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A B S T R A C T   

We present an alternative approach to the forecasting of motor vehicle collision rates. We adopt an oft-used tool 
in mathematical finance, the Heston Stochastic Volatility model, to forecast the short-term and long-term evo
lution of motor vehicle collision rates. We incorporate a number of extensions to the Heston model to make it fit 
for modelling motor vehicle collision rates. We incorporate the temporally-unstable and non-deterministic nature 
of collision rate fluctuations, and introduce a parameter to account for periods of accelerated safety. We also 
adjust estimates to account for the seasonality of collision patterns. Using these parameters, we perform a short- 
term forecast of collision rates and explore a number of plausible scenarios using long-term forecasts. The short- 
term forecast shows a close affinity with realised rates (over 95% accuracy), and outperforms forecasting models 
currently used in road safety research (Vasicek, SARIMA, SARIMA-GARCH). The long-term scenarios suggest that 
modest targets to reduce collision rates (1.83% annually) and targets to reduce the fluctuations of month-to- 
month collision rates (by half) could have significant benefits for road safety. The median forecast in this sce
nario suggests a 50% fall in collision rates, with 75% of simulations suggesting that an effective change in 
collision rates is observed before 2044. The main benefit the model provides is eschewing the necessity for 
setting unreasonable safety targets that are often missed. Instead, the model presents the effects that modest and 
achievable targets can have on road safety over the long run, while incorporating random variability. Examining 
the parameters that underlie expected collision rates will aid policymakers in determining the effectiveness of 
implemented policies.   

1. Introduction 

The future of road safety is uncertain. Despite the push toward 
increasing road safety in Europe (European Commission, 2018b, 2018a; 
European Transport Safety Council, 2020b), the fact remains that motor 
vehicle collisions are one of the leading causes of death both worldwide 
and in Europe. The prospect of connected and autonomous vehicles has 
revised expectations for collision and casualty rates going forward 
(Litman, 2020). In the near-term, advanced driver assistance systems 
(ADAS) are expected to result in an appreciable reduction in collision 
rates (Yue et al., 2019, Shannon et al., 2020). Despite these advance
ments, motor vehicle collisions will remain a highly random and non- 
deterministic process. This study introduces a forecasting tool to 
embrace the non-determinism of this uncertainty, and provide reason
able predictions for setting and evaluating safety targets. 

The tool that is introduced is an extended version of the Heston 
Stochastic Volatility model (Heston, 1993). The Heston model is 
commonplace in mathematical finance. It is favoured as it leverages the 

evolution of two interconnected yet randomly-varying processes to 
investigate how an asset price may change over time. Similar assump
tions can be applied to motor vehicle collisions. Evidence exists of 
collision rates fluctuating randomly in tandem with changing travel 
patterns and distances, largely due to driving exposure (Regev et al., 
2018). In Ireland, the number of registered vehicles on road networks is 
trending upwards (Road Safety Authority, 2019). Without concerted 
efforts to reduce overall collision rates, an increased number of regis
tered vehicles and expectations of increased mobility patterns (Kröger 
et al., 2019) will lead to an inevitable increase in collision frequency. 
This trend will manifest while remaining tied to random fluctuations– 
akin to a ‘random walk’ with drift. 

A reduction in fatality and injury risk, as well as the safe introduction 
of cooperative, connected and automated mobility (CCAM) solutions, is 
the goal of leading safety organisations worldwide. Road safety cam
paigns often centre on reducing aggressive driving behaviours, reducing 
driving while cognitively impaired, and ensuring the vehicle’s safe
ty–critical functionality is well-maintained. An increasing number of 
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campaigns also directly target younger or more inexperienced drivers 
who may underestimate their level of risk or become distracted while 
driving. These campaigns are often set in motion as a means to meet 
ambitious targets for collision rate reductions. Although a level of risk 
reduction is often achieved, the ambitious targets are often missed 
(World Health Organization, 2018, European Transport Safety Council, 
2020b). 

The forecasts we propose in this study can be used as an additional 
tool to enhance the accuracy of short-term predictions on collision rates, 
and analyse long-term safety target proposals. The objectives of intro
ducing this method for long-term forecasting are two-fold. Firstly, it 
allows reasonable targets to be set that can be reliably met, and sec
ondly, it allows the compounding effects of safety initiatives to be 
assessed through scenario analyses. A compounding effect in this regard 
is the assumption that a reduction in collision rates will encourage other 
road users to adopt safer behaviours. This will allow for even greater 
safety benefits to be realised in successive time periods. Using an 
Extended Heston model, we provide reasonable estimations for the 
future of road safety, without losing touch of the random variations that 
drive motor vehicle collision rates. 

The forecasts we introduce account for the randomness of collisions 
by modelling collision rates using stochastic processes rather than linear 
equations. Developments within road safety literature have led to a 
sceptical view on conventional linear models that assume a fixed 
structure of variation in collision frequencies and severities (Xie et al., 
2007; Anastasopoulos et al., 2012a; Commandeur et al., 2013). Collision 
frequencies are assumed to be non-constant and randomly-varying over 
time (Malyshkina et al., 2009; Anastasopoulos et al., 2012a; Mannering, 
2018). Collision severities, meanwhile, are assumed to be afflicted by 
systematic unobserved heterogeneity (Anastasopoulos et al., 2012b; 
Mannering et al., 2016). The assumption of unobserved heterogeneity is 
that similar collision events may nevertheless lead to vastly different 
severity outcomes. This may manifest as a result of underlying influ
ential factors that cannot be captured in real-time statistics (Fountas 
et al., 2018, 2019), or as a result of the non-constant effects of influential 
factors that can be captured in real-time statistics (Fountas et al., 2020; 
Islam et al., 2020). Furthermore, not only do the collision rates seem to 
follow a random process, but the extent of the fluctuations in collision 
rates have also been shown to be non-constant. Instead, it changes over 
time (Xie et al., 2007). The model presented herein sidesteps issues 
related to the assumption of constant variance and rates by instead 
assuming that variance and rates evolve independently and stochasti
cally over time. In addition to being a viable model for forecasting short- 
term collision rates, it can also be used to forecast long-term collision 
rates. It can be used for long-term forecasts as informed beliefs regarding 
the future variance can be used to guide the level of stochasticity within 
the model simulations. 

We extend the Heston model to make it fit for purpose for modelling 
collision rates. The Extended Heston model is well-suited for interro
gation in the road safety domain given the emphasis that has been 
placed on modelling motor vehicle collisions as random events. The 
platform provides a reasonable forecast of evolving collision rates, based 
on a combination of the latest collision statistics available and the po
tential safety benefits of modest rate reduction targets. Each simulation 
is independent. After a large number of simulations have been generated 
(5000 in this study), the median rate at each time step is taken to 
represent the forecasted value going forward. The prediction intervals 
associated with these simulations are also reported. 

The conventional Heston model provides three primary benefits for 
road safety predictions. Firstly, it does not assume a constant collision 
rate process. Instead, changes in collision rates are a combination of the 
overall trend in safety, combined with a ‘random walk’ whose effect is 
tied to a variance term. Secondly, it does not assume constant variance 
when calculating the extent of the ‘random walk’ in collision rates. 
Thirdly, it does not assume that the stochastic variance is centred on a 
fixed value throughout the simulation. Instead, two variance parameters 

are included – the instantaneous (current) variance, and the expected 
long-run variance. The long-run variance is distinct from the instanta
neous variance. As such, the modeller retains control over the level of 
heterogeneity in the predictions. Manipulating the long-run variance 
offers the opportunity to incorporate expectations regarding the evolu
tion of cooperative, connected and automated mobility (CCAM) solu
tions in the road environment. Namely, this variable can account for 
future fluctuations in collision rates due to changing traffic patterns, 
road designs, vehicle safety capabilities, and vehicle communication 
technologies. Therefore, the anticipated benefits of ADAS-enabled ve
hicles (Yue et al., 2019), highly-automated or autonomous vehicles 
(Cicchino, 2017; Litman, 2020), or the expected safety benefits associ
ated with an overhauled road network infrastructure (Meyer et al., 
2017; Cohen and Cavoli, 2019), can be incorporated in to the model. 

The adapted model provides two further benefits to the conventional 
model. Seasonality is commonplace in road safety literature (Malysh
kina et al., 2009; Commandeur et al., 2013). We therefore incorporate a 
seasonal adjustment to mimic variations in observed rates. The second 
benefit comes from an introduction of a positive ‘shock’ element to 
incorporate accelerated periods of safety. This may be due to the 
introduction of safety campaigns, safety regulations, upgraded road in
frastructures, safety-optimised vehicles, or integrated safety systems 
(such as Vision Zero (European Commission, 2019a)). Despite our desire 
for compounded safety, we realise that the compounding effect of safety 
targets may not be a plausible prospect. An offset may be required in the 
forecasts to account for changes in human behaviour. This is in keeping 
with the theory of risk homeostasis, or risk compensation (Winston 
et al., 2006; Chen et al., 2017; Fountas et al., 2020; Oviedo-Trespalacios 
et al., 2020). This theory posits that an equilibrium is often met between 
road safety initiatives and changes in driving behaviour. In other words, 
as their level of absolute risk reduces, drivers may adapt their behaviour 
over time to become increasingly risk-seeking. Therefore, the full safety 
benefits of the initiative are partially offset. For example, there is evi
dence that early adopters of airbags and anti-lock brakes were incenti
vised to drive with higher levels of intensity (Winston et al., 2006). 

Taken in full, the parameters in the Extended Heston model are 
latent representations of the well-established contributing factors that 
influence collision rates and collision severities, whether they be 
roadway characteristics, infrastructure elements, driver behavioural 
patterns, or environmental conditions. To demonstrate the application 
of the extended Heston model, we perform two forecasts. First, we 
present a 5-year forecast for 2014–2018 collision rates using model 
parameters discerned from 2009 to 2013 collision rates. Following this, 
we present a number of long-term forecasts detailing how collision rates 
may evolve from 2019 to 2044, based on 2014–2018 collision rates. 
These forecasts are based on plausible scenarios detailed from prior 
literature. 

We note that this study is not an attempt to definitively assume what 
motor vehicle collision rates may look like in the future. For example, 
the 2009–2013 time period was characterised by Ireland’s fall into the 
Great Recession and subsequent Eurozone debt crisis. Periods of eco
nomic instability have previously been shown to alter collision and fa
tality rates relative to periods of economic stability (Behnood and 
Mannering, 2016). The 2009–2013 period of recession and debt crisis 
led to a downward trend in Ireland’s vehicle ownership statistics 
(Appendix B). Although we focus on collision rates rather than collision 
numbers in this study, fewer vehicles on transport routes may alter 
collision rate dynamics. As such, predictions made on the basis of this 
time period may not reflect the collision rate dynamics that existed 
during the economic recovery period of 2014–2018, when vehicle 
ownership statistics trended upwards. Nevertheless, the model is intro
duced in this study serves as a useful platform upon which to combine 
randomly-evolving parameters with informed beliefs to predict sce
narios relating to an uncertain future. 

Section 2 describes the data used as part of the study and the patterns 
exhibited in Irish motor vehicle collision statistics. Section 3 describes 

D. Shannon and G. Fountas                                                                                                                                                                                                                  



Accident Analysis and Prevention 159 (2021) 106250

3

how the Heston model is transformed from a financial model in to a road 
safety analysis model, and describes how the extended Heston model 
was formed. Section 4 presents the results of the forecasting, both short- 
and long-term. This section also investigates the influence exhibited by 
changing parameter values to investigate specific scenario analyses. 
Section 5 includes a discussion on how the Extended Heston model 
compares against other forecasting models and fits in with traditional 
road safety and traffic dynamic literature, while proposing further ex
tensions that can be incorporated in follow-up studies. Section 6 
concludes. 

2. Data description 

We draw our data from the collision reports released by the Road 
Safety Authority (RSA) – Ireland’s national road safety organisation. The 
reports extend from 2004 to 2018. Each report contains a monthly 
breakdown of the material damage collisions, injury collisions, and fa
tality collisions for the prevailing year. The progression of time accords 
with a consistent rise in the number of legally-registered vehicles on 
Irish roads. 

To ensure a fair comparison of road safety over the years, the statistic 
we use is the collision rate after adjusting for the number of legally- 

registered vehicles in Ireland. To derive this rate, we divide the num
ber of collisions for each month by the number of legally-registered 
vehicles in the prevailing calendar year1. Therefore, we report colli
sion rates rather than absolute numbers. This provides a normalised 
representation of road safety over time. 

The RSA is responsible for the collation of data collected by the na
tional police force (An Garda Síochána). The RSA have designed and 
implemented effective safety campaigns that have significantly reduced 
the rate of fatalities on Irish roads (Fig. 1). This has resulted in Ireland 
being ranked as the 6th safest nation in Europe for road safety (Road 
Safety Authority, 2019). Nevertheless, total collision rates (inclusive of 
both material damage and casualty collisions) have been steadily rising 
over the last 15 years (Fig. 2). Fig. 3 shows that the distribution of the 
aggregate collision rates are log-normally distributed. However, while a 
slight skew exists, the monthly changes in collision rates does not exhibit 
a dispersion violating the limits assumed by the normal distribution. 

Beginning in 2014, the method for data collation changed from 
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Fig. 1. Effective road safety campaigns, improved road infrastructures, and safer vehicles has seen the fatality rate fall by almost 70% between 2004 and 2018.  
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Fig. 2. Despite the drop in fatalities in Fig. 1, overall collision rates have been rising since 2014, coinciding with the switch to a digital recording of daily colli
sion rates. 

1 To fully factor in traffic exposure’s relationship with collision rates, the use 
of vehicle-miles travelled (VMT) was also investigated. However, a lack of 
suitable data for Ireland meant the collision rate is based on the number of 
legally-registered vehicles, which can also serve as a measure of exposure. 
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manual hard-copy reports sent to the RSA to an electronic recording of 
the collision details, updated daily. The introduction of the new system 
saw a sudden increase in the number of material damage collisions. The 
sudden increase would suggest that the years prior to 2014 saw a large 
proportion of material damage collisions going unrecorded, or a 
consistent misplacement of collision reports. In any case, to mitigate the 
downward bias in rates introduced by these unrecorded collisions, we 
form our analysis in Section 4.2 on the basis of monthly collision rates 
extending from 2014 to 2018. Our time series therefore contains 60 
monthly rates extracted from these reports (12 monthly rates over 5 
years). Table 2 contains a breakdown of the collision rates throughout 
the 60 months and how they inform the model parameters of the 
extended Heston model in Section 3. This breakdown is supplemented 
with summary statistics describing the variability of the time series. 

The lowest number of collisions occurred in April 2014 (2875), while 
the highest number occurred in November 2018 (4424). The average 
number of monthly collisions from 2014 to 2018 was 3619. April 2014 
also represented the lowest collision rate in the sample, with 0.113% of 
registered vehicles being involved in a collision. The highest monthly 
collision rate was November 2017 (0.165%) – this figure equates to 
4407 collisions amongst 2,676,000 registered vehicles. 

There were large deviations among the monthly rates over the five 
years from 2014 to 2018, when measured on a log-difference scale 
(Table 2). The largest month-to-month decrease was a 14.71% fall in 
collision rates between December 2015 and January 2016. The largest 
increase was a 18.25% rise in collision rates between April and May 
2017. On average, there was a 0.38% rise in monthly collision rates, 
which is consistent with the rising trend in collisions (Fig. 2). Log- 
percentage differences are preferred to arithmetic percentage changes 
so that symmetrical changes in rates can be reported as they relate to the 
starting value of a period. For example, a 10% increase on a log- 
difference scale, followed by a 10% decrease, will return the value to 
its starting position. This trait does not hold for absolute percentage 
changes that are measured arithmetically. 

The ‘volatility’ of these changes, or the standard deviation of the 
fluctuations over a set time period, are reported on an annualised scale 
as σs

̅̅̅̅̅̅
12

√
. The sample standard deviation σs is calculated using the 

values in Table 2 as σs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − x
−

)
2

n− 1

√

. The 5-year volatility is 27.09%. 
Within-year volatilities are also calculated, which are used to calculate 
how volatile the scaled standard deviations are each year over the 5-year 
period. The 5-year ‘volatility of volatility’ measure is calculated as 

28.71%, which indicates that the rate of change in collision rates does 
not remain constant from year-to-year. Both of these measures are 
incorporated in to our forecasting model in Section 3. 

We also note a seasonal pattern in our time series data (Fig. 4). Late 
winter to late spring months see significant downward deviations from the 
yearly average, with a trough typically occurring in April. This is followed 
by an increase in rates throughout the summer, with significant upward 
deviations from the yearly average occurring throughout the autumn 
months, typically peaking in November. It is possible that collision rates 
peak at this time of the year because of shorter daylight hours; poor 
lighting conditions has previously been linked with a higher accident risk 
(Jägerbrand and Sjöbergh, 2016). This sinusoidal pattern is only broken 
by collision patterns in August; possibly due to fewer households driving 
as a result of leisure breaks or a reduced school-run schedule. Neverthe
less, the overall seasonality in Fig. 4 generally follows that of a sine wave, 

0

5

10

15

20

25

30

35

<-2
2.5

%
-20

%
-15

%
-10

% -5% 0% 5% 10
%

15
%

20
%

>2
2.5

%

Distribution of Monthly Log-differences in Collision Rates, 
2004 - 2018

Log-differences in Monthly Collision Rates

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

35

0.0
75

%

0.0
85

%

0.0
95

%

0.1
05

%

0.1
15

%

0.1
25

%

0.1
35

%

0.1
45

%

0.1
55

%

Distribution of Collision Rates in Ireland, Adjusted for 
Licensed Vehicles, 2004 - 2018

Monthly Collision Rates

Fr
eq

ue
nc

y

Fig. 3. Distribution of the rate of collisions per registered vehicle on a monthly basis in Ireland between 2004 and 2018, and the distribution of log-differences 
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which we incorporate into our model in Section 3. 
The general shape of monthly collision deviations from the yearly 

average suggests one full sinusoidal cycle in a calendar year (angular 
frequency ω = 2π × 1). The sharp reduction in collision rates starting 
from January suggests that the year begins halfway through the 2π 
cycle, and we adjust the phase accordingly (φ = π). No offset is required 
given that the monthly deviations centre on zero each year. The 
amplitude A, or the highest peak reached during each cycle, is chosen 
based on a minimised error between the observable deviations and the 
deviations suggested by the sinusoidal cycle. The results of Table 1 
suggest that an amplitude of 7.5% minimises the error, and offers a 
significant reduction in error over having no sinusoidal cycle incorpo
rated (A = 0%). More complex Fourier Basis functions or other Func
tional Data techniques may attain a closer fit to the overall seasonal 
pattern and the discontinuity caused by August collisions rates. How
ever, to avoid overfitting we retain a general view on the sinusoidal fit 
going forward. 

3. Methodology 

3.1. Heston model for asset prices 

The conventional Heston Stochastic Volatility Model (Heston 1993) 
calculates stepwise changes in the underlying asset price St by assuming 
it satisfies the stochastic differential equation 

dSt = μStdt+
̅̅̅̅
νt

√
StdWS

t (1)  

where νt , the instantaneous variance or squared volatility, is a Cox- 
Ingersoll-Ross (1985) process, and each change in νt is defined as 

dνt = κ(θ − νt)dt + ξ
̅̅̅̅
νt

√
dWν

t (2) 

Both WC
t and Wν

t are Wiener processes with correlation ρ. Eq. (1) and 
Eq. (2) both follow a Markov Chain, where stepwise changes only 
depend on the current state of the process. The parameters are repre
sented as:  

• μ is the expected growth of the asset price each year. This rate is 
assumed to remain constant over time.  

• θ is the long-run variance, or the rate to which fluctuations in the 
asset price will tend to over time. As t tends to infinity, the instan
taneous variances νt are expected to revert to θ.  

• κ determines the speed at which νt reverts to θ.  
• ξ determines the rate of change of the variance in each successive νt . 

In addition to the assumption that asset prices follow a stochastic 
process, it is assumed that the extent of the fluctuations in asset 
prices ( ̅̅̅̅νt

√ ) are also stochastic and controlled by the constant ξ. 

To ensure that variances νt remain positive for all t, the parameters 

are set such that ξ2 < 2κθ (the Feller Condition). 
The Heston model is widely-used as it effectively models random 

processes that have asymmetric yet normally-distributed stepwise log- 
changes. It also factors in the possibility that asset price and volatility 
are correlated. Furthermore, it eschews the assumption that the standard 

deviation 
( ̅̅̅̅νt
√ )

of the underlying process remains constant over time. 

Instead, it assumes instead that the standard deviation is a stochastic 
process itself, which reverts to an estimated average over time. 

These traits are also applicable for modelling collision rates. Colli
sion rates have previously been shown to be lognormally-distributed 
(Ma et al., 2015, 2016), as shown in Fig. 3. Therefore, their stepwise 
log-differences are normally distributed (Fig. 3). We additionally assume 
that the size of the fluctuations in collision rates are positively correlated 
with the collision rates. We also assume that fluctuations in collision 
rates are stochastic in accordance with the temporal instability 
assumption (Mannering, 2018). This assumption states that different 
time periods exhibit different levels of fluctuations in collision rates. 
Thus, variance in collision rates is not constant over time. 

3.2. Extended Heston model for collision rates 

Certain extensions are made to the conventional Heston model to 
tailor its use for modelling monthly collision rates. The extended Heston 
model, for the purposes of this study, calculates stepwise changes in the 
underlying collision rates Ct by the equation: 

dCt =
(
− μGtC1dt+

̅̅̅̅
νt

√
C1dWC

t

)
+

(

CY
t

−

× Asin(2πft + φ)
)

(3)  

where νt, the instantaneous variance or squared volatility, is a Cox- 
Ingersoll-Ross process, and each change in νt is defined as 

dνt = κ(θ − νt)dt+ ξ
̅̅̅̅
νt

√
dWν

t (4) 

The CY
t

−

× Asin(2πft+φ) term is an adjustment that is added to ac

count for the seasonality in collision rates (Figure 4). CY
t

−

denotes the 
prevailing calendar-year average for simulated monthly collision rates. 
Asin(2πft+φ) incorporates the sinusoidal adjustment based on the 
placement of Ct within the calendar year. Both WC

t and Wν
t remain as 

Wiener processes with correlation ρ. The level of correlation is found by 
computing the level of association between annual collision rates and 
annual collision rate volatility. The remaining parameters can be 
reasoned as follows:  

• Rather than the expected annual growth rate, μ is set to equal the 
expected reduction in collision rates each year. This rate is assumed 
to remain constant over time, except for periods of accelerated re
ductions (Gt).  

• Gt represents fixed, temporary periods of accelerated reductions in 
collision rates. These periods represent a proxy for the safety benefits 
afforded by improved road infrastructures, the introduction of 
safety-optimised vehicles, effectively-enforced legislation, and other 
schemes that prove beneficial to road safety.  

• θ is the long-run variance, or the rate to which month-to-month 
fluctuations in collision rates will tend to over time. As t tends to 
infinity, the month-to-month variances νt are expected to revert to θ.  

• κ determines the speed at which the prevailing variance of collision 
rates νt reverts to θ.  

• ξ determines the extent of the fluctuations in each successive νt. In 
addition to the assumption that collision rates follow a randomly- 
varying process, it is assumed that the extent of the fluctuations in 
month-to-month collision rates ( ̅̅̅̅νt

√ ) also vary randomly over time, 
and are controlled by constant ξ. 

The extensions (Eq. (3)) to the conventional Heston model (Eq. (1), 

Table 1 
Absolute differences between sine wave cycles and monthly deviations in 
collision rates from their yearly average for different amplitudes.  

Sinusoidal Fit Error 

Amplitude Deviation Error 

0% 370% 
… … 
5% 289% 
6% 282% 
7% 277.3% 
7.5% 277.1% 
8% 279% 
9% 284% 
10% 293% 
11% 303% 
12% 314%  
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Table 2 
Summary statistics and model parameter derivation from a time series of monthly Irish vehicle collision data, 2014–2018.   

Month Underlying Collision Rates Seasonality Volatility 

Collisions Collision Rate, Adjusted for 
Registered Vehicles (Fig. 2) 

Deviations from Yearly 
Average (Fig. 4) 

Monthly Collision Rate 
Log-differences 

Yearly 
Volatility 

Yearly Volatility 
Log-differences 

Min  2875 0.113% − 15.09% − 14.71%   
Max  4424 0.165% 15.95% 18.25%   
Mean  3619 0.137% 0 0.38%   
Std. Dev  388.95 0.013% 7.69% 7.82%    

2014 (Registered 
Vehicles: 2,546,000) 

Jan 3252 0.128% − 0.09% – 27.38% – 
Feb 3056 0.120% − 6.11% − 6.22% 
Mar 3082 0.121% − 5.31% 0.85% 
Apr 2875 0.113% − 11.67% − 6.95% 
May 3284 0.129% 0.90% 13.30% 
June 2974 0.117% − 8.63% − 9.92% 
July 3039 0.119% − 6.63% 2.16% 
Aug 3230 0.127% − 0.76% 6.10% 
Sep 3100 0.122% − 4.76% − 4.11% 
Oct 3649 0.143% 12.11% 16.31% 
Nov 3774 0.148% 15.95% 3.37% 
Dec 3743 0.147% 15.00% − 0.82%  

2015 (Registered 
Vehicles: 2,593,000) 

Jan 3368 0.130% − 1.96% − 12.39% 31.07% 12.63% 
Feb 3058 0.118% − 10.98% − 9.66% 
Mar 3407 0.131% − 0.82% 10.81% 
Apr 3142 0.121% − 8.54% − 8.10% 
May 3411 0.132% − 0.71% 8.21% 
June 3241 0.125% − 5.65% − 5.11% 
July 3494 0.135% 1.71% 7.52% 
Aug 3512 0.135% 2.23% 0.51% 
Sep 3197 0.123% − 6.94% − 9.40% 
Oct 3680 0.142% 7.12% 14.07% 
Nov 3795 0.146% 10.47% 3.08% 
Dec 3918 0.151% 14.05% 3.19%  

2016 (Registered 
Vehicles: 2,645,000) 

Jan 3450 0.130% − 2.86% − 14.71% 21.47% − 36.96% 
Feb 3577 0.135% 0.71% 3.62% 
Mar 3313 0.125% − 6.72% − 7.67% 
Apr 3401 0.129% − 4.24% 2.62% 
May 3436 0.130% − 3.26% 1.02% 
June 3416 0.129% − 3.82% − 0.58% 
July 3501 0.132% − 1.43% 2.46% 
Aug 3446 0.130% − 2.98% − 1.58% 
Sep 3668 0.139% 3.27% 6.24% 
Oct 3605 0.136% 1.50% − 1.73% 
Nov 3930 0.149% 10.65% 8.63% 
Dec 3878 0.147% 9.19% − 1.33%  

2017 (Registered 
Vehicles: 2,676,000) 

Jan 3759 0.140% − 3.48% − 4.28% 29.56% 31.98% 
Feb 3397 0.127% − 12.78% − 10.13% 
Mar 3654 0.137% − 6.18% 7.29% 
Apr 3307 0.124% − 15.09% − 9.98% 
May 3969 0.148% 1.91% 18.25% 
June 3887 0.145% − 0.20% − 2.09% 
July 4002 0.150% 2.76% 2.92% 
Aug 3801 0.142% − 2.40% − 5.15% 
Sep 4184 0.156% 7.43% 9.60% 
Oct 4092 0.153% 5.07% − 2.22% 
Nov 4407 0.165% 13.15% 7.42% 
Dec 4277 0.160% 9.82% − 2.99%  

2018 (Registered 
Vehicles: 2,718,000) 

Jan 3824 0.141% − 3.39% − 12.75% 28.41% − 3.95% 
Feb 3473 0.128% − 12.26% − 9.63% 
Mar 3626 0.133% − 8.39% 4.31% 
Apr 3422 0.126% − 13.55% − 5.79% 
May 4038 0.149% 2.01% 16.55% 
June 3988 0.147% 0.75% − 1.25% 
July 4113 0.151% 3.91% 3.09% 
Aug 3862 0.142% − 2.43% − 6.30% 
Sep 4207 0.155% 6.28% 8.56% 
Oct 4187 0.154% 5.78% − 0.48% 
Nov 4424 0.163% 11.77% 5.51% 
Dec 4335 0.159% 9.52% − 2.03%  

Model Parameters   December ‘18 Rate Amplitude (Table 1) 5-year Volatility 5-year Volatility of Volatility   
0.159% 7.5% 27.09% 28.71%  
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Eq. (2)) can be summarised as:  

1. including a parameter to account for periods of accelerated safety  
2. incorporating an annual seasonality to the collision rates  
3. adopting an generalised Wiener Process rather than an Itô Process for 

successive collision rates. 

3.2.1. Accelerated reductions 
A stochastic ‘rate of interest’ adjustment has previously been added 

to the Heston model (ex: (Grzelak and Oosterlee, 2011)). However, in 
our model we keep the ‘rate of reduction’ term μ constant and instead 
implement a short-term binary ‘switch’ to an accelerated rate of collision 
reduction. As such, we add to our predictions the plausible scenario that 
certain periods in the future will see an accelerated rate of collision rate 
reduction for short periods of time. Although similar in theory to a 
Markov Switching Process, we do not incorporate the Markov property; 
each prediction is identically and independently distributed. 

Periods of accelerated collision rate reductions may follow from 
temporary measures (i.e. COVID-19 mobility lockdowns), or permanent 
measures such as updated vehicle regulations, road infrastructures 
optimised for safety and vehicle connectivity (such as V2X) (Johnson, 
2017, Najaf et al., 2018), or the launch of highly-automated vehicles 
that reduce collision rates (Litman, 2020). Regulations may take any 
form of policy or enforcement changes that result in effective reductions 
in collision rates. These may include prohibiting the use of conventional 
vehicles on public road networks, or requiring newly-launched vehicles 
to have safety-optimised technology as standard (European Commis
sion, 2019b). 

To incorporate these scenarios, we add a binary switching element to 
the constant rate of reduction parameter μ. If a threshold is breached, the 
collision rate reduction parameter μ is expected to accelerate for s pe
riods by a multiplicative rate G > 1. Outside of these time periods, the 
multiplicative rate is set to G = 1. The threshold is set according to the 
Gompertz probability distribution function. The rate of acceleration is 
assumed to follow a uniform distribution bounded by N[l,h]. 

These effects last for a short period of time to account for the risk 
homeostasis or offset theory (Winston et al., 2006). The offset theory 

asserts that drivers tend to offset risk-reduction measures (road safety 
campaigns, vehicle safety technology, optimised road design, etc.) by 
adapting their driving behaviours to become more risk-seeking. The 
equilibrium reached between absolute risk-reduction and updated risk- 
norms means that the safety benefits of the implemented risk-reduction 
measures are at least somewhat offset. 

To implement this accelerated-safety adjustment to the standard rate 
of reductionμ, we draw on the Gompertz Probability Distribution 
Function (Fig. 5). The Gompertz distribution is used in a number of 
different fields, for software reliability (Ohishi et al., 2009) and 
customer purchase behaviour (Bemmaor and Glady, 2012), amongst 
others. Its use here is predicated on the assumption that effective 
changes in regulations, road network improvements, or vehicle tech
nological advancements are increasingly likely to occur in the near-term 
(European Commission, 2018b, 2018a). However, this probability is 
likely to increase even further in the moderate-long term as the avail
ability of highly-automated vehicles and safety- and communication- 
optimised road networks becomes increasingly feasible (Litman, 2020). 

The Gompertz probability distribution function is formulated as: 

Gt(T; b, η) = bηeηe
bt
T e− ηe

bt
T (5) 

The chosen values for parameters T (6), b (0.02) and η (0.3) results in 
a Gompertz probability distribution function that resembles that of a 
truncated normal distribution (Fig. 5). Each collision rate reduction 
period is randomly-predicted, based on the dynamic relationship be
tween the uniform distribution and the Gompertz distribution (Fig. 5). 
Therefore, each simulation will project a differing number of accelerated 
rate reduction periods. Nevertheless, setting T = 6 suggests that six 
accelerated periods of collision rate reduction are expected (but not 
guaranteed) over the next century (the span of the Gompertz function). 
The decline in the latter half of the distribution follows the assumption 
that an array of changes to reduce collision rates would also reduce the 
likelihood of further changes in the long-term, as policy efforts and 
capital may be diverted elsewhere. 

Based on these assumptions, we add the following adjustment to Eq. 
(1): 

dCt = − μGtC1dt+
̅̅̅̅
νt

√
C1dWC

t (6) 
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Fig. 5. Gompertz probability distribution function overlaid with the ‘acceleration in safety’ multiplier α and uniformly-distributed random ‘predictions’ for the 
month in which the acceleration multiplier will rise. For each random ‘prediction’ (yellow dot varying between 0% and 100%) that falls below the dynamic threshold 
set by the Gompertz curve, there will be a Gompertz ‘shock’, or an accelerated rate of safety for the following 36 months. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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where 

Gt⋯t+s =

⎧
⎨

⎩

α, ifG(T; b, η) > unif [0, 1],
α ∈ unif (N[l, h])

1, ifG(T; b, η) < unif [0, 1]
(7) 

In this case, the acceleration multiplier Gt is a Boolean operator that 
determines whether the stepwise rate of reduction in collision rates is 
accelerated at a rate of α, or remains at the standard rate. The acceler
ation parameter α is a uniformly-distributed integer drawn from 
unif[l, h]. Assuming that effective changes may instigate a 2x-5x accel
erated reduction in collision rates lasting for a period of 36 months, this 
would equate to s = 36 months and α would take the form unif[2,5]. 
After incorporating the acceleration parameter α = unif[2, 5] and the 
Gompertz distribution G(6;0.03,0.2) assumptions, the acceleration 
multiplier Gt approximately equates to a mean average of G

−

≅1.40 
across 5000 simulations. As such, the rate of reduction rate μGt is 
approximately 40% higher than the baseline μ. 

3.2.2. Seasonality 
As noted in Section 2, the rate of motor vehicle collisions in Ireland 

follows a cyclical pattern (Fig. 4). Spring typically sees the lowest rate of 
collisions, with a trough in April, while autumn months see the highest 
rate of collisions, typically peaking in November. To account for this 
seasonality, we apply a sinusoidal adjustment to the collision rates. 
Seasonal adjustments have previously been added to the Heston Sto
chastic Volatility model (Arismendi et al., 2016); however, in our case 
we adjust the expected collision rate rather than the rate of fluctuation. 

Ct = Ct +CY
t

−

× Asin(2πft+φ) (8)  

where  

• C
Y

t
− is the bounded calendar-year average (January-December) for 

the prevailing collision rate.  
• A is the amplitude, or the highest peak reached in the seasonal cycle.  
• f is the frequency, or the number of sinusoidal cycles per unit of time 

(year). 
• 2πf is the angular frequency, or the rate of change of sinusoidal cy

cles per unit of time (year).  
• φ is the phase, or the position of the sinusoid cycle at t = 0. 

In our long-term forecasts (Section 4.2), the seasonal adjustments to 
the collision rate predictions take the form: 

Ct = Ct +CY
t

−

× (0.075sin(2πt + π) ) (9) 

According to Table 1 in Section 2, sinusoidal error is minimised when 
A is 7.5%. f is set to one cycle per year, while successive time steps are 
set to 1

12 to account for monthly iterations. φ is set to π, in order to enable 
the sinusoid to begin half-way through its cycle. 

3.2.3. Independent collision steps, dependent variance steps 
The largest deviation from the conventional Heston model is a de

parture from the assumption of state-dependent changes in successive 
collision rates Ct. This is in contrast to the common Heston model 
convention that assumes asset price follows an Itô Process (Bergomi, 
2015). Instead, we assume that monthly collision rates follow a random 
walk. The state-dependent assumption asserts that successive values in 
the process are scaled to the size of the immediately-prior value Ct. In 
this way, if collision rates are to reach near-zero values, the state- 
dependent process would ensure there is a high-likelihood that only a 
near-zero change can occur for the following time step. In a decaying 
process such as that underlying an iterative ‘rate of reduction’ process, 
this has the effect of ‘trapping’ collision rates near-zero if a random 
simulation reaches this level. This is counter-intuitive in the context of 
monthly collision rates. Collision rates are primarily dependent on travel 
patterns and traffic volumes (Lassarre, 2001, Bijleveld et al., 2010, 
Commandeur et al., 2013, Regev et al., 2018), but are otherwise unre
lated enough to be assumed as temporally independent. As such, we 
scale successive values in the series only to the initial value C1. Rates are 
further floored at zero to prevent the simulation of negative collision 
rates. As such, this truncation scheme has the effect of ‘bouncing’ pre
dicted collision rates off zero once low levels are reached, rather than 
‘trapping’ the series. 

However, we do assume that successive changes in variances νt are 
time-dependent. We retain this assumption on the basis that the variance 
in monthly collision rates will trend toward a long-term average θ over 
time. As such, we retain the conjecture that our uncertainty as to the size 
of future variance movements is proportional to the level of the pre
vailing variance. We anticipate changes in variance as road in
frastructures become more optimised and V2X communication becomes 
an increasingly feasible prospect. This may result in higher variance 
(reduced collision rates punctuated by higher spikes) or lower variance 
(optimised road networks evenly dispersing collision frequencies). 

Fig. 6. Observed vs. Predicted Values for Monthly Collision Rates from 2014 to 2018, starting from the January 2014 rate of 0.128%. Predictions were based on the 
Extended Heston model outlined in Section 3, where the parameters were discerned from monthly collision rates covering 2009–2013 (Table B1, Table C1). 
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This is distinct from the assumption that an interconnected society 
will definitively reduce month-on-month collision rates Ct. Rather, it is 
assumed that an interconnected society will result in a reduction in the 

random fluctuations 
(

̅̅̅̅νt
√

)
of monthly collision rates as transport net

works become increasingly optimised. 

4. Results 

4.1. The case for 2014–2018 

As noted in Figure 2, the transition to daily updates of electronically- 
recorded collisions caused a spike in collision rates. Rather than signif
icantly affecting the underlying dynamics of the collision rate process, it 
is believed that the transition from manual reporting to electronic re
cordings in January 2014 primarily affected the baseline level of colli
sion rates. For this reason, we use the parameters derived from collision 
rates in 2009–2013 (Appendix B, Appendix C) to forecast estimates of 
the collision rates in 2014–2018. The results of the procedure (Fig. 6) 
highlights the efficacy of the model proposed in Section 3. All statistical 
procedures and forecasts were completed in Matlab. 

The scenario presented in Fig. 6 is based on the median values of 
5000 random simulations, and is predicated on no expected changes in 
overall collision rates going forward (μ = 0). Furthermore, month-to- 
month fluctuations between 2009 and 2013 equate to an estimated 
volatility of 40.6% each year (equivalent to a variance of 16.5%). We 
assume that the rate of change in monthly fluctuations will remain the 
same over the five years from 2014 to 2018, and there will be no 
accelerated periods of safety. In other words, we foresee no overhauls of 
transport infrastructure, driving behaviour, or vehicle technologies that 
will minimise the difference in month-to-month rate fluctuations from 
2014 to 20182. Hence, we assume that the current rate of fluctuations 
are equal to the long-run average of fluctuations (ν0 = θ), and that the 
safety acceleration parameter will remain constant (G

−

= 1). 
Although the within-year volatilities are widely-varying, the year-to- 

year differences are tamer, with the volatility of volatilities (ξ) calcu
lated to be 23%. Given that we expect the current variance to equal the 
long-run variance, the mean reversion rate (κ) is set to the minimum that 
would satisfy the Feller Condition (16%). We also note that the corre
lation between annual collision rates and volatilities are 60%, indicating 
that higher volatilities are associated with higher collision rates and vice 
versa. The sinusoidal pattern that minimised monthly collision rates 
from 2009 to 2013 has a peak of 9% (Appendix C). 

The baseline rate indicates that 0.128% of registered vehicles were 

involved in collisions in January 2014. Starting from this rate3, and 
using the above parameters, the estimates from the extended Heston 
model outlined in Section 3 closely aligns with observed rates for the 
following five years (Fig. 6). It is predicted that collision rates continue 
to follow a sinusoidal pattern, and begin drifting upwards of the baseline 
from year two (2016). Monthly collision rates were forecasted to remain 
above the baseline from 2017 to 2018 and rise further – a trait that is 
also observable in the realised rates. 

Error statistics measuring the absolute and relative (%) difference 
between the forecasted rates and the observed rates are available in 
Table 3. The results indicate a consistent year-on-year forecasting ac
curacy. Absolute inaccuracies remain less than 0.01%, while relative 
inaccuracies remain consistent at approximately 5% each year. As such, 
the forecasting accuracy remains at an approximate 95% level each year, 
with a 5-year monthly average forecasting accuracy of 95.3%. Prompted 
with these results, we use the collision parameters observable in 
2014–2018 monthly collision rates, as detailed in Section 2, to forecast 
collision rates going forward. 

4.2. Looking forward: The case for 2019–2044 

We perform the same process as in Section 4.1 to forecast how the 
future of collision rates may evolve. We must note that the effects of 
COVID-19 have no doubt disrupted the overall accuracy of the results, 
with the EU seeing a 36% year-on-year fall in fatalities between April 
2019 and April 2020 (European Transport Safety Council, 2020a). 
Although a consequential shift in societal transport patterns as a result of 
COVID-19 is plausible, it remains to be seen whether the downward shift 
in collision rates is sustainable. Presently, we expect the trend in colli
sion rates to return to approximate pre-COVID-19 levels. Instead, we 
expect for road safety initiatives to be the dominant factor in the evo
lution of collision rates. 

As stated previously, the results generated in this study are not at
tempts to definitively assume what motor vehicle collision rates may 
look like in the future. Rather, it is an exploration of what is plausible. 
For this reason, our purpose in this subsection is to interrogate the pa
rameters as they pertain to scenario analyses for road safety. 

4.2.1. Baseline scenario – no effective change 
The baseline forecast is formed on little expected change in the un

derlying dynamics of overall collision rates, beyond the schemes 
currently implemented (μ = 0). Current variance measures will also 
remain unchanged over time (θ = 7.3%), and no accelerated periods of 
safety are expected (G

−

= 1). Accelerated periods of safety in this context 
are assumed to be a proxy for sudden, significant developments in road 
safety lasting for a short period of time. Examples of these developments 
include a widespread assimilation of connected and autonomous vehi
cles, an increased market penetration of vehicles equipped with a suite 
of ADAS technologies, effective legislation improving the aggregate 
level of safety on transport routes, or upgraded transport infrastructure. 
For the purposes of this study, these short, fixed-term periods are 
assumed to last 36 months. Fig. 7 highlights a long-term forecast of the 
model outlined in Section 3 using data described in Section 2. The pa
rameters are formed on the collision rates from January 2014 to 
December 2018. Also provided is a close-up view of the forecast over the 
coming five years, beginning from 20194. 

In this scenario, January 2024 rates (a relatively-speaking ‘safer’ 

Table 3 
Error statistics for Heston forecasts of monthly collision rates between 2014 and 
2018 (5000 simulations). The absolute differences between the forecasted 
values and observed values are minimal. The relative (%) differences are 
consistent year-on-year, averaging over 95% accuracy over the 5-year time 
period.   

Mean Absolute 
Error (MAE) 

Root Mean Squared 
Error (RMSE) 

Mean Absolute 
Percentage Error (MAPE) 

2014  0.007%  0.008%  5.29% 
2015  0.006%  0.008%  4.68% 
2016  0.006%  0.007%  4.20% 
2017  0.007%  0.009%  4.98% 
2018  0.006%  0.008%  4.39% 
Average  0.006%  0.008%  4.71%  

2 Granted, this is easy to assume in hindsight. 

3 The move in data collection from manual reports to electronic recordings of 
vehicles in January 2014 dramatically increased the collision rate (Fig. 2). It is 
believed that the January 2014 collision rate represented a ‘new norm’ that was 
not reflected in the December 2013 rate. Therefore, we started from the 
January 2014 level, rather than December 2013.  

4 At the time of writing, the last publicly-released monthly collision rate in 
Ireland was for December 2018. 
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month) are expected to reach the level of December 2018 rates (a 
relatively-speaking ‘dangerous’ month). This signals a sharper rise from 
historical rates. January collision rates did not reach trailing December 
collision rates in any 5-year period from 2004 to 2014 (i.e. prior to the 
switch to electronic recordings). 

The median expectations are that collision rates will remain rela
tively constant until 2028, at which point there will be shift to a slight 
upward trend until 2037. After 2036, it is expected that collision rates 
will trend upwards at an accelerating rate. By 2044, without no further 
market interventions to reduce the collision rate, the median expecta
tion is that collision rates will rise by approximately 25%, to 0.20%. This 
is bounded by a 50% prediction interval of 0.093–0.32%, and an 80% 
prediction interval of 0.034–0.45%. 

However, the likelihood of road safety remaining as it is at present is 
low. Technological advancements, upgraded road infrastructures, and 
an accelerated focus on reducing road fatalities are expected to change 
the dynamics of driving. In the near-term, ADAS-enabled vehicles are 
expected to have an appreciable impact in reducing collision rates (Yue 
et al., 2019). In the long-term, highly-automated and fully-autonomous 
vehicles are expected to significantly reduce the frequency of collisions 

(Cicchino, 2017; Litman, 2020). However, it is expected that this will be 
somewhat offset by an expected increase in the number of miles trav
elled by each vehicle (Fagnant and Kockelman, 2015; Clements and 
Kockelman, 2017). Regardless of the effects that these advancements 
will have for road safety, it can be assumed that the collision rate may 
trend downwards and there will be a deviation from current collision 
rate fluctuations. We explore these scenarios in Section 4.2.2. 

4.2.2. Parameter effects – scenario analyses 
A number of scenarios for the future of road safety are plausible. 

Some are based on a reduction in collision rates (Arbib and Seba, 2017; 
Cicchino, 2017). Some others suggest a conflicting relationship between 
enhanced safety and risk exposure as a result of a change in miles 
travelled per vehicle (Fagnant and Kockelman, 2015; Clements and 
Kockelman, 2017; Litman, 2020). A more cautious view posits that 
higher levels of vehicle automation may increase the relative risk 
associated with novice drivers, given that more active driver monitoring 
systems may encourage distracted driving or driving behaviours syn
onymous with inexperience (Jannusch et al., 2021). A further suggestion 
is that effective planning is key to enhancing urban transport safety for 

Fig. 7. Forecasted Monthly Collision Rates from 2019 to 2044, starting from the December 2018 rate of 0.159%. Also provided is a close-up of the forecast, covering 
2019–2023. Forecasts are based on the model outlined in Section 3, where the parameters were derived from monthly collision rates covering 2014–2018 
(Table 1, Table 2). 
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No Change in Collision Rates      Fall in Collision Rates

Constant Variance, No Periods of Accelerated Safety ( , )
.2.1

Rise in Long-run Variance, Periods of Accelerated Safety Expected 
.4.3

Fall in Long-run Variance, Periods of Accelerated Safety Expected 
5. 6.

Fig. 8. Model results for six plausible scenarios forecasting the evolution of motor vehicle collision rates from 2019 to 2044, using the extended Heston model. 
Annual ‘rate reduction’ target rates combined with gradual falls in variance (scenario 6) is the only scenario that suggests a persistent drop in collision rates. Note also 
that scenario 1 describes the ‘Baseline’ scenario from Section 4.2.1. 
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the next generation of vehicles (Meyer et al., 2017; Cohen and Cavoli, 
2019; Litman, 2020). We detail each of these in turn, as they relate to the 
extended Heston model. The baseline parameters have been discerned in 
Section 2. Based on monthly collision rates from 2014 to 2018, the 
volatility of these rates was determined to be 27.09%, corresponding to 
a variance of ν0 = 7.3%. 

We structure the parameters such that the model mimics the sce
narios presented in the aforementioned studies, and analyse the results. 
Some assume that no deviations in collision rates was expected (μ =
0%). Some further assume that the current variance will remain the 
same over the long-run (ν0 = θ=7.3%), and no accelerated periods of 
safety will occur going forward (G

−

= 1). The expected collision rates 
associated with each scenario are provided in Fig. 8, and summarised in 
Table 4. Also provided are prediction percentiles. 

In scenarios 1 and 2, we incorporate into our forecasts an assumption 
that there will be no short periods of accelerated rates of reduction (G

−

=

1). In other words, these scenarios explore the evolution of collision 
rates in an environment where steps to optimise road safety and road 
infrastructure do not have a sizeable impact. These impacts may mani
fest as encouraging changes in driving behaviour, vehicle ownership, or 
traffic patterns, which may lead to gradual rather than accelerated 
changes in collision rates. These scenarios are also based on maintaining 
current levels of variance (ν0 = θ). Scenario 1 assumes that no ‘collision 
rate reduction’ target will be set (μ = 0). In scenario 2, we assume an 
annual collision rate reduction target that is set equal to the number of 
newly-registered vehicles each year (μ = 1.83%)5. 

Scenario 1 is equivalent to the baseline forecast in Section 4.2.1 that 
forecasts a steady increase in collision rates. Scenario 2 highlights the 
importance of the accelerated periods of safety. This scenario suggests 
that rate reduction targets would not be sustainable unless partnered 

with changes in driving behaviour, vehicle ownership, traffic patterns, 
or effective legislation. The results suggest that collision rate reduction 
targets will initially be realised. However, a consistent variance in 
fluctuations means that these reductions eventually stabilise, and colli
sion rates begin to revert to the initial rate toward the end of the 
forecast. 

Scenarios 3 and 4 are based on the assumption that the variance in 
monthly collision rates will increase over time (ν0 < θ). In other words, 
the current collision rate cycle will consolidate. Fewer collisions will be 
expected from late winter to late spring, but more collisions will be 
expected from mid-autumn to mid-winter. The effect will be such that 
rates will exhibit a larger deviation from the yearly average, increasing 
the fluctuations in monthly collision rates. As with scenarios 1 and 2, 
scenarios 3 and 4 assume no downward trend in collision rates (μ = 0) 
and a modest downward trend in collision rates (μ = 1.83%), 
respectively. 

Scenario 3 may present in an environment where no infrastructural 
changes have been made and traffic patterns consolidate on current 
peak-travel times. Assuming an increasing number of vehicles on 
transport routes, higher peaks and lower troughs of traffic volume would 
increase the level of variance in collision rates. The extended Heston 
model suggests that in this scenario, the monthly collision rate will rise 
50% from its initial rate by 2044, to 0.24%. However, regulatory plan
ning suggests that this scenario is the most unlikely of the six presented. 
Progress has been already made on introducing further vehicle legisla
tions (European Commission, 2018b, 2018a, 2019b), and transforming 
urban areas into sustainable transport routes. The European Commission 
have proposed a mission to transform European cities into smart cities 
that encourage safe mobility for all modes of transport (European 
Commission, 2020), while the US Department of Transportation have 
taken steps to fund ‘smart city’ developments (US DOT, 2016). 

Scenario 4 indicates an environment where modest drops in collision 
rates are likely to arrive in conjunction with larger fluctuations. The 
model suggests that, despite implemented efforts to reduce collision 
rates, increasing the fluctuations would negate the effectiveness of these 
campaigns. This scenario is most likely in an environment where road 
safety is a priority, but has been offset by counteractive patterns in 
driving behaviours. An increased variance in collision rates is therefore 
plausible. Miles travelled per vehicle is expected to increase over the 
next couple of generations (Fagnant and Kockelman, 2015; Clements 
and Kockelman, 2017; Litman, 2020). These counteractive patterns may 
include a rise in risk-seeking behaviours, significant increases in vehicle- 
miles travelled, or greater-than-expected levels of malfunctions in 
vehicle software or hardware. Young novice drivers may also pose a 
greater relative risk, as the increased responsibility being placed on 
driver monitoring systems may encourage distracted driving (Jannusch 
et al., 2021). While absolute collision frequencies may fall, the risk 
exposure of vehicles may increase, leading to a higher probability of 
periods with greater fluctuations in collision rates than those that are 
seen today. As with scenario 2, developments in scenario 4 would lead to 
initial reductions in collision rates. Unlike scenario 2, however, collision 
rates in this scenario are forecast to revert to the baseline rate (0.16%) 
by 2044. 

Scenarios 5 and 6 are based on the assumption that the variance in 
monthly collision rates will decrease over time (ν0 > θ). A lower vari
ance is indicative of environments where month-to-month collision rate 
fluctuations taper over time. This may result from behavioural changes 
in driving or road safety developments. As before, scenarios 5 and 6 
assume no downward trend in collision rates (μ = 0) and a modest 
downward trend in collision rates (μ = 1.83%), respectively. Scenario 5 
may occur in an environment where the general make-up of traffic, 
vehicle type and road infrastructure does not change. As such, this 
scenario is predicated on few widespread ‘rate reduction’ initiatives 
being introduced. Rather, the largest change in this scenario comes from 
alterations in driving or travel patterns. Given that motor vehicle colli
sions are largely tied to the volume of traffic (Lassarre, 2001; Bijleveld 

Table 4 
A summary of the scenarios outlined in Fig. 8, and the associated outcomes in 
terms of expected changes to collision rates over the period 2019–2044, relative 
to current levels.   

Summary of Extended Heston Scenario Simulations (2019–2044) 

Expected 
Collision 
Rate 
Reductions 
(μ)  

Expected 
Collision 
Rate 
Variability 
(Δθ)  

Expectation of 
Accelerated 
Periods of 
Safety (G)  

Outcome 

Scenario 
1 

No drop in 
trend 

No change in 
variability 

No accelerated 
periods of 
safety 

Slight increases 
in collision rates 

Scenario 
2 

Expected 
drop in trend 

No change in 
variability 

No accelerated 
periods of 
safety 

Slight reductions 
in collision rates 

Scenario 
3 

No drop in 
trend 

Increase in 
variability 

Periods of 
accelerated 
safety 

Significant 
increases in 
collision rates 

Scenario 
4 

Expected 
drop in trend 

Increase in 
variability 

Periods of 
accelerated 
safety 

Slight reductions 
in collision rates 
(medium-term), 
no appreciable 
difference in 
collision rates 
(long-term) 

Scenario 
5 

No drop in 
trend 

Drop in 
variability 

Periods of 
accelerated 
safety 

No appreciable 
difference in 
collision rates 

Scenario 
6 

Expected 
drop in trend 

Drop in 
variability 

Periods of 
accelerated 
safety 

Significant 
decline in 
collision rates  

5 Chosen to be a modest yet relatable target. The average year-on-year in
crease in licensed vehicles for the period 2014–2018 was 1.83% (Table 2). 
Hence, our initial road safety targets would be to offset this figure. 
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et al., 2010; Commandeur et al., 2013; Regev et al., 2018), this scenario 
may present as a move away from the ‘peak’ and ‘trough’ traffic cycles of 
autumn–winter and spring-summer. More dispersed traffic may result in 
the same relative number of incidents, but the seasonal fluctuations will 
be tamer. In this scenario, the results of the extended Heston model 
suggests that a reduction in variance, without a corresponding reduction 
in expected collision rates, has a stagnating effect on collision rates. As 
such, rates remain relatively constant for a significant period of time. 

Scenario 6 describes a scenario where collision rate targets coincide 
with smaller fluctuations in collision rates. This scenario may present 
where significant efforts have been made to cater for safer transport 
routes and road networks contain a sizeable share of ADAS-enabled 
vehicles, as well as connected and autonomous vehicles. These adap
tions may take the form of high market penetration rates, backed with 
updated regulations and upgraded road infrastructures that are opti
mised for road users’ safety. The model suggests that an environment 
containing road networks capable of supporting safer transport routes 
and safety-optimised vehicles can significantly reduce the number of 
‘preventable’ incidents (Cicchino, 2017). As such, month-to-month 
fluctuations would be expected to taper over time. The median predic
tion suggests a 50% fall in collision rates (from 0.159% to 0.08%), before 
beginning to plateau. These predictions are reasonable. Ireland wit
nessed a 57% fall in road fatalities between January 2004 and December 
2018 (Fig. 1), despite the rise in the number of legally-registered vehi
cles (Table 2), while neighbouring Scotland witnessed a 61% fall in 
collisions over 23 years despite a 27% rise in traffic (Transport Scotland, 
2019). 75% of simulations suggest that some sort of effective change is 
predicted by 2044. 

The suggestion that collision rates plateau over time is not implau
sible. This scenario is likely in an environment where autonomous or 
highly-automated vehicles are commonplace in 15–25 years, and a 
prominent use for vehicles is ‘mobility-as-a-service’ (MaaS) (US DOT, 
2017, Kaltenhäuser et al., 2020). It is anticipated that falling costs 
associated with ride-sharing services or MaaS will decrease the utility of 

vehicle ownership, leading to fewer privately-owned vehicles (Ho et al., 
2018, Kaltenhäuser et al., 2020, Litman, 2020). An expected fall in 
collisions, in conjunction with a fall in vehicle ownership rates, may 
stabilise collision rates when a high market share is achieved. 

5. Discussion 

5.1. Comparison of extended Heston vs. alternative forecasting methods 

Forecasting methods have previously been employed in road safety 
and traffic flow dynamics literature – most notably variants of ARIMA 
models (Ramstedt, 2008), GARCH models (Zhang et al., 2013), or 
combinations of both (Chen et al., 2011; Guo et al., 2014). SARIMA 
models have also been used to forecast road safety data that exhibited 
seasonality (Zhang et al., 2015). Accurate forecasts on the stochastic 
nature of traffic flows were also achieved through the use of the Vasicek 
model, a stochastic process that has long been used for interest-rate 
modelling (Rajabzadeh et al., 2017). 

To demonstrate the efficacy of the Extended Heston model in fore
casting short-term collision rates, the same process described in Section 
4 is applied to the Vasicek model used in Rajabzadeh et al. (2017), and 
the SARIMA model used in Zhang et al. (2015). SARIMA-GARCH models 
were also generated, as per Chen et al. (2011), Guo et al. (2014), but 
demonstrated no appreciable difference to the forecasts produced by the 
SARIMA model alone. Hence, they are not considered fully in Table 5. 
Full details on the performance of the adjusted Vasicek model and the 
SARIMA model are available in Appendix A. However, Table 5 dem
onstrates that the Extended Heston model provides a superior perfor
mance than the other models in out-of-sample forecasting accuracy 
tests. The forecast associated with the Extended Heston model produced 
the closest affinity to 2014–2018 collision rates, based on 2009–2013 
parameters. 

5.2. Stochastic volatility as a forecasting tool 

Stochastic Volatility models are a parsimonious and non- 
deterministic means of forecasting uncertainty, and are underutilised 
in road safety research. However, they have been employed to express 
the temporally-changing dynamics of traffic volume patterns (Tsekeris 
and Stathopoulos, 2010, Rajabzadeh et al., 2017). The latter study 
highlights the benefits that can be gleaned from cross-disciplinary per
spectives between finance and traffic dynamics. 

In this study, we introduce the Heston model as an alternative means 
of forecasting scenarios for road safety rather than traffic volumes. 
Although we demonstrate its efficacy in producing short-term forecasts 
in Section 4.1 and Section 5.1, the predominant value associated with 
the Extended Heston model lies in the flexibility in its parameters. The 
benefit this provides is that a combination of observed data and 
reasonable expectations can be incorporated into the parameters. 
Adjusting these parameters based on expert insight provides an avenue 
for analytically discussing the expected evolution of road safety through 
scenario analyses. Firstly, the extent of the stochastic movements in the 
variance can be controlled using the ‘volatility of volatility’ (ξ) term. 
Secondly, it incorporates the assumption that excessive swings in colli
sion rates is associated with the absolute size of collision rates. The 
extent of this association can be controlled using the correlation 
parameter (ρ). Furthermore, the model can account for the likely pros
pect that the dynamics of the underlying process may change over time. 
The instantaneous variance (νt), despite its stochastic nature, can be set 
to trend toward a long-run variance (θ), the rate of change of which is 
controlled by the long-run reversion term (κ). As such, it is possible to 

Table 5 
Error statistics for Extended Heston forecasts (5000 simulations), Adjusted 
Vasicek forecasts (5000 simulations), and a SARIMA(7,1, 1) × (1,1, 2)12 model 
forecast, respectively. The error statistics describe the relative (%) differences 
between forecasted and observed monthly collision rates between 2014 and 
2018 for each model. The Extended Heston model proved the most consistent 
year-on-year, as well as averaging over 95% accuracy over the 5-year time 
period.   

Mean Absolute Percentage Error (MAPE) 

Extended Heston 
(from Table 3) 

Adjusted Vasicek1 SARIMA2 

Optimal fit:(7,1,1)× (1, 1,2)12  

2014  5.29%  5.55%  4.47% 
2015  4.68%  5.62%  4.43% 
2016  4.20%  4.95%  4.99% 
2017  4.98%  9.28%  11.91% 
2018  4.39%  9.86%  11.11% 
Average  4.71%  7.05%  7.38%  

1 To ensure comparability, the adjustments proposed for the Extended Heston 
model (Section 3.2) are applied to the Vasicek model to create an ‘adjusted 
Vasicek model’. These adjustments are detailed in Appendix A. 

2 In addition to the SARIMA model, a SARIMA-GARCH model was considered. 
The GARCH model introduces heteroscedastic innovations to the SARIMA model 
instead of normally distributed innovations, to account for potential serial cor
relation amongst the random errors. However, the SARIMA-GARCH model made 
no appreciable difference to the SARIMA forecast, and hence is not reported in 
detail. 
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factor in beliefs regarding the long-term variance of collision rates, 
which have been shown to vary in different time periods. These vari
ables can be combined with volatility estimates gleaned from realised 
collision rates to provide accurate short-term forecasts and reasonable 
long-term forecasts for collision rates, as shown in Section 4.1, Section 
4.2.2, and Section 5.1 respectively. 

5.3. Implications and extensions 

Of the plausible scenarios presented in Section 4.2.2, the final sce
nario is the most favoured. Importantly, the results of these scenarios do 
not indicate that optimising road networks and introducing advanced- 
tech vehicles will entirely eliminate collisions. Transport routes will 
contain a mixture of vehicle technology levels with distinct safety, 
avoidance, and communicative capabilities that will not entirely remove 
the level of risk on the road. In addition, the risk homeostasis theory 
suggests that drivers may increase their risk appetite in response to an 
absolute reduction in the level of risk exposure. As such, it remains to be 
seen whether the optimisation of vehicle technologies and road in
frastructures will significantly and permanently reduce collision rates. 
Nevertheless, the resulting level of risk will lie at some level above zero, 
and therefore so too will the level of collision rates. 

We highlight that the introduced and extended model can be further 
adjusted. In this study, we adjust the collision rate based on the number 
of registered vehicles on Irish roads. Further studies can develop the 
model to adjust instead for vehicle-miles travelled (VMT), which may 
more accurately reflect the risk exposure of vehicles on transport net
works. We also make the assumptions that significant advancements in 
road safety follow a Gompertz distribution and are independent events 
that last for a fixed period of 36 months. However, these advancements 
may instead follow a different distribution. They may also be positively 
correlated – the positive effects from one advancement may lead to 
further advancements soon thereafter – and may be better suited to be 
modelled as part of a Markov-switching Process (Malyshkina et al., 
2009). Furthermore, the period of accelerated safety may last any 
arbitrary length of time rather than a fixed 36-month period. The model 
may also be extended by including parameters to account for stochastic 
traffic volumes due to changing patterns in vehicle-ownership rates, 
changes in vehicle capabilities, and changes in transport infrastructure, 
which may affect collision rates in a non-linear manner. 

The rate of collision reduction can also be adjusted to be a stochastic 
process, as in (Grzelak and Oosterlee, 2011), rather than a constant. In 
addition, rare but significant spikes in collision rates can be incorporated 
in to the model. In financial terms, these events are categorised as ‘black 
swan’ events. However, these events are also applicable to motor vehicle 
collision rates as emerging risks become prevalent and ‘jumps’ in colli
sion rates become plausible. Examples of ‘jump’ events could include 
external societal events that disrupt travel patterns, such as the lock
downs caused by COVID-19. Another prominent possibility could stem 
from plausible cyber-risks, which are the highest perceived threat to 
highly-automated or autonomous vehicles (Claus et al., 2017). Cyber- 
risk describes the potential takeover of automated vehicles as a result 
of software or hardware vulnerabilities. Exploiting these vulnerabilities 
can lead to a malicious takeover of a fleet of vehicles. Although an 
example of this event is yet to occur, small-scale experiments have 
shown it to a viable threat (Murphy et al., 2019). This event has been 
described as a ‘natural catastrophe’ event for insurers (Pütz et al., 2019), 
and can lead to a large yet brief spike in collision rates. Regardless of 

future developments, the extended Heston model presented in this study 
represents a novel approach to collision frequency forecasting. 

6. Conclusion 

The Heston model is introduced in this study as a platform upon 
which to forecast the evolution of motor vehicle collision rates. We 
extend the conventional Heston model to make it fit for purpose for 
forecasting seasonal collision rates. Our extended model is primarily 
driven by three parameters – collision rate reduction targets, the vari
ance in collision rates, and a binary ‘switching’ parameter that signals an 
upcoming period of accelerated safety. Further parameters guide the 
estimates and offer an avenue to include informed beliefs into the model 
regarding the changing dynamics of the process being modelled. The 
stochastic process approach we take in this study sidesteps the ‘constant- 
parameter’ and ‘stability’ assumptions that often affect contempora
neous models. The stochastic volatility model is beneficial to road safety 
research as it combines non-linear and stochastically-evolving parame
ters with informed beliefs about an uncertain future. 

The application of the model showed closed affinity (over 95% ac
curacy) to observed collision rates between 2014 and 2018 and matched 
the annual seasonality of collision rates, demonstrating its forecasting 
ability over short-term intervals. The Extended Heston model also out
performed previously used forecasting methods such as the Vasicek and 
SARIMA models. Despite the utility that the Extended Heston model has 
in short-term forecasting, the predominant benefit the Extended Heston 
model provides is its capability for long-term forecasting. The flexibility 
within the parameters of the model means it can be adjusted to account 
for both previously-observed data and reasonable expectations about 
the evolution of road safety. As such, the Extended Heston model pro
vides an avenue for analytically discussing the expected evolution of 
road safety through scenario analyses. To this end, we re-performed the 
analysis for time periods ahead – for 2019–2023 and for 2019–2044. The 
purpose of incorporating long-term forecasts was to explore a number of 
plausible scenarios for the evolution of collision rates. The scenario that 
assumes there will be a modest downward trend in annual rates, in 
conjunction with a reducing variance, point toward a significant 
reduction in rates over time. The model results in this scenario suggests 
an average fall in collision rates of 50% by 2044, with 75% of simula
tions suggesting a fall in collision rates from current levels. Although 
these results cannot be verified at present, the Extended Heston model 
can nevertheless serve as a valuable aid in determining the effectiveness 
of implemented policies or the forecasting of collision rates. 
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Appendix 

Appendix A. Models used for forecasting 

Eq. (1) and Eq. (2) in Section 3.1 demonstrate the conventional Heston Stochastic Volatility Model. The model calculates Markov Chain stepwise 
changes in the underlying asset price St by assuming it satisfies the stochastic differential equation: 

dSt = μStdt+
̅̅̅̅
νt

√
StdWS

t (A1) 

In Eq. A(1), νt, the instantaneous variance or squared volatility, is a Cox-Ingersoll-Ross (1985) process, and each change in νt is defined as 

dνt = κ(θ − νt)dt + ξ
̅̅̅̅
νt

√
dWν

t (A2) 

To make the Heston model fit for purpose for forecasting collision rates, a number of adjustments and amendments are included in Section 3.2, with 
the resulting Extended Heston model being: 

dCt = −
(

μGtC1dt+
̅̅̅̅
νt

√
C1dWC

t

)
+(CY

t

−

× Asin(2πft + φ)) (A3)  

dνt = κ(θ − νt)dt + ξ
̅̅̅̅νt

√
dWν

t (A4)  

Gt⋯t+s =

⎧
⎨

⎩

α, ifG(T; b, η) > unif [0, 1],
α ∈ unif (N[l, h])

1, ifG(T; b, η) < unif [0, 1]
(A5) 

The adjustments can be summarised as:  

• Adding an extra parameter (G) to account for the likelihood and extent of accelerated periods of road safety in future periods (Eq. A(5)),  
• Adding a sinusoidal adjustment to account for the seasonality in accident rates (Eq. A(3)), and  
• Changing the state-dependency in collision rate sizes from Ct to C1 (Eq. A(3)), to instead rely on the assumption that stepwise changes in collision 

rates are a function of the initial collision rate rather than the prevailing collision rate. 

In other to demonstrate the efficacy of the Extended Heston model, we compare the forecasting accuracy of the model against other models 
proposed in the literature. This includes ARIMA models (Ramstedt, 2008), ARIMA-GARCH models (Chen et al., 2011; Guo et al., 2014), and the 
Vasicek model (Rajabzadeh et al., 2017). The results are provided in Section 5.1. 

Fig. A1. Observed vs. Predicted Values for Monthly Collision Rates from 2014 to 2018, starting from the January 2014 rate of 0.128%. Predictions were based on the 
Adjusted Vasicek model outlined in Appendix A, where the parameters were discerned from monthly collision rates covering 2009–2013 (Table B1, Table C1). 
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Vasicek model for short-term interest rates 
The Vasicek (1977) model, like the Heston model, assumes that the rates being modelled satisfy a stochastic differential equation (Eq. A(6)). In the 

Vasicek model, σ is the instantaneous (constant) volatility, θ is the long-run interest rate, rt is the prevailing short-term rate, and κ determines the speed 
at which rt reverts to θ: 

drt = κ(θ − rt)dt+ σdWt (A6) 

Taken together, the κ(θ − rt)dt represents a positive drift among stepwise changes, while the σdWt represents normally-distributed innovations 
scaled to the size of the constant volatilityσ. However, to ensure comparability against the Extended Heston model, the adjustments that are sum
marised in Appendix A are also afforded to the Vasicek model, where appropriate. This has the effect of transforming the Vasicek model in Eq. A(6) in 
to an adjusted Vasicek model (Eq. A(7), Eq. A(8)): 

dCt = − (Gtκ(θ − C1)dt+ σdWt )+ (CY
t

−

× Asin(2πft + φ)) (A7)  

Fig. A2. Observed vs. Predicted Values for Monthly Collision Rates from 2014 to 2018, starting from the January 2014 rate of 0.128%. Predictions were based on the 
SARIMA(7, 1, 1) × (1, 1,2)12 model outlined in Appendix A, where the parameters were discerned from monthly collision rates covering 2009–2013 
(Table B1, Table C1). 

Fig. C1. Monthly collision rates are plotted relative to the average rate of each year. The deviations of each month from their annual average follows a set pattern 
(lower than average the first six months, higher than average the latter six months) that can be reasoned as following that of a sine wave that begins halfway through 
its cycle. 
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Gt⋯t+s =

⎧
⎨

⎩

α, ifG(T; b, η) > unif [0, 1],
α ∈ unif (N[l, h])

1, ifG(T; b, η) < unif [0, 1]
(A8) 

The positive drift term κ(θ − C1)dt is transformed to a negative drift to account for expected reductions over time. The negative drift is scaled by the 
‘acceleration’ parameter G (Eq. A(5)). The state-dependency in collision rate sizes is again changed from Ct to C1. Finally, the sinusoidal adjustment is 
incorporated to account for the seasonality in collision rates. Fig. A1 demonstrates the performance of the Adjusted Vasicek model in out-of-sample 
testing (forecasting 2014–2018 collision rates based on 2009–2013 parameters). 

Seasonal autoregressive integrated moving average (SARIMA) model 
Section 2 details how the collision rate process exhibits non-stationary elements; not only do the collision rates vary from month to month, but the 

process itself varies over different time periods. In order to capture the variability within the data, we additionally make use of an Autoregressive 
Integrated Moving Average (ARIMA) model. This approach has previously been utilised to forecast alcohol-related road fatalities in the United States 
(Ramstedt, 2008). 

The ARIMA model forecasts a time series process by assuming that future values can be determined using information gleaned from any com
bination of past values, past stepwise value changes, and past errors, respectively. The model is made up of autoregressive (AR), differencing (I), and 
moving average (MA) terms. Autoregressive (AR) terms are included to forecast the prevailing collision rate using a linear combination of trailing data 
points. Differencing (I) terms are included to account for the evidence found in Section 2 that the collision rate process itself is dynamic and subject to 
change over time. Therefore, rather than forecasting the specific position of the prevailing data point, we instead forecast the expected change for each 
prevailing data point relative to the previous observation. Finally, the moving average (MA) process believes information can be extracted from a 
linear combination of past values, similar to the AR process. However, rather than generating the linear combination using the past values themselves, 
the moving average process generates its linear combination using the prediction errors associated with past values. 

Typically, given observations yt , an ARIMA(p, d, q) model with autoregressive lags p, difference term d (I), and moving average lags q can be stated 
as: 

y’
t = c+ϕ1y’

t− 1 +⋯+ϕpy’
t− p + θ1εt− 1 +⋯+ θqεt− q + εt (A9) 

Where y’
t denotes the ‘differenced’ observations, i.e. y’

t = yt − yt− 1. In this generalised model, ϕ represents the weights attached to the autore
gressive (AR) process and θ represents the weights attached to the moving average (MA) process. Furthermore, p denotes the lookback period from 
which information relating to historical values is gleaned, while q denotes the lookback period from which information relating to historical prediction 
errors is extracted. Finally, c represents the intercept, while εt represents normally-distributed innovations. 

Given the extensive number of lags that can be used in ARIMA models, an alternative representation of Eq. A(9) is often provided through backshift 
notation, where Bxyt = yt− x. This transforms Eq. A(9) into: 

y’
t = c+

(
ϕ1B+⋯+ϕpBp)y’

t +
(
1+ θ1B+⋯+ θqBq)εt (A10)  

or 
(
1 − ϕ1B − ⋯ − ϕpBp)y’

t = c+
(
1+ θ1B+⋯+ θqBq)εt (A11) 

And given y’
t = yt − yt− 1 = (1 − B)yt, we have: 

(
1 − ϕ1B − ⋯ − ϕpBp)(1 − B)1yt = c+

(
1+ θ1B+⋯+ θqBq)εt (A12) 

However, Section 2 also outlines that there is a strong seasonal element to the data (Fig. 4, Fig. C1). Collision rates typically spike relative to the 
annual average during autumn, while there is a relative trough in collision rates during spring. Hence, we adopt the use of a SARIMA model. The 
SARIMA model is a variant of the ARIMA model that accounts for seasonality that is embedded in the data. The transforms the ARIMA(p, d, q) model 
into an SARIMA(p, d, q) × (P,D,Q)m model. Whereas the p, d andq values represent the lags associated with the non-seasonal portion of the model, the 
P,D, and Q lags describe the seasonal portion of the model. m indicates the number of observations that describe each seasonal cycle; in our case, m =

12. SARIMA models have previously been utilised in road safety literature as a means of forecasting annual collision fatalities in China (Zhang et al., 
2015). 

Therefore, after accounting for seasonality cycles m, a SARIMA model with seasonal and non-seasonal differencing terms included (d = D = 1)
takes the form: 
(
1 − ϕ1B − ⋯ − ϕpBp)( 1 − Φ1B − ⋯ − ΦpBP)(1 − B)1( 1 − B12)1yt = c+

(
1+ θ1B+⋯+ θqBq)( 1+Θ1B12 +⋯+ΘqB12Q)εt (A13) 

The number of lags chosen for p, q,P andQ were based on a minimised Akaike Information Criterion (AIC) score. The lags were determined based 
on the SARIMA(p, d, q) × (P,D,Q)m model that provided the closest affinity to 2009–2013 collision rates. The minimised AIC score was found with a 
SARIMA(7, 1,1) × (1,1, 2)12 model. This optimal fit model was then used to forecast 2014–2018 collision rates (Fig. A2.). 

6.2. Appendix B. 2009–2013 Collision Rates and Summary Statistics 

See . 
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Table B1 
Summary statistics and discerning model parameters from a time series of monthly collision data, 2009–2013.   

Month Collisions Collisions Per 
Registered Vehicle 

Deviations from Average 
(Appendix C) 

Collision Rate Log- 
differences 

Yearly 
Volatility 

Volatility Log- 
differences 

Min  1799 0.075% − 18.83% − 30.36%   
Max  2805 0.116% 24.24% 28.04%   
Mean  2226 0.091% 0 0.18%   
Std. Dev  220.47 0.009% 9.78% 11.71%    

2009 (Registered Vehicles: 
2,468,000) 

Jan 2278 0.092% 3.17% – 45.33% – 
Feb 1919 0.078% − 13.09% − 17.15% 
Mar 1965 0.080% − 11.00% 2.37% 
Apr 1895 0.077% − 14.17% − 3.63% 
May 2157 0.087% − 2.31% 12.95% 
June 1934 0.078% − 12.41% − 10.91% 
July 2560 0.104% 15.95% 28.04% 
Aug 2275 0.092% 3.04% − 11.80% 
Sep 2145 0.087% − 2.85% − 5.88% 
Oct 2431 0.099% 10.10% 12.52% 
Nov 2455 0.099% 11.19% 0.98% 
Dec 2481 0.101% 12.37% 1.05%  

2010 (Registered Vehicles: 
2,416,000) 

Jan 2217 0.092% − 1.78% − 9.12% 55.82% 20.82% 
Feb 2044 0.085% − 9.44% − 8.12% 
Mar 2208 0.091% − 2.17% 7.72% 
Apr 1832 0.076% − 18.83% − 18.67% 
May 2282 0.094% 1.10% 21.96% 
June 2135 0.088% − 5.41% − 6.66% 
July 2337 0.097% 3.54% 9.04% 
Aug 1997 0.083% − 11.52% − 15.72% 
Sep 2442 0.101% 8.19% 20.12% 
Oct 2745 0.114% 21.62% 11.70% 
Nov 2788 0.115% 23.52% 1.55% 
Dec 2058 0.085% − 8.82% − 30.36%  

2011 (Registered Vehicles: 
2,425,000) 

Jan 2244 0.093% − 0.61% 8.28% 41.10% − 30.70% 
Feb 2078 0.086% − 7.96% − 7.69% 
Mar 2071 0.085% − 8.27% − 0.34% 
Apr 1907 0.079% − 15.54% − 8.25% 
May 2054 0.085% − 9.02% 7.43% 
June 2288 0.094% 1.34% 10.79% 
July 2805 0.116% 24.24% 20.37% 
Aug 2255 0.093% − 0.12% − 21.83% 
Sep 2245 0.093% − 0.56% − 0.44% 
Oct 2437 0.100% 7.94% 8.21% 
Nov 2209 0.091% − 2.16% − 9.82% 
Dec 2500 0.103% 10.73% 12.38%  

2012 (Registered Vehicles: 
2,403,000) 

Jan 2092 0.087% − 4.08% − 16.91% 32.56% − 23.19% 
Feb 1799 0.075% − 17.51% − 15.09% 
Mar 2156 0.090% − 1.14% 18.10% 
Apr 2151 0.090% − 1.37% − 0.23% 
May 2038 0.085% − 6.55% − 5.40% 
June 2191 0.091% 0.46% 7.24% 
July 2213 0.092% 1.47% 1.00% 
Aug 2286 0.095% 4.82% 3.25% 
Sep 2261 0.094% 3.67% − 1.10% 
Oct 2361 0.098% 8.26% 4.33% 
Nov 2279 0.095% 4.50% − 3.53% 
Dec 2344 0.098% 7.48% 2.81%  

2013 (Registered Vehicles: 
2,483,000) 

Jan 2277 0.092% 2.30% − 6.17% 29.67% − 9.32% 
Feb 1932 0.078% − 13.20% − 16.43% 
Mar 2099 0.085% − 5.70% 8.29% 
Apr 1979 0.080% − 11.09% − 5.89% 
May 2187 0.088% − 1.74% 9.99% 
June 2088 0.084% − 6.19% − 4.63% 
July 2304 0.093% 3.51% 9.84% 
Aug 2215 0.089% − 0.49% − 3.94% 
Sep 2259 0.091% 1.49% 1.97% 
Oct 2464 0.099% 10.70% 8.69% 
Nov 2355 0.095% 5.80% − 4.52% 
Dec 2551 0.103% 14.61% 7.99%  

Model Parameters   January ‘14 Rate1 Amplitude (Appendix C) 5-year Volatility 5-year Volatility of Volatility   
0.128% 9% 40.57% 22.74%  

1 The move from manual reports to electronic recordings of vehicles in January 2014 dramatically increased the collision rate (Fig. 2). It is believed that the January 
2014 collision rate represented a ‘new norm’ that was not reflected in the December 2013 rate. Therefore, we started from the January 2014 level, rather than 
December 2013. 

D. Shannon and G. Fountas                                                                                                                                                                                                                  



Accident Analysis and Prevention 159 (2021) 106250

19

6.3. Appendix C. Seasonality Associated with 2009–2013 Collision Rates 

See . 
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