

Enhancing Network Management using Mobile Agents

WJ Buchanan, M Naylor and AV Scott
Napier University, Edinburgh, UK

{ bill | andrea } @dcs.napier.ac.uk; mrmarcus@mail.com

Abstract
Agent mobility addresses some limitations faced by classic
client/server architecture, namely, in minimising bandwidth
consumption, in supporting adaptive network load balancing
and in solving problems caused by intermittent or unreliable
network connections. There has been a great deal of attention
on the potential productivity gains expected from so-called
intelligent agents. These however require complex artificial
intelligence (AI) functionality. Agents can realistically be of
benefit in those areas concerned with autonomy and mobility.
This is especially true of network management applications
and this will be the focus of this paper. The paper discusses
the usage of mobile agents and the advantages that these
have over traditional client/server applications. It discusses
the main characteristics of an agent, and shows how Java has
the main components that allow mobile agents to be easily
development. To show how agents are implemented it gives a
practical implemented of an agent. Finally, the paper also
discusses the main Java agent development systems, which
are IBM aglets, Object Space Voyager and JATLite and
outlines the advantages of using each of them.

1. Introduction

Agents are programs that automate user tasks. Their great
advantage is that they are designed to run over a distributed
computing system, whereas traditional utility programs
typically run on a peer-to-peer type connection [1].

The requirement for agents increases for many reasons,
such as:

• Increased requirement for management information for

system administrators.
• Increased requirement for reliability for networked

applications.
• Increased requirement for a certain quality of service

from the network.
• Increased usage of main different types of computer

systems, operating systems, networked operating
systems, network technologies, and networking
protocols.

An agent which can be made portable and mobile can be the
answer to these increasing demands, particularly for network
management applications.
 Traditional client/server architectures are typically
wasteful in their usage of bandwidth. Agent mobility
overcomes this by minimising bandwidth consumption, as
they support:

• Adaptive network load balancing.
• Solve problems caused by intermittent or unreliable

network connections.

The main area that agents will bring benefits is for autonomy
and mobility are required, such as in network management
applications.
 Most software development systems use object-oriented
methods, and a mobile agent can be viewed at the next step in
the evolution of the object-oriented (OO) paradigm, where an
agent is also given a location. The work on mobile agents
thus relates to object-oriented technology, as well as to
networks and distributed computing systems.
 The aim of this research is to adopt mobile agent
architecture and to provide the framework on to build a
variety of network management tasks, as well as investigating
the advantages of mobile agent architecture over a
client/server architecture by developing a number of small
applications to automate common network management
tasks.
 Great gains will come from intelligent agents, which
require complex artificial intelligence (AI) functionality.

2. Agents

Agents are commonly used in other technological areas, such
as:

• Artificial intelligence . For improving collaborative on-

line social environments.
• Distributed systems. Enhancements to the client/server

architecture.
• Electronic gophers. They can monitor the stock market

and purchase shares, locate and purchase a cheap flight,
notify a network administrator of a network fault (and
even execute fault rectifying procedures), or monitor
your website.

Accurate definitions for agents are:

 “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that
environment through effectors” [2].
 “Autonomous agents are computational systems that
inhabit some complex dynamic environment, sense and act
autonomously in this environment, and by doing so realise a
set of goals or tasks for which they are designed”
 “Intelligent agents are software entities that carry out
some set of operations on behalf of a user or another
program with some degree of independence or autonomy,

and in so doing, employ some knowledge or representation of
the user’s goals or desires.” [3]

3 Agent properties

These definitions, whilst informative, appear to result from
specific examples of agents, but are not truly representative
as a global definition. The best definition is provided by
Franklin and Graesser [4] who have classified agents in
which agents posses several or all of the following
characteristics (Figure 1):

Reactive Responds in a timely fashion to changes in

the environment.
Autonomous Exercises control over its own actions.
Goal-oriented Does not simply act in response to the

environment.
Temporally continuous
 Is a continually running process.
Communicative Communicates with other agents, perhaps

including people.
Learning Changes its behaviour based on previous

experience.
Mobile Able to transport itself from one machine to

another.
Flexible Actions are not scripted.

5HDFWLYH 5HVSRQGV LQ D

WLPHO\ IDVKLRQ WR FKDQJHV LQ

WKH HQYLURQPHQW�

$XWRQRPRXV ([HUFLVHV

FRQWURO RYHU LWV RZQ DFWLRQV�

*RDO�RULHQWHG 'RHV QRW

VLPSO\ DFW LQ UHVSRQVH WR WKH

HQYLURQPHQW�

7HPSRUDOO\ FRQWLQXRXV

,V D FRQWLQXDOO\ UXQQLQJ

SURFHVV�

&RPPXQLFDWLYH

&RPPXQLFDWHV ZLWK RWKHU

DJHQWV� SHUKDSV LQFOXGLQJ

SHRSOH�

/HDUQLQJ &KDQJHV LWV
EHKDYLRXU EDVHG RQ SUHYLRXV

H[SHULHQFH�

0RELOH $EOH WR WUDQVSRUW

LWVHOI IURP RQH PDFKLQH WR

DQRWKHU�

)OH[LEOH $FWLRQV DUH QRW

VFULSWHG

5HDFWLYH 5HVSRQGV LQ D

WLPHO\ IDVKLRQ WR FKDQJHV LQ

WKH HQYLURQPHQW�

$XWRQRPRXV ([HUFLVHV

FRQWURO RYHU LWV RZQ DFWLRQV�

*RDO�RULHQWHG 'RHV QRW

VLPSO\ DFW LQ UHVSRQVH WR WKH

HQYLURQPHQW�

7HPSRUDOO\ FRQWLQXRXV

,V D FRQWLQXDOO\ UXQQLQJ

SURFHVV�

&RPPXQLFDWLYH

&RPPXQLFDWHV ZLWK RWKHU

DJHQWV� SHUKDSV LQFOXGLQJ

SHRSOH�

/HDUQLQJ &KDQJHV LWV
EHKDYLRXU EDVHG RQ SUHYLRXV

H[SHULHQFH�

0RELOH $EOH WR WUDQVSRUW

LWVHOI IURP RQH PDFKLQH WR

DQRWKHU�

)OH[LEOH $FWLRQV DUH QRW

VFULSWHG

Figure 1 Agent properties

Every agent satisfies the first four properties (reactive,
autonomous, goal-oriented and temporally continuous). Other
properties are defined on adding hierarchical classification.
Agent research encapsulates main areas of computer science,
such as objects and distributed object architectures, adaptive
learning systems, artificial intelligence, expert systems,
distributed processing and collaborative social online
environments, as well as others.

4. Agent applications

Many software packages already use agents, such as Office
Assistants in Office 97/2000 (Figure 2). These comply with
the previous definitions of agents. For example, the spell
checker agent ‘watches’ the user when typing and makes
corrections on the fly. Agents such as this rely on AI for their
functionality. However, one key property which these agents

do not possess is mobility, and at present they are unable to
operate in a distributed environment.

Figure 2 Office agents for spell checking

 Mobility is a key property when considering the
implication of mobile agent architectures against traditional
client/server architectures. Client/server applications consist
of the client and the server, usually on separate machines
communicating over the network. When the client requires
data or access to resources that the server provides, the client
sends a request to the server. The server then responds by
sending a response to the client. This handshake is
continuous, where each request/response requires a complete
round trip across the network. The fundamental difference in
mobile agent architecture is in how this communication takes
place; the client does not talk to the server over the network.
The key difference is that the client actually migrates to the
server’s machine. Once on the server’s machine, the client
makes its requests of the server directly.
 This represents a significant advantage over the
client/server model and Sundsted [5, 6] states three reasons to
adopt mobile agent architecture:

1. They reduce client/server network bandwidth problems.

By moving a query or transaction from the client to the
server, this eliminates repetitive request/response
handshakes (see Figure 3).

2. They allow decisions about the location of code (client
against server) to be made at the end of the development
cycle when more is known about how the application
will perform. This reduces the design risk.

3. They solve the problems created by intermittent or
unreliable network connections. Agents can be easily
created to work off-line and communicate their results
when the application is back on-line.

With network management applications, these three reasons
go some way to solving several problems:

1. Network bandwidth is a valuable resource. Client/server

transactions use up network bandwidth. It is clearly an
advantage to create an agent which handles queries,
sending the agent from the client to the server. The agent

could then carry out the task and then communicate the
results back to the client upon completion (or indeed at
any time deemed appropriate depending on network
traffic), without the need for a complete transaction
session. Thus, instead of intermediate results and
information being passed back and forth, only the agent
needs be sent across the network.

1HWZRUN

6HUYHU

5HVSRQVH

PHVVDJH

*HW

PHVVDJH

$JHQW PLJUDWHV WR

WKH VHUYHU

$JHQW

&OLHQW

$JHQW FRPPXQLFDWHV

ZLWK WKH VHUYHU� RQ

WKH VHUYHU

7UDGLWLRQDO

DJHQW LQ D FOLHQW�

VHUYHU DUFKLWHFWXUH

0RELOH DJHQWV

LQ D FOLHQW�

VHUYHU DUFKLWHFWXUH

1HWZRUN1HWZRUN

6HUYHU

5HVSRQVH

PHVVDJH

*HW

PHVVDJH

$JHQW PLJUDWHV WR

WKH VHUYHU

$JHQW

&OLHQW

$JHQW FRPPXQLFDWHV

ZLWK WKH VHUYHU� RQ

WKH VHUYHU

7UDGLWLRQDO

DJHQW LQ D FOLHQW�

VHUYHU DUFKLWHFWXUH

0RELOH DJHQWV

LQ D FOLHQW�

VHUYHU DUFKLWHFWXUH

Figure 3 Mobile agents

2. In the design of traditional client/server applications, the
programmer must have a clear idea about the roles of the
client and server at design time, where the intent and
scope of the application must be clearly set out. Since the
client and server communicate in a well-structured
manner using a protocol, this offers little scope for
modifications or enhancements. By contrast, agent
architecture gives a greater degree of flexibility, where
an agent can be allowed to visit several nodes on the
network in succession, carrying out some task. The only
prerequisite is that at any node it visits, is that it provides
the agent with an environment to operate. The means of
communication, usually with message passing, is clearly
defined and the programmer need only concentrate on
the tasks to which a particular agent is assigned.

3. Agent architecture may also solve the problems created
by an intermittent or unreliable network. Typically, a
network connection must be alive and healthy over the
entire time of a transaction. On losing the network
connection, the client must restart the transaction or
query. An agent is able to carry out the transaction of its
own accord. This could be extremely advantageous in an
environment where frequent connections are made to the
network with a laptop via a dial-up connection. An agent
could be dispatched to the server to perform some off-
line calculation. Upon reconnection, the agent would
report. This could perhaps be useful for some remote
monitoring tasks.

There are other advantages to be gained including real time
notification where an agent situated at some remote site may
notify a local host of any important event immediately. Also,
parallel execution (or load balancing) where a large
computation can be divided dependent on resources. All these

offer compelling reasons to adopt agent architecture for
network management tasks.
 Agents are also well adapted to heterogeneous
environments, which are typical in today’s networks.

5. Agents characteristics

Agents should support several characteristics. Sundsted
(1998) identified these as:

• Tactile. Mobility and persistence.
• Social. Communication and collaboration and the
• Cognitive. Adaptation, learning and goal orientation.

This has enormous potential and is the focus of much of
the hype surrounding agents. It is an area that the
Artificial Intelligence (AI) community has been
addressing for a number of years – the problem of
getting a computer to think for us.

Realistically, the first two characteristics are currently more
realistic goals. The idea of moving code and computation to
the location of the data and the resources is not a new one.
Java and applets revolutionised the WWW, and allows
portable components to be distributed over a network. Such
mobile code is dynamically loaded and executed by
standalone programs, for applets this is the WWW browser.
Unlike the applet however:

• An agent takes with it its state of execution.
• An agent’s characteristic of autonomy means that the

agent can have responsibility for deciding where it can
go and what it will do.

• Agents can receive requests from external sources,
follow a predetermined itinerary or make decisions such
as to travel across the network to a particular host, all
independently of any external influences.

Security is a concern in any network. As connectivity
increases, the potential attack increase, especially with
mobile code as a potential source of attack. If agent
architecture allows agents free reign over the network, where
the boundaries of hosts become blurred and access to local
resources is available, security becomes a major concern.
Such a situation is be a convenient way to spread viruses and
a security mechanism must be developed to handle both
trusted code, which is safe, and untrusted code, which are not
safe.
 Every WWW browser implements security policies to
keep applets from compromising system security. The
following restrictions apply:

• An applet cannot read from or write to files on the

executing host.
• An applet cannot make network connections except to

the host it came from.
• An applet cannot read certain system properties.
• An applet cannot start any program on the executing

host.
• An applet cannot load libraries or define native methods.

Such security measures are very necessary, but inhibiting.
When considering mobile agent architecture we have to
address some of these concerns whilst hopefully allowing a
greater deal of flexibility to enable a mobile agent to carry
out its work. Java provides a highly customisable security
model, which allows us to go some way in achieving this
aim. Thus, just as the applet requires a WWW browser in
which to execute, so an agent needs a safe environment in
which to be hosted.
 As a minimum, any agent operating within its host must
have a:

• Unique identity.
• Means of identifying that other agents are also operating

within the host.
• Means of determining what messages other agents accept

and send.

And the agent host must:

• Allow multiple agents to co-exist and execute
simultaneously.

• Allow agents to communicate with each other and with
the host.

• Provide a transport mechanism to transfer agents to
another host and to accept agents from other hosts.

• Offer a way of ‘freezing’ an agent’s state of execution
prior to transfer and conversely ‘thawing’ it so as to
allow its execution to continue after transfer.

• Inhibit agents from directly interfering with each other.

As well as giving the agent mobility, the agent must also be
given a workplace (a context), where it gets access to only
the resources and data that it requires. The context is: a
stationary object residing on the host computer. It:

• Provides a means for maintaining and running agents in

a uniform execution environment, securing the host
against possible malicious agent attacks.

• Prevents an untrusted agent from having access to
sensitive data or resources, whilst ensuring that a trusted
agent has useful access to those resources that it may
need.

Whilst it is straightforward to build adequate security models
to protect against malicious agents, it is not as easy to protect
agents against malicious hosts. If there exists no adequate
security mechanism to prevent such attacks, a host could
implant its own tasks into the agent or modify the agent’s
state. This could lead to the theft of the agent’s resources, as,
a host could upload an agents class files and state of
execution, and then have access to such sensitive
information. The agent’s context must then include some
mechanism where rules can be set stating what privileges that
an agent has within its context. These are likely to be based
on knowledge of the agent’s origin.
 Agents interact with each other and applications through
message passing. Message handling must be able to support
both synchronous messages and asynchronous messages. The
two types of messages are:

• Now-type message. This is synchronous and blocks the
execution until the receiver has completed the handling
of the message.

• Future-type message. This is asynchronous and does
not block the execution. The sending agent can then
either wait for a reply from the recipient or continue
processing its task and get a reply later.

• Multicast . This is where a message is simultaneously
sent to all agents within a context. Only those agents
who have subscribed to the message will receive it.

6. Why Java?

Mobile agents can use one of two fundamental development
technologies: mobile code or remote objects. Java is well
suited to these environments are it supports both of these
through Object Serialization Remote Method Invocation
(RMI) [7].
 Java has become the development language of choice for
building distributed application components. It offers:

• Modular, dynamic, class-orientated compilation units.
• Portability and mobility of compiled code (class files).
• On-demand loading of functionality.
• Built in support for low-level network programming.
• Fine grained and configurable security control.

The main sections of code required for a Java agent are:

• Sockets. In Java, the java.net package provides
classes for communications and working with networked
resources. The socket interface provides access to
standard network protocols used for communications
between nodes on a network. TCP/IP communications
provides for the usage of a socket where applications
transmit though a data stream, that may or may not be on
the same host. Java supports a simplified object-oriented
interface to sockets making their use considerably easier.
Reading from and writing to a socket across a network is
as easy as reading and writing any standard I/O stream.
Figure 4 shows as an example a socket creation using
Java.

• Threads. Multitasking involves running several
processes at a time. Multitasking programs split into a
number of parts (threads) and each of these is run on the
multitasking system (multithreading). A program which
is running more than one thread at a time is known as a
multithreaded program (Figure 5). These threads allow
for smoother operation. A server application that could
only handle a request from one client would be of limited
use. Threads provide a means to allow an application to
perform multiple tasks simultaneously. Java makes
creating, controlling, and co-coordinating threads
relatively simple. The main advantages of threads are:

o They make better use of the processor, where

different threads can be run when one or more
threads are waiting for data. For example, a thread

could be waiting for keyboard input, while another
thread could be reading data from the disk.

o They are easier to test, as each thread can be tested
independently of other threads.

o They can use standard threads, which are optimised
for given hardware.

serversocket=new
ServerSocket (socketNo)

serversocket=new
ServerSocket (socketNo)

receive= new
DataInputStream (

client.getInputStream ())

receive= new
DataInputStream (

client.getInputStream ())

send= new
DataOututStream(

client.getOutputStream ())

send= new
DataOututStream(

client.getOutputStream())

str=receive. readUTF()str=receive.readUTF()

send.writeUTF(“str”)send.writeUTF(“str”)

client=serversocket .accept()client=serversocket .accept()

send.close()
receive.close()

send.close()
receive.close()

receive= new
DataInputStream (

socket.getInputStream ())

receive= new
DataInputStream (

socket.getInputStream ())

send= new
DataOututStream(

socket.getOutputStream())

send= new
DataOututStream(

socket.getOutputStream())

send.writeUTF(“str”)send.writeUTF(“str”)

str=receive. readUTF()str=receive.readUTF()

socket= new Socket
(IPadd, socketNo)

socket= new Socket
(IPadd, socketNo)

send.close()
receive.close()
socket.close()

send.close()
receive.close()
socket.close()

Data
stream

S
er

ve
r

C
lie

nt

serversocket=new
ServerSocket (socketNo)

serversocket=new
ServerSocket (socketNo)

receive= new
DataInputStream (

client.getInputStream ())

receive= new
DataInputStream (

client.getInputStream ())

send= new
DataOututStream(

client.getOutputStream ())

send= new
DataOututStream(

client.getOutputStream())

str=receive. readUTF()str=receive.readUTF()

send.writeUTF(“str”)send.writeUTF(“str”)

client=serversocket .accept()client=serversocket .accept()

send.close()
receive.close()

send.close()
receive.close()

receive= new
DataInputStream (

socket.getInputStream ())

receive= new
DataInputStream (

socket.getInputStream ())

send= new
DataOututStream(

socket.getOutputStream())

send= new
DataOututStream(

socket.getOutputStream())

send.writeUTF(“str”)send.writeUTF(“str”)

str=receive. readUTF()str=receive.readUTF()

socket= new Socket
(IPadd, socketNo)

socket= new Socket
(IPadd, socketNo)

send.close()
receive.close()
socket.close()

send.close()
receive.close()
socket.close()

Data
stream

S
er

ve
r

C
lie

nt

serversocket=new
ServerSocket (socketNo)

serversocket=new
ServerSocket (socketNo)

receive= new
DataInputStream (

client.getInputStream ())

receive= new
DataInputStream (

client.getInputStream ())

send= new
DataOututStream(

client.getOutputStream ())

send= new
DataOututStream(

client.getOutputStream())

str=receive. readUTF()str=receive.readUTF()

send.writeUTF(“str”)send.writeUTF(“str”)

client=serversocket .accept()client=serversocket .accept()

send.close()
receive.close()

send.close()
receive.close()

receive= new
DataInputStream (

socket.getInputStream ())

receive= new
DataInputStream (

socket.getInputStream ())

send= new
DataOututStream(

socket.getOutputStream())

send= new
DataOututStream(

socket.getOutputStream())

send.writeUTF(“str”)send.writeUTF(“str”)

str=receive. readUTF()str=receive.readUTF()

socket= new Socket
(IPadd, socketNo)

socket= new Socket
(IPadd, socketNo)

send.close()
receive.close()
socket.close()

send.close()
receive.close()
socket.close()

Data
stream

S
er

ve
r

C
lie

nt

serversocket=new
ServerSocket (socketNo)

serversocket=new
ServerSocket (socketNo)

receive= new
DataInputStream (

client.getInputStream ())

receive= new
DataInputStream (

client.getInputStream ())

send= new
DataOututStream(

client.getOutputStream ())

send= new
DataOututStream(

client.getOutputStream())

str=receive. readUTF()str=receive.readUTF()

send.writeUTF(“str”)send.writeUTF(“str”)

client=serversocket .accept()client=serversocket .accept()

send.close()
receive.close()

send.close()
receive.close()

receive= new
DataInputStream (

socket.getInputStream ())

receive= new
DataInputStream (

socket.getInputStream ())

send= new
DataOututStream(

socket.getOutputStream())

send= new
DataOututStream(

socket.getOutputStream())

send.writeUTF(“str”)send.writeUTF(“str”)

str=receive. readUTF()str=receive.readUTF()

socket= new Socket
(IPadd, socketNo)

socket= new Socket
(IPadd, socketNo)

send.close()
receive.close()
socket.close()

send.close()
receive.close()
socket.close()

Data
stream

S
er

ve
r

C
lie

nt

Figure 4 Java sockets

• RMI . RMI supports the information interchange
between the server and client. It uses a distributed object
application, where Java objects may be accessed and
their methods called remotely to take advantage of a
distributed environment and thus spread a workload over
a number of network nodes. It also provides a means in
which agents may communicate each another.

Threads

Process approach

Interlinking
of threads

Independent
threads

Threads approach

Process splits
into threads

Process

Common sharing
of data between threads

Figure 5 Process splitting into threads

• Object Serialization. This is a process which enables
the reading and writing of objects, and has many uses,
such as RMI and object persistence. In developing agent
applications it is Serialization that can provides mobility.
An object (an agent) may be serialised (converted to a bit
stream), and moved (passed over the socket) to another
host where it continues its execution. Thus, the agent is no
longer bound to the host, but has the whole network as a

resource. Through this process an agent object may be
serialized, that is converted to a stream of bytes, then
written to any opened standard output stream (a file,
memory, or a socket). Reading from and writing to a
socket across a network is as easy as reading and writing
any standard I/O stream. Before its imminent
serialization the agent must be informed so allowing it to
write to the heap all information necessary for its
reconstruction. The agent complete with its state may
then be reconstructed from the stream of bytes at its new
location in the reverse process. In adopting this
serialization technique, we also encompass persistence,
both mobility and persistence being properties in the first
of the characteristics required in a mobile agent
architecture.

Java thus supports sockets, threads, RMI and object
serialization, and is thus the ideal development environment
for mobile agents, and any distributed application. In
summary, Java also provides:

• Modular, dynamic, class-orientated compilation units.
• Portability and mobility of compiled code (class files).
• On-demand loading of functionality.
• Built-in support for low-level network programming.

One important area is security. Agent architecture ultimately
allows agents to move around a network, where the
boundaries of hosts become blurred and access to local
resources is available, security becomes a major concern. It
could be easy to write agents which could corrupt the data on
the systems connected to a network. Java offers a fine-
grained and highly configurable security control that provides
acceptable levels of security to protect hosts from malicious
agents. A more difficult question, which is not so
straightforward to address, is that of malicious hosts. As hosts
upload an agent’s class files and state of execution, it could
potentially have access to sensitive information. Agent
architecture must then include an environment in which
agents can operate; known as a context. Rules can be adopted
on what privileges an agent may be granted within this
context based on knowledge of its origin. These rules are of
considerable interest, and are currently being investigated as
part of this research.
 The original security model provided by Java (the
sandbox model) allowed a very restricted environment in
which to run untrusted code obtained from the open network.
In this, local code is trusted to have full access to vital system
resources, whereas downloaded code (an applet or agent) is
not trusted and can only access limited resources provided
inside the sandbox. A Security manager is responsible for
this. Security has changed over the versions of Java with:

• Signed applet. JDK 1.1 introduced this, where a

digitally signed applet is treated like local code, with full
access to resources, only if the public key used to verify
the signature is trusted. Unsigned applets are still run in
the sandbox.

• Security policy. JDK 1.2 introduced this in an attempt to
integrate all aspects of security into a consistent

approach. All code, regardless of whether it is local or
remote, can now be subject to a security policy. This
policy defines the set of permissions available for code
from various signers or locations and can be configured
by a user or a system administrator. Each permission
specifies a permitted access to a particular resource, such
as read and write access to a specified file or directory or
connect access to a given host and port. The runtime
system organises code into individual domains, each of
which encloses a set of classes whose instances are
granted the same set of permissions. This fine-grained
level of security will provide a highly customisable
security mechanism necessary in mobile agent
architecture.

7. Agent development tool

Java is an excellent choice for a development language, but it
is not so easy to determine an environment in which to
develop mobile agents. It would of course be possible to
develop from scratch a suitable environment, as Java supports
all the necessary requirements, but this would be a massive
undertaking. Instead, it is necessary to examine what is
already available. There are a number of agent development
environments [8], such as:

• JATLite [9]. This allows the development of agents that

exchange messages and agent router functionality. Agent
routing allows any registered agent to send messages to
any other registered agent by making a single socket
connection to the agent router – messages are forwarded
without the sending agent having to know the receiving
agent’s address and make a separate socket connection.
All messages are buffered avoiding losses due to
intermittent network problems. This provides a robust
message passing system, in which agents communicate
through passing messages. It does not however benefit
from allowing agent mobility.

• Object Space Voyager [10]. This provides a system
which takes existing Java class and treat them it to create
a new class with an identical interface, known as a
proxy. The proxy is an image of another class and
operates just as the original to using it. A proxy,
however, uses network communications to create and
control an instance of the real class it represents. It offers
an extension to RMI, and its strength mainly lies in the
integration and support of other distributed technologies,
such as CORBA.

• IBM Aglets [11]. This allows for the development of its
mobile agent, called aglets, which are Java objects which
can move from one host to another, over a network.
When the aglet moves, it takes the program code as well
as all the objects it is carrying.

Distributed applications can be classified into two groups:
those where applications are partitioned among participating
nodes and the other computation is partitioned towards
resources. JATLIte and Object Space Voyager use the first
type, whereas aglets migrate computation toward resources.
This mobility offers an evolution of the OO paradigm where

an object can be given a location and for this reason the Aglet
Workbench has been chosen as the best choice of
development system.
 The aglet framework provides useful generic aglet pairs
from which development of network management tasks may
evolve. These are:

• Messenger – receiver.
• Master – slave.
• Notifier – notification.

Using the aglet framework is a convenient way for user-
defined agent to inherit default properties and functions for
mobile agents.

8. Practical agent implementation

Rather than having a client/server type communication, an
aglet (a mobile agent) is deployed which actually travels to
the server, from the client and carries out some action on the
machine where the server resides.
 The infoserver class handles multiple requests from any
client. It responds to a PUT or GET message by collecting
local information sent by the client, or by sending all the
information gathered so far.

import java.net.* ;
import java.io.*;

import java.util.Vector;
import java.util.Enumeration;

class infoClient {
 private Socket theclient=null ;
 private InetAddress host ;
 //private PrintWriter out ;
 //private BufferedReader in ;

 infoClient (int port) throws IOException {
 InetAddress local=InetAddress.getLocalHost();
 theclient=this.createsocket(local,port) ;
 this.Do(null) ;
 }

 infoClient (String hostString, int port)
 throws IOException {
 InetAddress host =
 InetAddress.getByName(hostString);
 theclient=this.createsocket(host,port);
 this.Do(null) ;
 }

 private Socket createsocket(InetAddress host,
 int port) throws IOException {
 Socket client = null ;
 try {
 client= new Socket(host,port) ;
 out= new PrintWriter(
 client.getOutputStream(), true) ;
 in= new BufferedReader(
 new InputStreamReader(
 client.getInputStream())) ;
 } catch (UnknownHostException e) {
 System.err.println("Can't find host") ;
 } catch (IOException e) {
 System.err.println("Error : " + e) ;
 }
 System.out.println("Running infoCLIENT") ;
 System.out.println("Created socket : " +

 client.toString() + "\n") ;
 return client ;
 }

 private void Do(String action)
 throws IOException {
 PrintWriter out=new PrintWriter(
 theclient.getOutputStream(), true) ;
 BufferedReader in=new BufferedReader(
 new InputStreamReader(
 theclient.getInputStream())) ;
 BufferedReader userin=new BufferedReader(
 new InputStreamReader(System.in)) ;
 Vector info=new Vector() ;
 String userInput;

 System.out.println(in.readLine()) ;
 // get welcome message
 action=userin.readLine() ;
 out.println(action) ; // send client request
 System.out.println(in.readLine()) ;
 // get sever response

 if (action.equalsIgnoreCase ("PUT")) {
 // write object
 ObjectOutputStream infoOut=
 new ObjectOutputStream(
 theclient.getOutputStream()) ;
 infoOut.writeObject(new LocalInfo());
 }

 if (action.equalsIgnoreCase ("GET")) {
 // or read object(s)
 ObjectInputStream infoIn=new
 ObjectInputStream(
 theclient.getInputStream()) ;
 try {
 info=(Vector)infoIn.readObject();
 System.out.println(
 "Data returned from Server\n");
 } catch (ClassNotFoundException Ce) {
 System.out.println("Error :" +Ce) ;
 }

 Enumeration e=info.elements() ;
 while (e.hasMoreElements()) {
 LocalInfo i=(LocalInfo)e.nextElement();
 System.out.println(i.getAll()) ;
 System.out.println() ;
 }
 }
 userin.close();
 out.close(); // cleanup
 in.close();
 theclient.close();
 }
}

The infoClient class is the client side of the application.
When the user issues a PUT command the local info is
obtained and sent to the server as a LocalInfo object. A GET
command receives an array (a Java vector) of LocalInfo
objects gathered so far.

import java.net.* ;
import java.io.* ;

import java.util.Vector;
import java.util.Enumeration;

class infoClient {
 private Socket theclient=null ;
 private InetAddress host ;
 private PrintWriter out ;
 private BufferedReader in ;

 infoClient (int port) throws IOException {
 InetAddress local=InetAddress.getLocalHost();
 theclient=this.createsocket(local,port) ;
 this.Do(null) ;
 }

 infoClient (String hostString, int port)
 throws IOException {
 InetAddress host =
 InetAddress.getByName(hostString);
 theclient=this.createsocket(host,port);
 this.Do(null) ;
 }

 private Socket createsocket(InetAddress host,
 int port) throws IOException {
 Socket client = null;
 try {
 client= new Socket(host,port) ;
 out= new
 PrintWriter(
 client.getOutputStream(), true) ;
 in= new
 BufferedReader(new
 InputStreamReader(
 client.getInputStream()));
 } catch (UnknownHostException e) {
 System.err.println("Can't find host") ;
 } catch (IOException e) {
 System.err.println("Error : " + e) ;
 }
 System.out.println("Running infoCLIENT") ;
 System.out.println("Created socket : " +
 client.toString() + "\n") ;
 return client;
 }

 private void Do(String action)
 throws IOException {
 PrintWriter out=new
 PrintWriter(
 theclient.getOutputStream(), true) ;
 BufferedReader in=new BufferedReader(
 new InputStreamReader(
 theclient.getInputStream())) ;
 BufferedReader userin=new
 BufferedReader(
 new InputStreamReader(System.in)) ;
 Vector info=new Vector() ;
 //String userInput ;

 System.out.println(in.readLine()) ;
 // get welcome message
 action=userin.readLine() ;
 out.println(action) ;
 System.out.println(in.readLine()) ;
 // get sever response

 if (action.equalsIgnoreCase ("PUT")) {
 // write object
 ObjectOutputStream infoOut=new

 ObjectOutputStream(
 theclient.getOutputStream()) ;

 infoOut.writeObject(new LocalInfo());
 }

 if (action.equalsIgnoreCase ("GET")) {
 // or read object(s)
 ObjectInputStream infoIn=new
 ObjectInputStream(
 theclient.getInputStream()) ;
 try {
 info=(Vector)infoIn.readObject();
 System.out.println(
 "Data returned from Server\n");
 } catch (ClassNotFoundException Ce) {

 System.out.println("Error :" +Ce) ;
 }

 Enumeration e=info.elements() ;
 while (e.hasMoreElements()) {
 LocalInfo i=(LocalInfo)e.nextElement();
 System.out.println(i.getAll()) ;
 System.out.println() ;
 }
 }
 userin.close();
 out.close(); // cleanup
 in.close();
 theclient.close();
 }
}

The LocalInfo class handles the information local to a host.

package myAglets;

import java.util.Date;
import java.io.*;
import java.net.*;
import java.lang.System ;

class LocalInfo implements Serializable {

 private String _hostName="Unknown" ;
 private String _userName="Unknown" ;
 private String _osName="Unknown" ;
 private String _osVersion="Unknown" ;
 private String _javaVersion="Unknown" ;
 private Date _localTime ;

 LocalInfo() {
 try {
 InetAddress localHost=
 InetAddress.getLocalHost() ;
 _hostName=localHost.toString() ;
 } catch (Exception e) {
 System.err.println("Error : " + e) ;
 }

 _userName=System.getProperty("user.name") ;
 _osName=System.getProperty("os.name") ;
 _osVersion=System.getProperty("os.version") ;
 _javaVersion=System.getProperty("java.version");
 _localTime=new Date() ;
 }

 String getHostName() {
 return _hostName;
 }

 String getUserName() {
 return _userName;
 }

 String getOsName() {
 return _osName;
 }

 String getOsVersion() {
 return _osVersion;
 }

 String getJavaVersion() {
 return _javaVersion;
 }

 Date getLocalTime() {
 return _localTime;
 }

 String getAll() {

 String str =
 "Host Name :" + _hostName + "\n" +
 "User Name :" + _userName + "\n" +
 "OS Name :" + _osName + "\n" +
 "OS Version :" + _osVersion + "\n" +
 "Java Version:" + _javaVersion + "\n" +
 "Local Time :" + _localTime ;
 return str;
 }
}

9 Mobile agent development tool

The Aglets Software Development Kit (ASDK) from IBM’s
Tokyo Research Laboratory is a mobile agent framework
written in pure Java that allows the development of
distributed applications using mobile agent architecture.

“Aglets are Java objects that can move from one host on the
network to another. That is, an aglet that executes on one
host can suddenly halt execution, dispatch to a remote host,
and start executing again. When the aglet moves, it takes
along its program code as well as the states of all the objects
it is carrying. A built-in security mechanism makes it safe to
host untrusted aglets.” (IBM Corp, 1998)

Aglets derive their name from a combination of agent and
applet. Applets are event-driven and provide methods that the
programmers may override in order to control their life cycle,
whereas, ASDK provides a mobility-orientated and mobility-
triggered framework. To create an aglet the programmer
creates a subclass of the class aglet . The onCreation()
method may then be used to initialise the aglet in a similar
way the init() method is the starting point for any applet.
The other major methods the programmer may override to
customise the behaviour of the aglet are:

onDispatch() called before an aglet is dispatched
onCloning() called before an aglet is cloned
onDisposing() called before an aglet is disposed

(killed)

Each of these callback methods corresponds to a triggering
action dispatch() , clone() and dispose() which is
invoked by the aglet host. Each time an aglet begins
execution at a host, the host invokes an initialisation method
that will depend on the preceding event:

onCreation() called the first time an aglet is born
onClone() called on a clone after a cloning

operation
onArrival() called after a dispatch (or retract) action,

where the aglet arrives at a new host

The run() method is reserved as the entry point for the
aglets main thread and is invoked each time an aglet arrives
at a new host, directly after the onCreation() or
onArrival() methods have been called to initialise the
aglet.
 Aglets communicate by message passing. An aglet
wishing to communicate with another aglet first creates a

message object, declaring its intent to subscribe to a
particular message. The receiving aglet then uses the method
handleMessage() to process incoming messages. A
boolean value is returned indicating whether that message is
subscribed to. Messages may be synchronous or
asynchronous.
 The agent host supplied in the ASDK is called Tahiti. It
offers a graphical user interface in which to run aglets and
provides a customisable security interface configurable at
each aglet host. At the time of writing the ASDK v. 1.0.3
supports Sun’s Java Development Kit (JDK) 1.1 and later
versions, but not Java 2. Nonetheless, it provides a highly
customisable security environment. Within each host, the
aglet is given a unique identity based on its class name and
code base. The owner of the aglet may also be identified by
his/her name and e-mail address. Aglets are further
categorised as trusted, where their code base is local or
untrusted where the code base originated elsewhere. Security
options are defined for each category (trusted or untrusted)
and include:

• File access control. Defines the parts of a file system

that are accessible in either read or write mode
• Network access control. Reserves ports on which

network connections may be made
• Properties. Defines which system properties are made

available

10. Conclusions

This paper has outlined the advantages that mobile agents
have over traditional client/server applications, and has given
Java code examples for the implementation of agents. The
advantages of agents include a reduction in the network
communications, especially in transmitting network language
information.
 The paper has clearly shown that Java is the best choice
for a programming language as it directly supports sockets,
RMI, threads and object serialization. The paper has also
outlined the main Java agent development system has gives
the advantages of using each of them. It concludes that the
IBM aglet system has the advantage over other types in that
aglets migrate computation toward resources, whereas other
methods partitioned applications among participating nodes.
This mobility offers an evolution of the OO paradigm where
an object can be given a location.

11. References

[1] Watson, Mark. (1997). Intelligent Java Applications
for the Internet and Intranets. Morgan Kauffman
Publishers.

[2] Russell, Stuart. J. and Norvig, Peter (1995). Artificial
Intelligence: A Modern Approach. Eaglewood Cliffs,
NJ: Prentice Hall, pp 33.

[3] Chang, IBM (1998).
 [http://activist.gpl.ibm.com:81/WhitePaper/e2.html]
[4] Franklin, Stan and Graesser, Art (1996). Is it an Agent,

or just a Program? A taxonomy for Autonomous
Agents. Proceedings of the Third International

Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag.

 [http://www.mcsi.memphis.edu/~franklin/AgentProg.html]
[5] Sunsted, Todd. Agents on the move, Java World, July

1998”. [http://www.javaworld.com/javaworld/jw-07-
1998/jw-07-howto.html]

[6] Sunsted, Todd. An Introduction to agents – Java
World – June 1998.

[7] Niemeyer, P and Peck, J (1996). Exploring Java.
O’Reilly and Associates, pp 235.

[8] www.cs.nccu.edu.tw/~jong/agent/IA/ma.html
[9] JATLite [htt p://java.stanforrd.edu]
[10] ObjectSpace: Voyager Overview [http://www.

objectspace.com/products/vgrOverview.htm]
[11] IBM Aglets SDK (1998).
 [http://www.trl.ibm.co.jp/aglets/]
[12] Gray, R.S. (1995). Agent TCL: A transportable agent

system. Proceedings of the CIKM Workshop on
Intelligent Information Agents, Baltimore, MD.

[13] Kautz, Selmen and Coen (1994). Bottom–up Design of
Software Agents. Communications of the ACM, 37, 7.

[14] Agents to roam the Internet [http://www.sunworld.
com/swol-10-1996/swol-10-agent.html]

[15] Aglets - Mobile Java™ Agents
 [http://www.trl.ibm.co.jp/aglets/whitepaper.html]
[16] Cetus-Links (links to agent resources)

[http://pent21.infosys.tuwien.ac.at/cetus/oo_mobile_agents.h
tml]

