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ABSTRACT 
In this paper, the effect of feature selection in malware detection 
using machine learning techniques is studied. We employ 
supervised and unsupervised machine learning algorithms with and 
without feature selection. These include both classification and 
clustering algorithms. The algorithms are compared for 
effectiveness and efficiency using their predictive accuracy, among 
others, as performance metric. From the studies, we observe that 
the best detection rate was attained for supervised learning with 
feature selection. The supervised learning algorithm used was 
Multilayer Perceptron (MLP) algorithm. The analysis also reveals 
that our system can detect viruses from varying sources.  

CCS Concepts 
• Computing methodologies➝Machine learning; Feature 
selection • Security and privacy➝Malware and its mitigation. 
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1. INTRODUCTION 
In recent times, malware detection and analysis are becoming key 
issues. This is because malware is increasingly posing a threat in a 
number of computer systems and networks owned by companies 
and individuals, coupled with the fact that malicious software can 
easily be created and launched. Upon analyzing common security 
risks, it can be observed that the rate at which Internet crimes are 
increasing surpasses the strategies most companies employ in 
curbing them. Each year, cyber criminals launch novel attacks that 
are capable of causing more harm than the previous years.  
It is evident that hundreds of millions of new samples of malware 
such as computer viruses, among other malicious software, have 
been created in recent years. This implies that almost one million 
new threats are released daily. In view of this, several researchers 
have put in a lot of effort in analyzing malware. One common 
definition of malware is that of [1], that explained a malware as any 
kind of code modification by a software system deliberately aimed 
at damaging or preventing a system from performing optimally. [2] 
also described malware as a term that refers generally to all forms 
of spywares, viruses, trojans, among other harmful and malicious 
software. [3] categorized any program that has a malevolent 
objective as a malware.  
Malware are generally created to compromise the confidentiality, 
integrity, or availability of the data/information in a computer 
system or network. Since it is evident that better hypotheses can be 
made upon knowing what the malware does, some of the categories 
in which most malware fall into as explained by [4] are outlined 
herewith: backdoor, botnet, downloader, information-stealing mal- 

ware, launcher, rootkit, scareware, spam-sending malware, viruses, 
worms, trojan horses.  
Interestingly, computer networks especially the internet are 
increasingly becoming determining factors in the smooth running 
of many organizations, hence the need to secure them is 
increasingly important. In the previous paragraphs, we have 
defined malware. However, securing our computer networks will 
require detecting these malware. Two basic approaches to malware 
analysis and detection include: static analysis (observing the 
malware without running it), and dynamic analysis (observing the 
malware while running it). Several malware analysts have proposed 
static analysis techniques for malware detection. However, these 
techniques can be problematic.  
[5] explored the shortcomings of static analysis for detecting 
malware, and they argued that the use of pattern matching to 
identify malware can be easily evaded by simply changing the code 
structure. [6] explained that the diversity and amount of malicious 
software variants severely undermine the effectiveness of classical 
signature-based detection. [3] presented a malware detection 
algorithm that helps in curbing the limitation caused by including 
instruction semantics to detect malicious program characteristics. 
From their experimental evaluation, we see that their malware 
detection algorithm can discover various kinds of malware with a 
reasonably low run-time overhead. Also, their semantics-aware 
malware detection algorithm is resilient to prevalent obfuscation 
techniques used by hackers. Interested readers can go through refs 
[[7], [8], [9], [10], [11] and [12]] for more literature on malware 
detection.  
Due to the limitations of the static means of malware detection and 
analysis, the need for intelligent approaches to malware detection 
is thus imperative. One of such intelligent approaches is machine 
learning which can be seen as the acquisition of structural 
descriptions from examples. The kind of descriptions found can be 
used for prediction, explanation, and understanding [13]. At the 
forefront of this research is the work done by [14] who proposed a 
method of identifying previously unseen malware by collectively 
classifying them. From their work, we see that most machine 
learning models try to identify malicious software by training 
classification algorithms. They do the training using datasets that 
consist of many typical features of malicious code. They pointed 
out the fact that using Byte n-gram representation, for instance, we 
can train our machine learning classifiers to be able to detect 
unknown malicious software.  
[15] introduced a scalable clustering approach to detect and group 
malware samples that demonstrate similar behavior. The aim of 
their system was to cluster large groups of malware instances on 
the basis of their behavioral structure. Their system attempted to 
find a partitioning of a specific set of malware software to ensure 
that subsets share some common traits. [16] explained that some of 



the machine learning processes required for malware analysis 
include firstly taking characteristic features of all binary files in the 
training and test dataset. In the training set there will be different 
combinations of malware types and clean files. Machine learning 
algorithms are then applied to the aforementioned, tuning the 
necessary parameters. Finally, the various processes in the malware 
detection on the training dataset are analyzed. [17] proposed a 
methodology for detecting malicious office documents using 
machine learning techniques. The office documents studied were 
XML-based and they achieved a high detection rate of malicious 
content comparable to the best antivirus engines. The works of 
[[18], [19], [20] and [21]] provide resource materials for further 
reading.  
The proposed work involves the use of machine learning in 
detecting malware with an aim to study the effect of feature 
selection. In this work, the use of supervised machine learning with 
feature selection produced the best results. Supervised learning is 
referred to as learning with a teacher. It is a type of learning 
comprising of both input and output variables and we employ an 
algorithm to learn the function mapping the inputs to the outputs. 
In this type of learning, labelled examples are available [22]. 
Motivated by the works of [15],[16],[17],[18],[19],[20] and [21], 
the specific objective of this write-up is to analyze the effect of 
feature selection in malware analysis using machine learning which 
is important and to the best of our knowledge, after exhaustive 
survey of literature, has not been addressed in this manner in other 
literature, for which reason the current research is essential.  
In order to carry out the analysis, we use Virustotal which contains 
a collection of antivirus search engines, for the static analysis. We 
go further to carryout dynamic analysis using a sandbox. Finally, 
we use some feature selection and machine learning algorithms in 
the malware detection process and compare their performance. The 
rest of the paper is organized into four sections. Section two 
comprises of the research method. The third section is the 
evaluation and result description. Finally, section four concludes 
our findings.  

2. RESEARCH METHOD 
An experimental research methodology is adopted in this work. 
Firstly, we present some research questions, and then we evaluate 
our research outcomes in a bid to put our research questions to test. 
The research questions include:  

• Is machine learning-based malware detection effective?  
• Are dynamic malware detection methods like sandboxing 

effective?  
• Is there a difference between supervised and unsupervised 

machine learning-based malware detection?  
• Does feature selection affect the results of the machine 

learning-based malware detection?  
• What metrics are best used in measuring the performance 

of the machine-learning algorithms? 
The research is conducted in four phases as explained below:  
Data Collection: We collected malware samples as well as clean 
samples and a total of 149 samples were analyzed. There were 68 
malicious samples gotten from www.virusign.com; the clean 
samples (81) on the other hand, were system files located in the 
“System32” directory of a Windows XP operating system.  
 
 
 

Table 1: Dataset Description 

Action Period  Between November 2015- January 2016  

Action Location  
Website: www.virusign.com for 
malicious samples and “System32” 
directory of a Windows XP Operating 
System  

Data Set Size  149 (68 malware and 81 benign 
samples)  

Number of reports logs 
issued by the malware 
analysis tools  

Two (one each for both static and 
dynamic analysis)  

 
Static Analysis: We used Virustotal for the static analysis. We 
chose Virustotal because it consists of different updated antivirus 
engines which are used for static malware analysis. We uploaded 
the files and recorded the reports generated from each scan.  
Sand-boxing: The dynamic analysis tool used was Malwr. Malwr 
is based on the Cuckoo sandbox and it has been tested and proven 
to be efficient for dynamic analysis. We uploaded the files to the 
Malwr site and downloaded an XML report of each scan action 
upon its analysis.  
Data Transformation: The xml reports generated from the sand-
box were parsed using JDOM parser and the required features 
selected. The parsed files were represented as comma-separated 
values to serve as input for machine learning.  
Machine Learning: Finally, we carried out the machine learning 
task. Supervised and unsupervised learning were carried out. The 
supervised learning also known as learning with a teacher was done 
using Random Forest, Decision Table, Bayesian Classifiers, 
Multilayer Perceptron (MLP), LazyIBK and LogitBoost 
algorithms. The Unsupervised learning was done using EM 
(Expectation-Maximization) algorithm.  
3. RESULT AND DISCUSSION 
One of the key objectives of this research was to study the 
behaviour of malware through learning and close observation of 
their features. The results of the dynamic analysis carried out in the 
sandbox show some API calls, which have been modeled as 
attributes that malicious and clean files make. These attributes were 
used to learn the behavior of the dataset.  
WEKA API was used for feature selection and machine learning; 
we employed Information Gain algorithm for feature selection, 
Random Forest, Decision Table, Bayesian Classifiers, Multilayer 
Perceptron (MLP), LazyIBK and LogitBoost were used for 
supervised learning; and Estimation-Maximization algorithm was 
employed for unsupervised learning.  
We began the machine learning by running experiments with the 
dataset with and without feature selection in order to study the 
effect of feature selection. Then, we compared the results. The 
experimental procedure is outlined as follows: Firstly, we carried 
out supervised learning with feature selection. Then, we carried out 
unsupervised learning with feature selection. Furthermore, we 
carried out supervised learning without feature selection. Finally, 
unsupervised learning without feature selection was done.  

3.1 Evaluation Metric 
In order to measure the performance of the algorithms, we used the 
following metrics [23]:  
Classification Accuracy: This is used to determine the machine 
learning algorithm’s accuracy. It is defined as:  



number	of	correct	predictions	/	total	number	of	predictions 
Confusion Matrix: This is a matrix that gives a holistic view of the 
algorithm’s performance. It is described in table:2.  
 

Table 2: Confusion Matrix 

 
 

Area Under the Curve (AUC): As the name suggests, AUC 
is the area under the curve of the plot of false positive rate 
((𝐅𝐚𝐥𝐬𝐞𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞)/(𝐅𝐚𝐥𝐬𝐞𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 + 𝐓𝐫𝐮𝐞𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞)) and true 
positive rate ((𝐓𝐫𝐮𝐞𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞)/(𝐅𝐚𝐥𝐬𝐞𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 +
𝐓𝐫𝐮𝐞𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞))	at various points within [0, 1].  
F1 Score: This represents the harmonic mean between the precision 
and recall values.  
Training Time: This represents the time taken to train the model.  

3.2 Machine Learning Algorithms 
The Supervised Learning Algorithms used are described below. 
Random Forest: It also referred to as random decision forest. This 
is a machine learning ensemble that combines several algorithms to 
derive better learning results [24].  
Decision Table: This is a means of knowledge representation using 
tables in which outcomes are jointly determined by a group of 
conditions [25].  
Bayesian Classifiers: Bayesian classifiers e.g. Bayes Networks 
work by assigning the most probable class to a particular example 
described by its feature vector. Assuming that characteristics and 
features are not dependent on a given class makes learning such 
classifiers greatly simplified [26].  
Multilayer Perceptron (MLP): This is a deep artificial neural 
network with several layers comprising at least of an input layer, a 
hidden layer and an output layer. The input layer is often used for 
input reception, the hidden layer is the computation engine and the 
output layer is used for decision making or predictive analysis [27].  
LazyIBK: This is one of the simplest machine learning algorithms 
which implements the k-Nearest Neighbor algorithm. It is an 
instance-based learning algorithm whose function is a local 
approximation. It does not compute any values until classification 
[28].  
LogitBoost: This is a boosting classification algorithm that reduces 
the logistic loss. It greedily optimizes the classification probability, 
provided that the base learner reduces the squared error [29].  
The Unsupervised Learning Algorithm used is described below. 
EM (Expectation-Maximization) algorithm: This is a way of 
determining an approximation of the maximum likelihood of 
parameters in a distribution. It is suited for data sets containing 
values that are either missing or incomplete [30].  
Feature Selection Algorithm  
The filter method of feature selection is a very straight- forward and 
less computationally expensive method of feature selection [31] 
which is why it was chosen as the feature selection algorithm to be 
used. The filter method used Information Gain for attribute 
evaluation. This assesses the value of an attribute by evaluating the 

information gain with respect to the class. This is given in the 
equation below;  
InfoGain(Class, Attribute) = K(Class) − K(Class|Attribute) 

where	K	is	the	information	entropy		 

3.3 Machine Learning without Feature 
Selection 
The results of the unsupervised and supervised machine learning 
algorithms without feature selection are described with the table 
and diagram below. Recall that the machine learning algorithms 
used include Random Forest, Decision Table, Bayesian Classifiers, 
Multilayer Perceptron (MLP), LazyIBK and LogitBoost for the 
supervised learning and EM algorithm for the unsupervised 
learning.  
The results from table:3 and figure:1 show that for machine 
learning without feature selection with algorithms Random Forest, 
Decision Table, Bayesian Network, Multilayer Perceptron, 
LazyIBK and LogitBoost, the values obtained for accuracy are 
73.1544%, 76.5101%, 68.4564%, 77.1812%, 74.4966% and 
76.5101% respectively.  
From the values obtained for accuracy and other metrics such as 
TPR, FPR, AUC and F1Score, we observe that Multilayer 
Perceptron performs the best with an accuracy of 77.1812% for 
supervised learning without feature selection. It however takes the 
longest time to train, with a training time of 14.87seconds.  
 

 
Figure 1: Machine Learning without Feature Selection 

 
Table 3:Machine Learning without Feature Selection 

 
 

3.4 Machine Learning with Feature Selection 
In this section, we follow the processes described in subsection:3.3 
above. However, we employ feature selection. Information Gain 
algorithm was used for feature selection. The result description 
from table:4 and figure:2 shows that for machine learning with 
feature selection with algorithms Random Forest, Decision Table, 
Bayesian Network, Multilayer Perceptron, LazyIBK and 
LogitBoost, the values obtained for accuracy are 74.4966%, 



76.5101%, 69.7987%, 77.1812%, 75.1678% and 77.1812% 
respectively.  
According to the values obtained for accuracy and other metrics 
such as TPR, FPR, AUC and F1Score, we observe that Multilayer 
Perceptron still performs the best with an accuracy of 77.1812% for 
supervised learning with feature selection. It however still takes the 
longest time to train, with a training time of 14.87seconds.  
In the previous section, we focused solely on the effect of feature 
selection on supervised machine learning. From the tables:3 and 4 
as well as the figures:1 and 2, we can also see the effect of feature 
selection on unsupervised machine learning. It can be seen that 
when feature selection is applied to EM algorithm, the accuracy 
increases to 74.4966%. This is in contrast to the 54.5624% accuracy 
obtained when no feature selection was applied.  
In general, it can be noted that for supervised learning, the use of 
feature selection does not very noticeably increase the accuracy of 
the algorithms. In algorithms such as Decision Table and MLP, the 
results for accuracy even remains the same with or without feature 
selection. However, for unsupervised learning we see the accuracy 
jump from 54.3624% to 74.4966%. The best accuracy for both 
supervised and unsupervised machine learning with or without 
feature selection is obtained by MLP with an accuracy of 
77.1812%.  
 

 
Figure 2: Machine Learning with Feature Selection 

 
Table 4: Machine Learning with Feature Selection 

 
 

4. CONCLUSION 
In this work, we developed a system that allows a malware analyst 
to analyze and detect malicious code using machine-learning 
techniques. Given the threat that malicious software in the form of 
viruses and trojan horses, just to name a few, continuously pose, it 
is obvious, as we have discussed that the static analysis tools 
normally used are inefficient in discovering these malware.  
The use of the feature selection method based on Information Gain 
led to higher values for accuracy. Upon comparing the performance 
of the machine learning algorithms with and without feature 
selection, MLP emerged with the best result with an accuracy of 

77.1812%, TPR of 0.772, FPR of 0.232, AUC of 0.786 and F1Score 
of 0.772.  
The results show that machine learning-based malware detection is 
effective. We were also able to describe the difference between 
supervised and unsupervised machine learning in terms of their 
detection accuracy. Although in this work, almost all the 
performance metrics employed were useful in determining the best 
machine learning algorithm, some were more useful than others. 
The training time for instance, was not very relevant as most of the 
models were built in less than one second.  
There are a number of areas in this work that are still open for 
further research work. In this work, a lot of focus was placed on 
viruses and its attacks, another area to look at would be on other 
forms of malware like trojans and spyware. Also, more samples can 
be analyzed, say thousands of samples, to observe the machine 
learning process more accurately.  
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