further augment the dataset. The images’ brightness enables
the CNN models to generalize through trained images under varying lighting conditions.
Data augmentation retains the features that are essential for predictions. As shown in
Figure 6g,h, the pixels are completely rearranged when flipping the images horizontally
and vertically, but the features are retained.

Model Performance

The goal of this section is to evaluate the performance of the proposed PPDL process
in the context of encrypting satellite images using two criteria: namely, accuracy and
applicability. Therefore, the data-driven model’s efficiency and outcome were analyzed
for by implementing the model on unencrypted (plain images) and encrypted (cipher
images) data. Furthermore, quantitative analysis is conducted using accuracy metrics to
evaluate the performance of the proposed CNN model for satellite image classification.
Accuracy is defined as the total number of correct classifications, either truly positive (TP)
or truly negative (TN), as compared to the total number of images in the dataset, as given
in Equation (6). Training accuracy refers to a model’s accuracy on the training data it was
built on, while test accuracy refers to a model’s accuracy on test data it is encountering
after training.

Accuracy = (TP + TN)/(TP + TN + FP + FN)100, (6)

where TP is the number of instances where the prediction was correct and FN is the number
of instances where the prediction was incorrect. The number of correctly-predicted negative
instances is depicted as TN, while the number of wrongly predicted negative instances is
known as false positives or FP [50].

The proposed CNN model has been trained using both unencrypted (plain-images)
and encrypted (cipher-images) data. Consequently, to demonstrate the network’s capacity
to learn from encrypted data, we also evaluated the CNN model’s capacity to preserve
performance by conducting and comparing results for two cases.

• Case 1: Training and testing the proposed CNN model with unencrypted data. The
results from training the model with plain data achieved 96.91% and 96.84% accuracy
for training and validation, respectively, on the training dataset, as well as 93.84%
accuracy for the testing dataset. Figure 7 demonstrates the accuracy results for training
and validating the CNN model over plain satellite images.

• Case 2: Training and testing the proposed CNN model over encrypted data. The
results of training the model on encrypted data achieved 94.04% and 94.30% accuracy
for training and validation, respectively, on the training dataset, as well as 90.92%
accuracy for the testing dataset. Figure 8 demonstrates the accuracy results for training
and validating the CNN model on encrypted satellite images.
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Figure 6. Sample image data augmentation. (a) Rotation results; (b) Zoom results; (c) Shearing results; (d) Horizontal shift
results; (e) Vertical shift results; (f) brightness results; (g) Horizontal flip results; (h) Vertical flip results.
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Figure 7. Model accuracy over plain data. (a) Training accuracy; (b) Validation accuracy.

Figure 8. Model accuracy over encrypted data. (a) Training accuracy; (b) Validation accuracy.

The results obtained from the training and validation of the proposed CNN model
with plain data reached about 2% higher accuracy over the encrypted data, as presented
in Table 7. Moreover, the model’s performance with plain data reached about 3% higher
accuracy over the encrypted data, which indicates a low tradeoff between data utility
and privacy. Therefore, the approach that we propose here provides maximum privacy
protection while also maintaining data utility. The loss of data utility due to data encryption
is measured by comparing the model’s performance with both the encrypted data and the
plain data. To allow such a comparison, the same CNN model was used for both encrypted
data and plain data.

Table 7. The proposed model’s performance over plain and encrypted data.

Type of Dataset Training Accuracy Validation Accuracy Prediction Accuracy

Plain 96.91% 96.84% 93.84%
Encrypted 94.04% 94.30% 90.92%
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5.4. Evaluation of the Privacy-Preserving

In order to evaluate the performance of the proposed privacy-preservation scheme, we
also conducted additional experiments using pre-trained models. Here, four common pre-
trained models (namely VGG16, Xception, ResNet50 and DenseNet121) were considered.
Each was modified by fine-tuning the last layers, whereas the models’ previous layers were
preserved frozen. We used the same batch size, initial learning rate, number of epochs and
input image resolution for all models, as depicted in Table 8.

Table 8. Characteristics of the four considered pre-trained CNN models considered here.

CNN Models Batch Size Initial
Learning Rate Epochs Input Image

Resolution Parameter

VGG16 32 0.001 100 128 × 128 14.847.044
Xception 32 0.001 100 128 × 128 29.916.844
ResNet50 32 0.001 100 128 × 128 31.924.484

DenseNet121 32 0.001 100 128 × 128 8.002.756

A comparison of the CNN models’ classification accuracy, as obtained when trained
on encrypted images, is presented in Table 9. The results show good classification accuracy
of all the pre-trained CNN models. As we note, DenseNet121 achieved the best accuracy
among the four models, with an accuracy of 93.36% for training, 90.93% for validation and
90.5% for testing.

Table 9. Comparison of classification accuracy between pre-trained CNN models using encrypted images.

CNN Models Training Accuracy Validation Accuracy Prediction Accuracy

VGG16 89.52% 90% 89%
Xception 92.65% 90.93% 89.17%
ResNet50 93.36% 90.93% 89.8%

DenseNet121 93.36% 90.93% 90.5%
The proposed model 94.04% 94.30% 90.92%

Figure 9 illustrates the training accuracy of the five CNN models: both the one we
propose and the four pre-trained ones. We note that our proposed model provides better
training accuracy compared to all four pre-trained CNN models.

Execution Time

All runtimes reported in this section were measured on the Google Colab repository
with a CPU running at 2.30GHz. Table 10 presents a detail of the runtime for each CNN
model. The training runtime for VGG16, Xception, and ResNet50 is 22.27, 21.26, and
30.8 min, respectively. Additionally, the prediction runtime for these models is 0.803,
0.827, and 1.835 s, respectively. The training runtime for DenceNet121 and the proposed
model is 18.34 and 16.43 min, and the prediction runtime is 4.134 and 0.976 s, respectively.
Accordingly, the computation overhead varies from one model to another. However,
PHE data are significantly fast during both training and prediction and therefore the
computation overhead of the proposed encryption schema is low.
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Figure 9. Training accuracy of different CNN models.

Table 10. CNN models’ run-time.

CNN Models Training Run-Time Prediction Run-Time

VGG16 22 min 27 s 0.803 s
Xception 21 min 26 s 0.827 s
ResNet50 30 min 8 s 1.835 s

DenseNet121 18 min 34 s 4.134 s
The proposed model 16 min 43 s 0.976 s

5.5. Discussion

Recent years have seen increasing concerns about protecting the privacy of confidential
information when processing data using models. This leads to the need for cryptographic
techniques to solve privacy concerns in data-driven models. Several PPDL techniques have
been proposed in the literature to solve these concerns. This research is, to the best of our
knowledge, the first work that investigates PPDL for satellite image classification.

In this study, we have proposed a PHE-based Paillier scheme as a means of preserving
data privacy. This PHE scheme enables several operations to be performed directly on the
encrypted data (cipher-images) without the need to access the unencrypted data (plain-
images). Furthermore, the proposed encryption scheme offers high security, as measured
with different security parameters. Because the data are encrypted with a PHE scheme, the
images contain no identifiable information and thus do not reveal nothing sensitive. The
capability of the Paillier encryption scheme in DL models was further demonstrated by
tackling satellite image classification.

The performance of CNN models is highly dependent on the presence of a large
dataset, which often constitutes a limitation in this research area since only comparatively
small datasets are available. For example, the satellite dataset used in this research com-
prises 37,774 images divided into four classes. Therefore, this research has utilized data
augmentation techniques to help increase the satellite dataset variety and thus improve
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the CNN model’s performance. An important observation here is that the PHE technique
used in this study has ensured the privacy of data without compromising the classifica-
tion accuracy of DL models. The results we have achieved show that the classification
accuracy of different DL models is relatively close for both encrypted and plain data.
Therefore, the proposed encryption scheme ensures good classification of satellite images
while preserving the privacy and security of data included within these images.

6. Conclusions and Future Works

DL has become the core technology in many forms of data analysis. Therefore, various
security threats and corresponding defensive PPDL techniques have attracted much atten-
tion in both the research community and in global interests such as military operations
and business. With such an increased interest in processing satellite image data, there
also comes a great demand for preserving privacy when using public DL technique for
processing satellite images.

In this study, we proposed a PHE-based technique to protect sensitive information
in satellite images when applying public DL models. To the best of our knowledge, this
study constitutes the first research work that focused on PPDL as applied to satellite
images. The encryption scheme developed in this research enables both the security of
data and good classification accuracy. To evaluate the encrypted scheme’s efficiency, we
conducted several experiments on both our custom model and several pre-trained CNN
models. The results show a high level of efficiency for both the plain and encrypted data.
In general, all models achieved good results in satellite image classification, but ours was
the best by a slight margin. However, although our proposed PHE encryption scheme is
efficient and provides good classification accuracy while preserving sensitive information
within satellite images, several possible extensions can be considered in future work. We
plan to apply the proposed approach to other datasets and test their performance. In
addition, applying other PPDL techniques such as SS, SMPC, and DP, and evaluating their
efficiency with the proposed method will be considered as a future perspective of this
work. Moreover, we plan to explore the possibility of developing a hybrid technique that
integrates more than one PPDL technique and then evaluate its performance, particularly
in terms of privacy and classification accuracy.
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Appendix A

Figure A1. Secret Sharing Technique [34].

Figure A2. Secure Multi-Party Computation Technique [35].

Figure A3. Differential Privacy Technique. Available online: https://medium.com/ydata-ai/
differential-privacy-a-brief-introduction-fee4756d19e (accessed on 6 June 2021).

https://medium.com/ydata-ai/differential-privacy-a-brief-introduction-fee4756d19e
https://medium.com/ydata-ai/differential-privacy-a-brief-introduction-fee4756d19e
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