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Abstract. Traffic can be viewed as a complex adaptive system in which
systemic patterns arise as emergent phenomena. Global behaviour is a
result of behavioural patterns of a large set of individual travellers. How-
ever, available traffic simulation models lack of concepts to comprehen-
sibly capture preferences and personal objectives as determining factors
of individual decisions. This limits predictive power of such simulation
models when used to estimate the consequences of new traffic policies.
Effects on individuals must not be ignored as these are the basic cause
of how the system changes under interventions. In this paper, we present
a simulation framework in which the self-interested individual and its
decision-making is placed at the center of attention. We use semantic
reasoning techniques to model individual decision-making on the basis
of personal preferences that determine traffic relevant behaviour. As this
initially makes the simulations more complex and opaque the simula-
tion framework also comprises tools to inspect rule evaluation providing
a necessary element of explainability. As proof of concept we discuss an
example scenario and demonstrate how this type of modelling could help
in evaluating the effects of new traffic policies on individual as well as
global system behaviour.
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1 Introduction and Motivation

Infrastructure and mobility have a strong influence on societal progress and eco-
nomic growth and can become obstacles in the process of developing an economy
[5]. However, change and extension of infrastructure are extremely costly and
may take long time periods before showing the desired effects. Moreover, infras-
tructure extension often requires massive interventions with strong ecological
effects and environmental impact that is counterproductive to the good inten-
tions. This may lead to open resistance and public opposition (e.g. [20]) slowing
down infrastructure projects thus further prolonging the time before measures
get effective. Beyond that, actual outcomes of measures are difficult to predict,
e.g. it is well known that an extension of streets with excessive traffic often does
not lead to an improved flow of vehicles but may attract more individuals than
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before, deteriorating the situation even more (see [15]). Therefore, innovative
ideas for new mobility services (e.g. car/ride-sharing) that achieve more effi-
cient and sustainable use of available resources can have a high leverage effect
on mobility and the environment. Problems, such as frequent traffic jams and
perpetual lack of parking space, are obvious indicators of a system in overload
mode that requires a fundamental change in the concepts of everyday mobility.
Private companies and public institutions are already working intensely on al-
ternative strategies that exploit contemporary technological innovation [12], but
need more elaborate tools for working out new mobility strategies. Before design-
ing new mobility services cause and effect of the current traffic situation must be
scrutinised in order to develop services that are accepted by the public and can
eventually provide relief. Measures in complex public systems are threatened by
rebound effects [4], e.g. car sharing services at first sight encourage people to
abandon their private vehicles thus freeing up space in urban areas. However, if
they apply to the wrong audiences effects end up worsening the inner-city traffic.
It has been observed that car sharing services were accepted as an alternative
to public transport, which in consequence has increased the number of people
travelling in individual vehicles [13].

Computer-based simulations can be applied to analyse measures in complex traf-
fic systems and to foresee such effects in advance. State of the art research has
been investigating traffic as an emergent phenomenon, rather than a problem
that can be modelled from a global perspective where system behaviour is mod-
elled based on aggregated and abstract parameters (see [18] for a discussion).
Emergent traffic models assume that global system behaviour results from the
interactions between the personal behaviours and preferences of a large set of
individuals [7]. Therefore, the application of agent models is particularly suitable
for the simulation of traffic. However, available models have focused on simu-
lating traffic as the primary subject, thus not prioritising individuals pursuing
personal objectives, such as travelling to work or going to shop for grocery. In
order to achieve these objectives, movement of individuals to a different loca-
tion should merely be regarded as a necessary means. Consequently, road traffic
itself should not be considered the sole focus when modelling traffic scenarios
as individual traveller objectives are just as relevant. These objectives strongly
depend on individual preferences. Hence, it is important to include these indi-
vidual preferences in the process of modelling. At the same time, analysis of
individual-based simulation models is difficult, because the results are based on
many reciprocally influencing variables. A detailed modelling of individuals adds
complexity, and therefore requires a methodical approach that achieves a higher
degree of transparency through explainability.

In this paper, we create a simulation model that focuses on the individual in
order to examine how new policies on mobility affect both individual and global
system behaviour. For this purpose, we make use of semantic reasoning mech-
anisms which helps to improve analysis of individual-based simulation results.
The following section provides an overview of related work and presents capa-
bilities and scope of available modelling options. Following this, in Section 3 we
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reflect on modelling aspects that are relevant to modelling individuals and their
self-interested decision behaviour. In Section 4, we describe modelling procedures
and implement an example simulation using AGADE Traffic simulator. We then
perform experimentation for a demonstration scenario and discuss results using
the analysis instruments of our simulator. Finally, in Section 6 conclusions are
drawn and possible options for future work are indicated.

2 Related Work

Multi-agent systems have become established tools for traffic simulation and
there is a variety of simulators that range from general purpose platforms to
systems specifically designed for specific traffic scenarios. In [18], we have studied
and discussed a broad range of available simulation tools. However for this work,
we will focus on three applications with functionality appropriate for modelling
individual traffic participants.

1. ITSUMO is an open-source agent-based microscopic simulator that has been
applied for the simulation of route choice scenarios. However, primary focus
of the application is on traffic control [21, 2]. In ITSUMO, travel demand
is modelled using global origin-destination matrices. Traffic actors such as
drivers and traffic lights are modelled as autonomous software agents. Re-
garding the aspects of agent modelling, the ITSUMO approach is fairly de-
tailed. ITSUMO distinguishes between prejourney planning and the en route
(re)planning. En route replanning refers to route changes that occur during
the journey. Route selection is based on established routing algorithms. The
application supports both centralised and decentralised routing.

2. MATISSE is a large-scale agent-based simulation platform for Intelligent
Transportation Systems (ITS) [25, 17]. The application focuses on the simu-
lation of scenarios related to traffic safety. Agents are used for the represen-
tation of both vehicles as well as intersection controllers. MATISSE provides
options for modelling inter-vehicle communication as well as communication
with intersection controllers. Similar to the ITSUMO approach, MATISSE
also supports centralised and decentralised routing for both, prejourney and
en route (re)planning. However, MATISSE goes one step further in mod-
elling the individual by including a parameter that imitates a virtual level
of distraction for driver agents which causes unpredicted driving behaviour.

3. SimMobility is an agent-based multi-scale simulation platform that has been
used to simulate the effects of different fleet sizes for on-demand autonomous
mobility [1, 16]. It uses an activity-based approach to generate travel de-
mand. Agents are used to represent all sorts of entities and communication
in the system such as travellers, vehicles, phones, traffic lights, etc. Sim-
Mobility also supports prejourney and en route (re)planning. This not only
refers to route choices but also to scheduling of activities that ultimately
causes travel demand. Going one step further, SimMobility includes a mech-
anism that enables day-to-day agent learning. Key figures of the previous
day are calculated to update agent knowledge for new decisions.
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The applications covered demonstrate current features implemented in available
traffic simulators. In the following section, we discuss the gaps and limitations
as well as unused potential in the modelling of individuals.

3 Gaps and Limitations in the Modelling of Individuals

Modelling of individual traveller behaviour must consider several aspects (see
Figure 1) and usually starts with the choice of travel destination which is closely
related to modelling of travel demand. For this purpose, different options of
demand modelling have been addressed in related work. Models that make use
of activity based demand generation allow a more detailed modelling of the
individuals in comparison to global origin-destination matrices (see [26, 24]).
Agents make a series of decisions depending on the modelled scenario. Cost-based
decision-making is an evident criterion for decisions. However, available models
have mostly been limited to obvious metrics such as travel time or distance. In
order to assess the effects of traffic policies on the individual, further aspects
such as individual preferences related to traffic as well as the simulated domain
are required to be included in the modelling. Simulation models also differ in the
timing of decision-making. Models that consider both prejourney and en route
decisions let travellers spontaneously deviate from their initial travel plans based
on situational conditions. Continuous access to real-time information via smart-
phones has led to dynamic decision behaviour. However, only a few approaches
even include simple en route replanning of the travel route. SimMobility is the
only approach that has gone one step further and includes replanning of the per-
sonal activity schedule. Other types of decisions such as spontaneously changing
modes in the event of a sudden weather change have not been considered. This
is why more work on modelling this type of spontaneous decision behaviour is
required. The final modelling aspect refers to agent capabilities to individually
learn from past experiences. To date, there has been almost no implementation
of this in available traffic models. SimMobility is the only exception that has
shown any concepts towards individual agent learning in traffic simulation.

Demand Modelling

global origin-destination matrices vs. 

individual activity schedules 

Dynamic Decision Behaviour

spontaneous replanning and adapting to 

situational conditions

Cost-based Decisions-Making

Route or mode selection based on 

travel distance or time 
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Fig. 1. Aspects of modelling individuals in traffic simulations.
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In this work we focus on modelling individual preferences using semantic reason-
ing techniques to improve explainability of the effects of traffic policies on both
the individual and global system behaviour.

4 Modelling Individuals with AGADE Traffic

AGADE Traffic is an agent-based traffic simulator that integrates a rule-based
component for modelling knowledge and individual preferences. In particular,
ontologies are used to express agent knowledge in a formalised machine readable
form [10]. Using rules enables the application of reasoning algorithms to infer
additional agent knowledge from explicitly formulated facts. In our own previ-
ous work, we have demonstrated effectiveness and efficiency of this approach for
application in agent simulation [8]. Agents can be equipped with personal ontolo-
gies that contain knowledge on domains relevant for the simulated scenario. The
following scenario simulates mobility of individuals that is associated with their
grocery shopping. Agents are assigned a randomly generated list of food items
selected from a set of products available in the supermarkets of the simulation.
This set is categorised (e.g. fruit, vegetable, grains) and probability distributions
over the categories can be defined and assigned to different agent types. Agents
aim at purchasing items in their lists in the course of which they have to make
decisions, e.g. choosing a supermarket together with a mode of travel. Available
modes of travel are using private vehicles, cycling or walking. As of now we
have simplified the scenario by excluding public transport due to current state
of implementation. Moreover, modelled supermarkets not only differ in product
supply, but also in which products they stock, price tendency, product quality,
and sustainability. In consequence, individuals may purchase the items on their
assigned shopping list from more than one supermarket, which causes additional
travelling to other target locations.

An agent a has a set of attributes A. A is the disjoint union of descriptive at-
tributes ∆ and preference attributes P = T ∪Φ with traffic related preferences T
and food related preferences Φ. While ranges of attributes in ∆ all are nominally
scaled, attributes in P take values from a Likert scale of 1 to 5 (1=“not impor-
tant“ and 5=“very important“). Selection of attributes relevant for modelling
is based on behavioural surveys on mobility [6] and grocery shopping [3] (see
Table 1). Agents are given values for attributes of ∆, whereas attributes of P
are derived using provided survey data. For this purpose, we modelled rules in
the ontology with which for each preference a probability distribution over the
Likert scale is derived. For this, descriptive attributes δ ∈ ∆ are used as input for
the rules which output probabilities for each value on the Likert scale. For each
agent a and each of its preferences τ let p(τ, δ, l) be the probability that l will
be assigned to τ for agent a depending on the values of attributes δ. As agent
preference is influenced by all its attributes δ ∈ ∆ the values are aggregated over
∆ into the weighted sum p(τ, l) =

∑
δ∈∆ λδ · p(τ, δ, l) with

∑
δ∈∆ λδ = 1. In this

sum we weigh all attributes as of equal importance: λδ = 1
|∆| .
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Table 1. Attributes and preferences assigned at initialisation of an agent.

∆ T Φ

Age Flexibility Price Tendency

Education Time Product Quality

Gender Reliability Eco-Friendliness

Occupation Privacy Fair Trade

Marital Status Safety

Monetary Costs

Environmental Impact

Convenience

An example will illustrate this: Assume that ∆ contains the two attributes age
and occupation and P consists of a single preference τ =Environmental Impact.
Let a1 with ∆a1 = {18-25, student} and a2 with ∆a2 = {46-55, factory worker}
be agents. Given their difference in descriptive attributes ∆, a1 and a2 probably
differ in their personal preference on τ . Survey data for age =18-25 indicates
that higher values for agent a1 have higher probabilities (see Table 2). For the
second descriptive attribute occupation again probabilities for Likert scale values
are concluded from the empirical distribution of data in the survey. The weighted
sum of the values for age and occupation yields p(Environmental Impact, l) for
each Likert scale value. Roulette wheel selection is used, based on the aggregated
probabilities p(τ, l), to determine the value l which is then assigned to preference
τ . Computation of the p(τ, δ, l) uses rules in the ontology. By logging rule evalu-
ation a detailed protocol of firing and non firing rules can be obtained. This log
transparently explains how preferences of an individual were determined. This
concludes initialisation of agent a.

During the simulation, agents undergo two phases. The first phase is referred
to as prejourney planning. Preference values serve as input to utility functions
which are used in the planning process for the selection of supermarkets as well
as the choice of travel mode. A characteristic of this scenario is that decisions are
mutually interdependent and have to happen simultaneously e.g. distant super-
markets can only be reached by car while choosing to walk will likely determine
a nearby market. Thus, decision making is multi-criteria and not only based on
traffic related aspects but also on individual preferences relevant for the selection
and purchasing of food items. In order to purchase all items on its shopping list
an agent has to visit supermarkets following its personal preferences. Therefore,

Table 2. Example inference of preference probabilities for agent a1.

Probabilites/Likert Values l 1 2 3 4 5

p(Environmental Impact, age, l) 0.05 0.1 0.15 0.3 0.4

p(Environmental Impact, occupation, l) 0.1 0.1 0.2 0.3 0.3

p(Environmental Impact,l) 0.075 0.1 0.175 0.3 0.35
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preferences as well as the degree to which these are satisfied is quantified in
compound utility functions. The agent successively constructs a shopping jour-
ney consisting of legs from supermarket to supermarket (and from home to the
first supermarket and back home from the last) with appropriate traffic modes.
Supermarkets and traffic mode are chosen to maximise the utility of the agent.

We first define a utility that reflects all traffic related preferences of an agent a.
For a given attribute τ ∈ T (T the set of traffic related attributes) and a traffic
mode m ∈ M (M the set of available traffic modes), let u(τ,m) be the given
utility of modem with regard to a specific mode attribute τ and aτ the preference
value of τ for agent a. Spontaneous modal change en route accounts for extra
effort and therefore involves costs which we model with a function c : M×M → R
with c(m,m′) the associated cost for changing from mode m to mode m′ with
c(m,m′) = 0 for m = m′. Note that we add an artificial mode mnull to represent
the start of the food shopping journey and that c(mnull,m) = 0 for all m ∈M .
Based on this, the total traffic utility UTT of traffic mode m for agent a is defined.
Note that the value of this function also depends on the traffic mode mc of the
last leg.

UTT (a,m,mc) =
∑
τ∈T

u(τ,m) · aτ − c(mc,m) (1)

Supermarkets s ∈ S (S the set of supermarkets) are assigned utilities u(φ, s) that
rate their products with regard to φ ∈ Φ (Φ the set of food related attributes)
(see Table 1). Furthermore, aφ is the value for preference φ of agent a. Based on
this a shopping utility UΦ(a, s) is determined:

UΦ(a, s) =
∑
φ∈Φ

u(φ, s) · aφ (2)

Besides personal utility we assess supermarkets by the degree to which the prod-
ucts they stock cover the items on the shopping list of an agent and by its vicinity
to the current whereabouts of an agent. If the agent a has ra open items on its
list qs of which are available in supermarket s the quotient ra

qs
quantifies the

product coverage of s for a. Furthermore, for each agent a a randomly generated
value ea models aversion of a towards additional trips to other supermarkets
based on probabilities provided by [22]. The euclidean distance d(a, s) from the
current position of a to the supermarket s is used as an estimate for the travel
distance to s. For each agent values for UTT , UΦ and d(a, s) are normalised with
min-max normalisation so that they lie in [0,1]. As decisions on mode of travel
and selection of supermarket are interdependent, we aggregate the traffic and
food related utilities into a single utility function with which an agent deter-
mines which supermarket to go to next and how. Therefore, the leg r = (m, s)
to the next supermarket s is an element in M × S (with M travel modes and
supermarkets S) that has a utility:

U(a, r,mc) = (1− d(a, s)) + UTT (a,m,mc) + UΦ(a, s) +
ra
qs
∗ ea. (3)
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Algorithm 1 shows how an agent successively selects supermarkets and deter-
mines rides that are concatenated into a journey. We assume that the overall
supply of all supermarkets covers all items on shopping lists and that items are
abundantly available. Furthermore, no additional optimisation with respect to
order is performed as we try to simulate natural behaviour of individuals. This
concludes planning phase for agent a.

Algorithm 1: Algorithm to determine agent journey.

Input: agent a, location origin, set of supermarkets S, list of shopping items Ia
journey=emptylist;
while Ia is not empty do

r = (m, s) = argmax
r∈M×S

U(a, r);

journey=journey+r;
Ia=Ia\supply(s);

end
Result: journey

The following phase refers to agents travelling en route. As decisions about travel
mode and target supermarkets primarily depend on preferences, which currently
do not change en route, agent decisions from prejourney planning remain the
same. However, agents are able to spontaneously change routes depending on
present traffic load. Routing was implemented using the A* algorithm based
on shortest time. Let W be a route with w ∈ W being a continuous section
of route W with same speed limit v(w). Travel speed of an agent is defined
v(w,m) = min{v(w), v(m)} for v(m) the maximum speed of travel mode m.
Furthermore, d(w) defines distance to be covered on w and n(w) an indicator
for present traffic load. Thus, overall travel time T is computed:

T (W,m) =
∑
w∈W

d(w)

v(w,m)
+ n(w) (4)

5 Proof-of-Concept

As an example, we look at a scenario situated in the German city of Wetzlar. Ac-
cording to data from the German census of 2011 [23], Wetzlar has circa 50,000
inhabitants distributed over 20 residential areas. For performance reasons, we
assume that one person shops for one household and 20% of the household shop
during the simulated time interval. We therefore created a population of 2130
agents which is distributed over the 20 residential areas, replicating the empir-
ical distribution of residents. Google maps search produced 29 supermarkets.
Furthermore, a consumer study [9] defines the most significant social groups
in the German demographic from which we derived 12 agent types (see [19]).
Agents in our population are assigned to one of these agent types respecting
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the distribution of these social groups in the areas under investigation. Agent
types define values for the descriptive properties required for rule evaluations on
preferences. Details of simulation data as well as source code of the simulation
are available at GitHub.3 Note that our current implementation uses stochastic
elements only while computing preference values, thus keeping the subsequent
decision processes deterministic. This simplifies analysis and proof of concept
making comparison of simulations easier.
We performed two simulation runs with identical agent populations. In the sec-
ond run the value for the traffic preference Environmental Impact changed, ce-
teris paribus, for 35% of the agents, meaning that 756 agents were affected, 42
of which changed their preference value from 1 to 5, 200 from 2 to 5, and 514
from 3 to 5. This models a change of attitude of 35% of the inhabitants to traffic
and its environmental consequences. In the real-world, this experiment could be
used to answer the research question “How does awareness on environmentally
friendly transportation affect traffic behaviour?“.
We now analyse effects that result from this change of attitude on the decisions
selection of supermarkets and mode choice. Using the analysis instruments of
our simulator on data that is logged during the simulations, calculated metrics
and visualisations show that in total 300 agents, i.e. circa 40% of agents affected
by change of attitude, have changed from their original mode of travel. Table 3
compares modal choices of both simulation runs. The number of agents trav-
elling by car has decreased while the percentage of pedestrians and cyclist has
increased as 33 agents have changed from travelling by car to cycling, 266 from
car to walking, and a single agent from cycling to walking. We assume that pol-
icy makers prefer agents to choose green transportation modes such as walking
or cycling to avoid emission of exhaust fumes. In the simulation, this is mirrored
through key performance indicators on aggregated travelled distances. Environ-
mental impact is measured by the indicators global travel distance which is the
sum of the overall distances travelled by the set of all agents, and combustion
distance that only considers modes of travel that produce exhaust gases (see Ta-
ble 4). Hence, results indicate a favourable shift in modal choices. At this stage,
policy makers need to evaluate whether implementation of this type of policy is
worth the effort, considering that changes in modal choice in total affected circa
14% of the entire population.
In addition to this, 36 agents (4.8% of agents affected by change of attitude and
1.6% of the entire population) have changed their journey because of their selec-

Table 3. Comparison of Modal Choices.

Modal Choice Simulation 1 Simulation 2 Difference

Car 77.18% 63.15% -14.03%

Bike 1.69% 3.19% +1.5%

Walking 21.13% 33.66% +12.53%

3see https://github.com/kite-cloud/agade-traffic
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Table 4. Evaluation Indicators.

KPI Simulation 1 Simulation 2 Difference

Global Travel Distance [km] 9752.14 8771.92 -10.1%

Combustion Distance [km] 9009.25 7520.85 -16.5%

Avg. Traveller Satisfaction (Normalised) 0.882525 0.881825 -0.079%

tion of supermarkets. We assume policy makers to prefer agents to visit markets
in their immediate neighborhood as this reduces overall traffic load. However,
individual preferences may lead to selection of markets that are farther away.
For example, some agents prefer to travel if products are more affordable at the
target store than in their direct vicinity. Results show that 20 of these agents
have in fact travelled a shorter distance but also that for the remainder travel
distance has actually increased. Even though the number of agents reducing their
travel distance is relatively equal to the number of agents that travelled longer
distances, global travel distance as well as global combustion distance show a sig-
nificant drop in the second simulation. This implies that agents reducing their
travel distance have caused more impact and thus larger changes in compari-
son to changes caused by agents with increasing travel distance. Consequently,
this is an improvement of global system behaviour with respect to the amount
of traffic and pollution. In most simulation models assessment of policies ends
with findings on global system behaviour due to the limited information about
the individual. However, the detailed modelling of individuals enables further
interpretation of results. For assessing interventions in a system by (individ-
ual) utility, we necessarily have to take a utilitarian perspective on utility [11].
Experienced utility has been associated with happiness measures [14]. We are
aware that this relation between utility and happiness is debatable, but so far
there is no consensus on this matter (see [11] for a discussion). Hence, we use
experienced utility as an indicator for satisfaction of individuals. Average trav-
eller satisfaction (see Table 4) has changed only to a minimal extent as a result
of changes in surrounding social conditions. Negative effects on individuals are
thus barely noticeable. Based on this, results have shown how change of attitude
affects travel behaviour in this example scenario.

6 Conclusion and Future Work

As urban mobility is in constant transformation, there is a need for computer-
based simulation tools to study and predict effects of new policies. However,
available simulation models lack of concepts for capturing preferences and per-
sonal objectives of individuals. This makes evaluation of traffic policies difficult,
as lack of information about individual behaviour limits analysis of its effects on
global system behaviour. Especially, as it is well known that opposing impact of
individuals can lead to counterproductive global effects. In this paper, we created
a simulation model that focuses on modelling individual preferences. We demon-
strated that modelling individual preferences using semantic technology can help
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achieve more transparent and meaningful agent decisions that are accessible to
the user and increase explainability of simulation results. For future work, we
will extend our models of personal preferences and utility to apply instruments
of game theory and mechanism design. This will allow creation of richer simula-
tion models for investigating effects of interventions into traffic systems as well
as new mobility services on individual traffic.
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