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Abstract
Proton pump inhibitors (PPIs) have been associated with an increased risk of fragility fractures in pharmaco-epidemiological 
studies. The mechanism is unclear, but it has been speculated that by neutralising gastric acid, they may reduce intestinal 
calcium absorption, causing secondary hyperparathyroidism and bone loss. Here we investigated that hypothesis that the 
skeletal effects of PPI might be mediated by inhibitory effects on the bone-specific phosphatase PHOSPHO1. We found that 
the all PPIs tested inhibited the activity of PHOSPHO1 with IC50 ranging between 0.73 µM for esomeprazole to 19.27 µM 
for pantoprazole. In contrast, these PPIs did not inhibit TNAP activity. We also found that mineralisation of bone matrix in 
primary osteoblast cultures was inhibited by several PPIs in a concentration dependent manner. In contrast, the histamine-2 
receptor antagonists (H2RA) nizatidine, famotidine, cimetidine and ranitidine had no inhibitory effects on PHOSPHO1 
activity. Our experiments show for the first time that PPIs inhibit PHOSPHO1 activity and matrix mineralisation in vitro 
revealing a potential mechanism by which these widely used drugs are associated with the risk of fractures.
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Introduction

Proton pump inhibitors (PPIs) are amongst the most com-
monly prescribed drugs and are used in the treatment of gas-
troesophageal reflux disease (GORD), peptic ulcer disease 
and dyspepsia [1]. In the UK alone, more than 60 million 
PPI prescriptions were issued during 2017 [2]. The safety 
records of PPI’s are generally favourable, but pharmaco-
epidemiological evidence has consistently shown a posi-
tive association between PPI use and bone fractures. For 
example, large scale studies conducted in Denmark, UK 
and Canada all reported an increased risk of osteoporosis 
related fractures including fractures to the hip and spine with 
chronic PPI therapy [3–5].

The most commonly accepted explanation is that PPIs 
predispose to fractures by neutralising gastric acid. This 
in turn is thought to impair intestinal calcium absorption, 
secondary hyperparathyroidism and increased osteoclastic 
bone resorption with bone loss [6–8]. However, in healthy 
subjects, short-term treatment with the PPI omeprazole was 
not found to have inhibitory effects on calcium absorption 
[9, 10]. Furthermore, epidemiological studies with histamine 
2 receptor antagonists (H2RAs), which also supress gastric 
acid secretion, have not shown an association with frac-
tures [3, 11–15]. Likewise, a recent meta-analysis reported 
that the use of PPIs, but not H2RAs, is associated with an 
increased risk of hip fracture [16]. These conflicting data 
suggest that PPI use may increase fracture incidence by a 
mechanism that distinct from effects on intestinal calcium 
absorption.

PHOSPHO1, a member of the haloacid dehalogenase 
superfamily, is a cytosolic phosphatase highly expressed by 
osteoblasts which is essential for bone mineralisation [17]. 
It liberates inorganic phosphate (Pi) through the hydrolysis 
of phospholipid substrates within the matrix vesicle (MV) 
membrane [17–19]. Within this protected environment, Pi 
accumulates and chelates with Ca2+ which is enriched in 
MVs to form mineral crystals which subsequently invade 
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and mineralise the organic collagenous scaffold [17–22]. 
Deletion of PHOSPHO1 in mice results in bowed long 
bones and spontaneous greenstick fractures, decreased cor-
tical BMD and accumulation of osteoid in trabecular bone 
[23]. Similarly, osteoblasts treated with a PHOSPHO1-
specific inhibitor and cultures of Phospho1 deficient pri-
mary osteoblast both revealed reduced matrix mineralising 
ability, whereas matrix mineralisation was increased by 
osteoblasts overexpressing PHOSPHO1 [24, 25]. A critical 
role for PHOSPHO1 in the mineralisation process was con-
firmed in a comparison of the bone phenotype of; Alpl−/−; 
Phospho1−/− double knockout mice to that of Alpl−/− and 
Phospho1−/− mice. The skeleton of both single gene knock-
outs was impaired, whereas the double ablation led to the 
complete absence of skeletal mineralisation and embryonic 
lethality. These experimental data are consistent with the 
notion that PHOSPHO1 and TNAP have independent, non-
redundant roles during the mineralisation process [23].

We previously identified, through a screen of chemical 
libraries containing over 50,000 compounds, the PPI, lan-
soprazole as a PHOSPHO1-specific inhibitor [18]. Indeed, 
lansoprazole non-competitively inhibited recombinant 
human PHOSPHO1 activity by over 70% and caused a 57% 
inhibition of osteoblast MV calcification, but had no effect 
on tissue non-specific alkaline phosphatase (TNAP) activity 
[18]. Furthermore, in vivo studies disclosed that lansopra-
zole administration to developing chick embryos completely 
inhibited mineralisation of all leg and wing long bones [26].

Considering the fact that PHOSPHO1 plays a critical 
role in bone mineralisation, we hypothesise that the asso-
ciation between PPI use and bone fractures is possibly due 
to their inhibitory effect on PHOSPHO1 activity. To address 
this hypothesis, we used in vitro approaches to evaluate the 
potential of commonly prescribed PPIs and H2RAs to inhibit 
both PHOSPHO1 enzyme activity and osteoblast matrix 
mineralisation.

Materials and Methods

PPI and H2RAs

The PPIs lansoprazole, omeprazole, pantoprazole and 
esomeprazole (Cayman Chemicals, Michigan, USA) were 
used at varying concentrations (0-100 µM) in the phos-
phatase activity and in vitro mineralisation assays detailed 
below. Similarly, the H2RAs nizatidine, famotidine, cimeti-
dine and ranitidine (Selleckchem, Munich, Germany) were 
also used at 0-100 µM.

Primary Osteoblast Isolation

Primary calvarial osteoblasts were obtained from 4-day-old 
wild-type C57Bl/6 mice. Primary osteoblasts were isolated 
by sequential enzyme digestion of excised calvarial bones 
using a four-step process as has previously been described 
[7, 8] [1 mg/ml collagenase type II in Hanks’ balanced salt 
solution (HBSS) for 10 min; 1 mg/ml collagenase type II 
in HBSS for 30 min; 4 mM EDTA for 10 min; 1 mg/ml 
collagenase type II in HBSS for 30 min]. The first digest 
was discarded and the cells were re-suspended in growth 
medium consisting of a-MEM (Invitrogen, Paisley, UK) 
supplemented with 10% (v/v) FBS and 1% gentamycin 
(Invitrogen). Osteoblasts were seeded at a density of 1 × 104 
cells/cm2 and grown to confluency at which point 2 mM 
β-glycerophosphate and 50 µg/ml ascorbic acid was added 
along with a PPI (0–50 µM) as described in the results. 
Media was changed every 2–3 days for the duration of the 
28-day experiments.

Assessment of Primary Osteoblast Matrix 
Mineralisation

After 28 days, primary cell cultures were fixed in 4% para-
formaldehyde for 5 min at room temperature. Cell monolay-
ers were stained with aqueous 2% (w/v) Alizarin red solu-
tion for 5 min at room temperature. The bound stain was 
solubilised in 10% cetylpyridinium chloride and the optical 
density of the resultant eluted solution measured by spec-
trophotometry at 570 nm.

Phosphatase Assays

Recombinant human PHOSPHO1 (50 ng) was generated as 
previously described [27] and incubated with varying con-
centrations of the aforementioned PPIs and H2RAs in exper-
imental assay buffer (20 mM Tris, 2 mM MgCl2 & 25 µg/
ml BSA) at 37 °C for 15 min. Using the BIOMOL® Green 
assay (Enzo, Exeter, UK), standards (0-2 nM) and samples 
were then incubated with 2.5 mM β-glycerol phosphate for 
30 min at 37 °C with gentle agitation [27]. The reaction was 
stopped using 100 µl BIOMOL® Green and after being left 
for 30 min at room temperature, the absorbance was read 
using spectrophotometry at 630 nm. For TNAP, 2 ng recom-
binant human TNAP (R&D Systems, Abington, UK), was 
incubated with varying concentrations of the aforementioned 
PPIs and H2RAs in experimental assay buffer (1 M dieth-
ylamine hydrochloride, 1 mM MgCl2 and 20 µM ZnCl2). 
Using the BIOMOL® Green assay, standards (0-2 nM) and 
samples were then incubated with 0.5 mM p-nitrophenyl 
phosphate (pNPP) for 30 min at 37 °C with gentle agitation. 
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The reaction was stopped using 100 µl BIOMOL® Green 
and after being left for 30 min at room temperature, the 
absorbance was read using spectrophotometry at 630 nm.

Statistical Analysis

The data are expressed as the mean ± standard error of the 
mean (S.E.M) of at least three independent experiments. Sta-
tistical analysis was performed by one-way analysis of vari-
ance (ANOVA). P < 0.05 was considered to be significant 
and noted as *; P values of < 0.01 and < 0.001 were noted 
as ‘**’ and ‘***’ respectively.

Results

PPIs are Potent Inhibitors of PHOSPHO1 Activity

In accordance with our previous results, lansoprazole inhib-
ited PHOSPHO1 activity (IC50 = 2.767 µM; Fig. 1A). Simi-
larly, here we show for the first time that the PPIs omeprazole 

(IC50 = 2.803 µM) and esomeprazole (IC50 = 0.726 µM) 
are potent inhibitors of PHOSPHO1 activity (Fig. 1B, C). 
Whilst pantoprazole also inhibited PHOSPHO1 activity, 
its IC50 was 19.27 µM, suggesting that this PPI is the least 
potent PHOSPHO1 inhibitor tested (Fig. 1D).

PHOSPHO1 Activity is Not Inhibited by H2RAs

We next sought to examine whether PHOSPHO1 activity is 
similarly inhibited by four commonly prescribed H2RAs. At 
all concentrations tested, there was no inhibition of PHOS-
PHO1 activity upon addition of nizatidine (Fig. 2A), famoti-
dine (Fig. 2B), cimetidine (Fig. 2C) and ranitidine (Fig. 2D).

PPIs and H2RAs Have No Effect on TNAP Activity

We next determined whether the aforementioned PPIs are 
able to inhibit TNAP activity. At all concentrations tested, 
lansoprazole, omeprazole, esomeprazole and pantopra-
zole did not inhibit TNAP activity (Fig. 3A–D). Similarly, 

Fig. 1   The effects of proton pump inhibitors (PPIs) on PHOSPHO1 activity. PHOSPHO1 activity was assessed by phosphatase assays in the 
presence of A lansoprazole, B omeprazole, C esomeprazole and D pantoprazole
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there was no inhibition of TNAP activity by the H2RAs 
(Fig. 4A–D).

PP1s Inhibit Primary Osteoblast Matrix 
Mineralisation

To examine whether the inhibition of PHOSPHO1 by PPIs 
has an effect on matrix mineralisation, we cultured primary 
osteoblasts in the presence of different concentrations of 
lansoprazole, omeprazole, esomeprazole and pantoprazole. 
We found that whilst control cultures formed mineralised 
nodules after 28 days in culture, the addition of 5 µM and 
10 µM lansoprazole significantly decreased matrix minerali-
sation (Fig. 5A–C). Despite this, nodules were clearly visible 
throughout the cultures suggestive that collagen deposition 
is still occurring and therefore the effects seen are directly 
on the mineralisation of this matrix (Fig. 5A). Similarly, 
omeprazole and esomeprazole significantly inhibited matrix 
mineralisation at concentration of 10 µM (Fig. 5A–C). In 
concordance with the higher IC50 of pantoprazole, culture of 

primary osteoblasts with 5 µM and 10 µM pantoprazole was 
not sufficient to inhibit matrix mineralisation (Fig. 5A–C). 
We therefore cultured cells with 50 µM pantoprazole and 
indeed saw a significant decrease in matrix mineralisation 
(Fig. 5D).

Discussion

In this study, we report that all the PPIs tested were inhibi-
tors of PHOSPHO1 activity whilst they had no effect on 
TNAP activity. The most potent inhibitor was esomeprazole 
which gave 50% inhibition in the sub-micromolar range, fol-
lowed by lansoprazole, omeprazole and pantoprazole Con-
sistent with this, the PPIs we tested inhibited mineralisation 
of bone matrix in vitro in low micromolar concentrations, 
except pantoprazole which did not have inhibitory effects 
until higher concentrations of 50uM were used. Conversely, 
we tested several H2RAs and these had no effect on PHOS-
PHO1 or TNAP phosphatase activity.

Fig. 2   The effects of histamine-2 receptor antagonists (H2RAs) on PHOSPHO1 activity. PHOSPHO1 activity was assessed by phosphatase 
assays in the presence of A cimetidine, B ranitidine, C famotidine and D nizatidine
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Several studies have shown an association with between 
PPIs use and fractures. Indeed, a large-scale meta-analysis 
has reported a significant increase in relative risk (RR) of 
fractures at the hip [RR = 1.26, 95% CI = 1.16–1.36] spine 
[RR = 1.58, 95% CI = 1.38–1.82] and any-site fractures 
[RR = 1.33, 95% CI = 1.15–1.54] in PPI users as compared 
to controls [28].

The PPIs reduce gastric acid secretion through inhibi-
tion of H + /K + -ATPases located in stomach parietal cells 
[29]. In view of this it has been speculated that calcium 
malabsorption mediated by neutralisation of gastric acid 
may cause secondary hyperparathyroidism and bone loss 
[6–8]. Other potential mechanisms include (i) impaired 
bone resorption resulting in altered bone remodelling and 
(ii) hypergastrinemia resulting in parathyroid hyperplasia 
and decreased bone mineral density [30, 31]. The H2RAs 
are also widely used to suppress gastric acid production in 
the treatment of GORD, dyspepsia and peptic ulcers these 
have not been associated with fractures in epidemiologi-
cal studies which calls into question the hypothesis that 

the association between fractures and PPI used is medi-
ated by reduced calcium absorption due to achlorhydria 
[3, 11–15]. The data presented here is consistent with this 
and suggests that inhibition of PHOSPO1 may be an alter-
native mechanism by which PPIs, affect bone health. The 
PHOSPHO1 enzyme is a bone-specific phosphatase that 
is highly expressed at sites of mineralization and essential 
for the formation of mechanically competent bone [17]. It 
is biochemically active within MVs [18] and it has been 
proposed that the accumulation of Pi within MVs is a 
consequence of PHOSPHO1s intravesicular activity and 
also intravesicular trafficking of TNAP‐generated Pi via 
a Type III Na‐Pi co‐transporter, PiT1 [32–34]. We have 
previously shown that MV mineralisation is reduced in 
Phospho1−/− mice [33, 35] and that lansoprazole treatment 
of MVs isolated from osteoblasts impairs their minerali-
sation [26]. It is therefore possible that PPI inhibition of 
PHOSPHO1 activity disrupts the biochemical machinery 
needed to establish the appropriate inorganic pyrophos-
phate to Pi ratio required to initiate the formation of HA 

Fig. 3   The effects of proton pump inhibitors (PPIs) on TNAP activity. TNAP activity was assessed by phosphatase assays in the presence of the 
PPIs A lansoprazole, B omeprazole, C esomeprazole and D pantoprazole
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mineral within MVs [34, 36]. Our in vitro cell culture 
work is also consistent with a previous study in which 
lansoprazole, esomeprazole and omeprazole decreased the 
ability of osteoblasts to mineralise their matrix, whilst also 
inhibiting osteoblast gene expression [37]. Therefore, it 
is plausible that the PPIs could also be having a negative 
effect on osteoblast differentiation and so to ensure that the 
mineralisation inhibitory effects observed here are solely 
due to PHOSPHO1 inhibition, it would be expected that 
the PPIs would exert the same effect if they were added 
only to the latter stages of the culture period, rather than 
throughout. However, we saw no effect on nodule forma-
tion, suggesting that our osteoblast cultures are still pro-
ducing a collagenous matrix and it is indeed the miner-
alisation of this matrix which is being inhibited. These 
observations at the cell and MV level are consistent with, 
and explain, the reduced bone mineral content and BMD 
in rodents administered omeprazole [38, 39].

Interestingly, the data of this present study indicated no 
effect of PPIs on TNAP phosphatase activity; a result that is 
consistent with our previous study that reported lansoprazole 

and other small molecule inhibitors of PHOSPHO1 had no 
effect on TNAP activity [18]. The importance of TNAP in 
the mineralisation process is well accepted [40, 41]. Indeed, 
in patients with hypophosphatasia and also in Alpl−/− mice, 
extravesicular crystal propagation is retarded due to an accu-
mulation of inorganic pyrophosphate in the extracellular 
matrix [42]. These data imply that the inhibition of osteo-
blast matrix mineralisation by the PPIs is via their inhibition 
of PHOSPHO1, and not TNAP activity. A note of caution 
in the interpretation of these data is nevertheless warranted; 
other in vitro studies have reported that lansoprazole can 
inhibit porcine TNAP activity albeit with a Ki value of ~ 100 
times higher than that reported for the inhibition of recom-
binant human PHOSPHO1 with lansoprazole [18, 43]. An 
explanation for these different results is unclear.

We have previously shown TNAP expression and activity 
to be decreased in PHOSPHO1 knockout osteoblasts, with 
a concomitant increase in inorganic pyrophosphate levels 
[23]. However, the contribution of lowered TNAP levels to 
the decreased mineralisation noted in the absence of PHOS-
PHO1 is debatable, as transgenic overexpression of TNAP 

Fig. 4   The effects of histamine-2 receptor antagonists (H2RAs) on TNAP activity. TNAP activity was assessed by phosphatase assays in the 
presence of the H2RAs A cimetidine, B ranitidine, C famitidine and D nizatidine
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did not correct the bone hypomineralisation of Phospho1 
knockout mice, despite normalisation of their plasma inor-
ganic pyrophosphate levels [23]. Therefore, it is likely that 
the main cause of the hypomineralisation seen in our PPI 
treated cell cultures is indeed due to inhibition of PHOS-
PHO1 activity, as also indicated in our phosphatase assays.

The order of potency (based on our IC50 data) of PPI 
inhibition of PHOSPHO1 activity is esomeprazole > ome-
prazole = lansoprazole > pantoprazole (Fig. 2), which pre-
cisely mimics our data in mineralising primary osteoblasts, 
but also their ability (based on omeprazole equivalents) to 
inhibit acid production [44, 45]. Intriguingly, this suggests 

Fig. 5   The effects of proton pump inhibitors (PPIs) on primary 
osteoblast matrix mineralisation. Primary osteoblasts were cultured 
for 28  days in the presence of 0–10  µM lansoprazole, omeprazole, 
esomeprazole and pantoprazole. A Microscopic images of alizarin 
red stained mineral associated with nodule formation. Scale bars are 

200  μm. B Alizarin red staining. Images are representative of three 
individual experiments. C Quantification of alizarin red staining, D 
Alizarin red staining of primary osteoblasts treated with 50 µM pan-
toprazole. The data are represented as mean ± S.E.M. (n = 3 wells/
treatment) P < 0.05*, P < 0.01**, P < 0.001***
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that the structure of the more potent acid suppressive PPIs 
accounts for their PHOSPHO1 inhibitory properties. Also, 
pantoprazole, the PPI least able to inhibit PHOSPHO1 
enzyme activity was also a poor inhibitor of matrix min-
eralisation. Knowing the molecular model of PHOSPHO1 
[21], it would be of interest to perform ligand docking 
studies to gain more information as to how the different 
PPIs associate with the enzyme and temper its biological 
activity. This has the potential to equip industry with the 
knowledge to generate modified and improved PPIs with-
out the undesired off target bone effects.

In summary, we have shown that commonly prescribed 
PPIs, but not H2RAs, inhibit the activity of the bone-
specific phosphatase, PHOSPHO1 in  vitro in a dose-
dependent manner and at concentrations that are similar 
to those used clinically. We have also shown that different 
PPIs differ by more than 25-fold in their ability to inhibit 
PHOSPHO1 activity when compared with a sevenfold dif-
ference in potency for inhibition of acid production [44]. 
This indicates that there is a > threefold difference in the 
ability of PPIs to inhibit PHOSPHO1 activity as compared 
with their ability to suppress gastric acid production.

Considering the fact that PHOSPHO1 plays a critical 
role in bone mineralisation, we hypothesise that the asso-
ciation between PPI use and bone fractures is possibly due 
to their inhibitory effect on PHOSPHO1 activity. Although 
this remains to be confirmed by further research it could 
have clinical implications in allowing clinicians to select 
PPIs with the least inhibitory effect on PHOSPHO1 activ-
ity as the preferred drug in this class in patients at high 
risk of fragility fractures.
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