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Abstract: The switch and crossing (S&C) is one of the most important parts of the railway infrastruc-
ture network due to its significant influence on traffic delays and maintenance costs. Two central
questions were investigated in this paper: (I) the first question is related to the feasibility of exploring
the vibration data for wear size estimation of railway S&C and (II) the second one is how to take
advantage of the Artificial Intelligence (AI)-based framework to design an effective early-warning
system at early stage of S&C wear development. The aim of the study was to predict the amount
of wear in the entire S&C, using medium-range accelerometer sensors. Vibration data were col-
lected, processed, and used for developing accurate data-driven models. Within this study, AI-based
methods and signal-processing techniques were applied and tested in a full-scale S&C test rig at
Lulea University of Technology to investigate the effectiveness of the proposed method. A real-scale
railway wagon bogie was used to study different relevant types of wear on the switchblades, support
rail, middle rail, and crossing part. All the sensors were housed inside the point machine as an
optimal location for protection of the data acquisition system from harsh weather conditions such
as ice and snow and from the ballast. The vibration data resulting from the measurements were
used to feed two different deep-learning architectures, to make it possible to achieve an acceptable
correlation between the measured vibration data and the actual amount of wear. The first model is
based on the ResNet architecture where the input data are converted to spectrograms. The second
model was based on a long short-term memory (LSTM) architecture. The proposed model was tested
in terms of its accuracy in wear severity classification. The results show that this machine learning
method accurately estimates the amount of wear in different locations in the S&C.

Keywords: switches and crossings; wear measurement; deep learning; LSTM; ResNet vibration sensors

1. Introduction

Railway tracks represent a complex piece of infrastructure and are installed to last for
a long time. Once they are put in place, it is very problematic and costly to maintain them
at a high standard. It is very important to monitor any urgent maintenance of the Switch
and Crossing (S&C), as insufficient maintenance may present the main source of track
irregularity, which can not only affect passenger comfort [1], but also deteriorate the vehicle–
infrastructure interaction performance [2]. Therefore, the return on investment (ROI) in
a manageable timeframe of such systems is extremely dependent on the maintenance
strategy and decisions. The aim of the study presented herein was to enhance the existing
knowledge of railway wear monitoring by providing novel techniques to monitor the
surface deterioration and damage induced by wear effects.

In the railway wear monitoring literature [3–6], two main categories of monitoring
approaches can be found, namely direct and indirect approaches. The direct approaches
are mainly based on the use of digital photography to monitor specific locations on the
rail [7]. Images are captured using optical devices such as high-speed cameras, after which
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conventional image processing tools and algorithms are applied to extract directly the
information required concerning deterioration caused by the wear process [8,9]. On the
other hand, the indirect approaches estimate the wear by implementing a data acquisition
system to collect signals that can be generated from the dynamic wheel–rail interaction
during operation. The most frequently collected signals are vibration [10], force [11], and
speed signals. The measured signals are then used as input fed into a mathematical wear
model or signal-processing tools to extract relevant features to estimate the amount of
wear [12].

From a mechanical point of view, there is a direct cause–effect relation between wear
and rail corrugation [13]. Originally, rail roughness has a large distribution of wavelengths
with small amplitudes. However, because of the periodic wear caused by the wheel–rail
interaction along the longitudinal direction, a dynamic change in the roughness will accrue
through periodic waviness and irregularities with high amplitudes [14], resulting in what
is called rail corrugation.

In the present study, rail corrugation was used as the key feature for wear assessment.
Corrugation is generally caused by the mechanism of differential wear, where the corruga-
tion troughs are more exposed to wear than the peaks. In most cases, rail corrugations have
quite a fixed wavelength produced by friction change and normal contact force fluctuations.
Corrugation results in higher vibration signals and noise levels emanating from railway
vehicles [15], and the vibration will be a source of information that can reflect the amount
of rail wear.

In this study, special attention was paid to the optimal mounting location for the
accelerometers. The aim of the study was to investigate the possibility of evaluating the
amount of wear of the entire S&C indirectly using accelerometers embedded inside the
point machine. The most common solutions used for S&C wear measurement are systems
located onboard the car-body and installed on the bogie [16], and wayside systems using
a network of sensors distributed along the S&C track [17]. Comparing these two types of
systems [3], it has been found that wayside sensors are overwhelmingly more effective
than onboard monitoring systems. Furthermore, placing accelerometers or other types
of sensors as an integrated component of the point machine has the advantage that they
are therefore perfectly protected from harsh weather conditions such as snow and ice, as
well as damage caused by service vehicles during the operation process. Another benefit
is that the collected vibration signals can be used both to detect damage and degradation
related to the railway track and defects in the point machine components. An additional
advantage is related to the complexity of installing the data acquisition system; by placing
the sensors in this optimal location, less wiring and packaging are needed. Furthermore,
the electrical power supply can be easily driven from the point machine itself.

In 2005, a dissertation was published [18], written by Argo Rosin, which deals with
control and steering as well as operational diagnostics for light electric transports by
rail. However, the dissertation only concerns reliability analyses from measuring systems
mounted on locomotives and wagons. Mathematical models have been developed in
the dissertation that analyze input data from sensors on locomotives and data have also
been successfully transmitted to fixed analysis stations. However, the important problem
of the wear is not addressed, and the S&C investigation is very superficial. The main
drawback of this onboard approaches is the noise level originated from the bogie structure.
In 2017, a dissertation was published in England [19], written by Marius Florin Rusu, which
deals with automatic inspection approaches of S&Cs. The dissertation provided a good
motivation for the needs of new measurement methods and a theoretical analysis about
the optimal location of the sensors but without any real case study. The dissertation claims
that the point machine is theoretically a suitable location to install the sensors with a view
to forecast the state of the S&C.

However, the major disadvantage of having the sensors housed inside the point
machine is that the sensors are, to a varying extent, distant from the actual location of the
defects. As a result of this, the collected signal can be noisy and not strong enough
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to convey useful information about the wear evolution near the crossing part of the
S&C, for example. Optimally, one would need to install the accelerometers as close as
possible to the expected locations of defects and in several positions along the S&C track.
However, installing a wear monitoring system of this type that would cover the entire
Swedish railway network with its more than 14,000 S&Cs would not be possible because
of the unrealistic installation costs [20–22]. Consequently, installing a monitoring system
consisting of sensors as an embedded device that can be delivered with the point machine
seems to be a more feasible solution.

Artificial intelligence (AI) and more specifically deep-learning algorithms have to a
high degree captivated the interest of academics and companies in almost all fields. These
algorithms, with their diversity of architectures and concepts, can model many real-world
problems if they are provided with relevant and well-structured data [23]. Furthermore, AI
is now a key feature of many scientific achievements in railway track condition monitoring.
Hitoshi [16] developed an onboard sensing device for fault classification using the support
vector machine (SVM) method. Hamid et al. [24] proposed an artificial neural network
methodology to predict the track geometry degradation.

2. Deep-Learning Algorithms for Feature Learning
2.1. Long Short-Term Memory (LSTM) for Feature Learning

The present study made use of the well-known deep-learning architecture called long
short-term memory (LSTM), which belongs to the family of recurrent neural networks
(RNNs). As has been illustrated in the literature [18], RNN models are good at reducing
frequency variations. LSTM is a distinct version of RNN which deals with the vanishing
gradient problem, which considers the time notion, and which solves the problem of storing
short-term data over long periods of time. The LSTM architecture is more appropriate for
the temporal modelling of sequence data [25]. The main idea behind the LSTM concept
is the memory block that memorizes its state over the training process. With the memory
block introduced, it is possible to keep old features gained at the beginning of the training
phase and fresh features collected by the end of the training. The workflow of one LSTM
cell is plotted in Figure 1 and it can be mathematically formulated as follows:

ct = ft ⊗ ct−1 + it ⊗ c̃t (1)

ht = ot ⊗ tanh(ct) (2)

where ft = σ
(

W f hht−1 + W f xxt + b f

)
(3)

it = σ
(

Wihht−1 + Wixxt + bi

)
(4)

c̃t = tanh
(

Wchht−1 + Wcxxt + bc

)
(5)

ot = σ
(

Wohht−1 + Woxxt + bo

)
(6)

W f h, W f x, Wih, Wix, Wch, Wcx, Woh and Wox are the weights for the forget gate, input
gate, input modulation, and output gate, respectively. The cell has three inputs made
available from the previous propagation. The input is processed with “σ” and “tanh”
internal gates, which are ruled by the hyperbolic tangent function and the sigmoid function,
respectively. bf, bi, bo, and bc are the biases matrices and they are not time-dependent, this
implies that these matrices do not update from one-time step to another.

Figure 1 shows the input and outputs flow of an LSTM for one timestep. This is a
single timestep input, output ruled by Equations (1) and (2). Each LSTM cell has an input
xt, ht−1, and ct−1 are the inputs from the previous timestep LSTM. ot illustrate the output
of the LSTM cell for the current timestep. The LSTM also produces the ct and ht for the
feeding of the next time step LSTM. Based on the present input x, the internal state c and
the hidden state h, the internal gates will decide as to the amount of information that can
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be updated into the hidden state h and the cell state c. This behavior grants the LSTM cell
the ability to uncover new key features and remove irrelevant information.
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2.2. The Residual Neural Network (ResNet) for Feature Learning

The residual neural network (ResNet) is one of the most successful deep networks
and belongs to the family of convolutional neural networks (CNNs). The first draft of the
ResNet was proposed in [26]. The main basis for its architecture is the residual learning
which is the use of skip connections, also called identity skip function, to jump over some
layers. The residual concept adds an explicit identity connection throughout the network
to help the network learn the required identity mappings as shown in Figure 2. Adopting
this approach, the network will be more dynamic and can decide how deep it needs to
be to reach the highest accuracy. Even though this new concept will introduce a new
parameter to the network, it will not add any computational problem. Moreover, because
it has a deeper layer’s presentation, the ResNet makes it possible to design deeper learning
applications that deal with more complicated real-world problems. Furthermore, it has
been shown in the literature that this type of deep network facilitates faster convergence
than that achieved by a CNN which does not have a skip connection function [27–29].
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3. Materials and Methods
3.1. Experimental Set Up and Sensors Placement

The basic idea behind this study is that the movements of trains are affected by
the degradation of the S&C. This degradation can result in defects occurring during
normal railway operations. The resulting vibrations happen as a dynamic response to
the wheel–rail interaction. If the rail or the wheel profile changes over time because of
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regular degradation, then the vibration response will also change. This means that the
trains’ vibrations can be correlated with the health condition of the S&C. Consequently,
measuring the vibrations will lead to an estimation of the amount of wear. In this study,
six accelerometers were used to acquire the vibration signals. It has been reported in
the existing literature [19] that the normal range of frequencies of railway infrastructure
is quite low and hardly exceeds 10 kHz. However, to study high frequencies further,
two accelerometers with the higher frequency of 37 kHz were used. A principle sketch of
the test rig with its point machine used in the present study is provided in Figure 3.
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Industrier AB).

Figure 3 shows the 6-tonne bogie used as part of the test rig to perform the measure-
ments. This two-axle bogie (with an axle distance = 2.5 m) can move along the turnout
in the diverging and the through directions using two electrical winches installed at the
front and at the back of the bogie structure, respectively. Using a metallic cable hooked
into the sleeper, the bogie can be moved in the desired direction (Figure 3). The recorded
speed was between 0.016 m/s and 0.018 m/s. To drive the winches, a petrol-powered
electric generator mounted on the bogie is used. The entire S&C path is divided into three
sections: S0S1, S1S2, and S2S3, as shown in Figure 3. S0S1 includes the point machine, S1S2
includes the middle section, and S2S3 includes the crossing part, and the lengths of these
three sections are 13.85 m, 10.14 m and 11.40 m, respectively.

In this study, several accelerometers were used, and the locations of the sensors on
the S&C structure were based on a compromise between an optimal placement based
on the probable vibration directions and the realistic placement possibilities available
(see Figure 4).

Figure 4 shows the installation of all the accelerometers with the acquisition unit as an
extra integrated component for the point machine used with the test rig. The sensors were
distributed in a such way as to keep a straight contact with the rest of the S&C elements
to guarantee faultless acquisition of the vibration data. The sensors were mounted using
customized supports considering the desired direction of the accelerometer. As shown in
Figure 4, the accelerometers were mounted in such a way as to detect the longitudinal and
vertical vibration and they are balanced on the left-hand and the right-hand sides of the
different rods of the point machine.



Sensors 2021, 21, 5217 6 of 14

Sensors 2021, 21, 5217 6 of 15 
 

 

includes the middle section, and S2S3 includes the crossing part, and the lengths of these 

three sections are 13.85 m, 10.14 m and 11.40 m, respectively. 

In this study, several accelerometers were used, and the locations of the sensors on 

the S&C structure were based on a compromise between an optimal placement based on 

the probable vibration directions and the realistic placement possibilities available (see 

Figure 4). 

 

Figure 4. Point machine with the installed accelerometers. 

Figure 4 shows the installation of all the accelerometers with the acquisition unit as 

an extra integrated component for the point machine used with the test rig. The sensors 

were distributed in a such way as to keep a straight contact with the rest of the S&C ele-

ments to guarantee faultless acquisition of the vibration data. The sensors were mounted 

using customized supports considering the desired direction of the accelerometer. As 

shown in Figure 4, the accelerometers were mounted in such a way as to detect the longi-

tudinal and vertical vibration and they are balanced on the left-hand and the right-hand 

sides of the different rods of the point machine.  

3.2. Data Aquisition for Vibration and Speed 

The speed was measured by a customized tachometer using a Hall effect sensor 

(A3144), several neodymium magnets (20 mm × 10 mm × 1.5 mm thick), and an Arduino 

Uno with wireless communication capability (Figure 5). Every second, the revolutions per 

minute (RPM) of the front wheel were measured and the readings were sent wirelessly to 

the main computer to be synchronized with the vibration data acquisition. Another Ar-

duino Uno (WiFi Rev2, Kjell & Company Elektronik AB, Malmo, Sweden) was used with 

a programmable Sabretooth motor controller (2X60A) to control remotely the two DC mo-

tors driving the winches used to move the bogie forward and backward. To ensure that 

the vibration data acquisition and speed data acquisition were synchronized with the 

same timestamp, the measurements were triggered at the same time as the motor was 

powered. 

Figure 4. Point machine with the installed accelerometers.

3.2. Data Aquisition for Vibration and Speed

The speed was measured by a customized tachometer using a Hall effect sensor
(A3144), several neodymium magnets (20 mm × 10 mm × 1.5 mm thick), and an Arduino
Uno with wireless communication capability (Figure 5). Every second, the revolutions
per minute (RPM) of the front wheel were measured and the readings were sent wirelessly
to the main computer to be synchronized with the vibration data acquisition. Another
Arduino Uno (WiFi Rev2, Kjell & Company Elektronik AB, Malmo, Sweden) was used
with a programmable Sabretooth motor controller (2X60A) to control remotely the two DC
motors driving the winches used to move the bogie forward and backward. To ensure that
the vibration data acquisition and speed data acquisition were synchronized with the same
timestamp, the measurements were triggered at the same time as the motor was powered.
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Figure 5. (a) Bogie with two winches and an electrical power supply, (b) remote control unit, and (c) tachometer.

The vibration data were then collected by a National Instruments data acquisition unit
connected to accelerometers. The test setup for the test rig is presented in Figure 3. The Na-
tional Instruments platform (a Compact DAQ 9174) was used for vibration data acquisition,
and two modules were required to connect the accelerometers. The experiment was carried
out with different class of piezoelectrical accelerometers connected to a Compact DAQ 9174
(National Instruments Sweden AB, Stockholm) and providing vibration signal acquisition
with a sampling rate of up to 51 kHz for each channel. To create a good surface-to-surface
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contact between the accelerometers and the point machine’s rod, an adapted support was
made which had much the same shape and size as the different accelerometers. Figure 6
depicts the locations (A, B, C, and D) and the directions of the accelerometers installed on
the point machine, see Table 1 for additional properties.
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Table 1. Position, frequency range, and direction of the accelerometers.

Position Accelerometer Frequency (kHz) Direction

C KS91C1 37 Z
A 608A11 10 X
A 608A11 10 Y
A 608A11 10 Z
B SKF 2310T 10 Y
D SKF 2310T 10 Y

3.3. Wear Severity Classification Using LSTM and RESNET

The aim of this research was to develop a strategy for measuring the severity of
the wear on the rail indirectly. The method for detecting wear includes vibration data
acquisition, pre-processing of the vibration signals and then assessment of the wear severity.
Figure 7 presents the algorithmic workflow of the approach, and the principal steps are
described below.
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accelerometers installed on the point machine in several locations. The speed recording
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was synchronized with the vibration recording, and the final measurement output was
a data file with six columns for the vibration input channels, one column for the time
stamp, and one column for the speed value. Wavelet denoising or wavelet thresholding
was applied to the vibration signals using the MATLAB Signal Toolbox. The essential idea
behind the denoising algorithm is the decimated wavelet transform. Wavelet denoising
pinpoints features in the vibration data to different scales, which then makes it possible to
keep important signal features while removing the noise. The basic idea of this method is to
construct a new presentation of the original signal using predefined signals to concentrate
the signal to obtain the wavelet coefficients. Then it is possible to localize the small values’
coefficients and remove them to reduce the noise in the signal without affecting the main
features carried by the measured signal. To reconstruct the final signal with remarkable
noise reduction, we used the inverse wavelet transform.

Two approaches will be used in this section, the first approach is based on several
features extracted from the vibration data and then the LSTM network will be fed by these
features as a tabular data. The second approach is based on the spectrogram images as
an input to train the ResNet model. Both proposed algorithms are tested with the data
set to identify which one is more suitable and more efficient in terms of wear severity
assessment accuracy.

3.3.1. LSTM Model for Wear Severity Classification

To make the data ready to be fed into a deep-learning model, the raw data were divided
into windows of three seconds. As the run lasted for 120 s, we then had 40 windows of
153,600 timestamps. Each window was reshaped into 256 blocks of 600 values each and the
windows were used to extract several features commonly used for defect detection in the
bearing fault diagnosis field [20]. The result was a 3-dimensional matrix (windows, time
steps, and features). All in all, we selected seven-time domain features. Figure 8 shows
a sample of the feature evolution for one sample block of data over 256-time steps. The
corresponding names and formulas for these features are listed in Table 2.
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As an example, all results are presented in Figure 8, the purpose here is to give
an overview about the typical behavior of the selected features, it is shown that most of the
features are relevant to vibration signal which reflect the condition of the S&C itself.
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Table 2. Time domain features.

Features Formula

Root Mean Square (RMS) Xrms =

√
1
N

N
∑

i=1
xi

2

Skewness Xskew = ∑N
i=1(xi−m)3

(N−1)σ3

Kurtosis Xkurt =
∑N

i=1(xi−m)4

(N−1)σ4

Shape factor Xshape =

√
1
N ∑N

i=1 x2
i

1
N ∑N

i=1|xi |

Crest factor Xcrest =
max|xi |√
1
N ∑N

i=1 x2
i

Impulse factor Ximpl =
max|xi |

1
N ∑N

i=1|xi|

Clearance (Margin) factor
Xclear =

max|xi |(
1
N ∑N

i=1

√
|xi |
)2

m: mean, σ: standard deviation.

The extracted features will be used to feed the LSTM model, in this study the model
was designed with MATLAB 2020b using the Deep-Learning Toolbox (MathWorks, Mas-
sachusetts, USA) with the support of a computer whose CPU had 4 gigabits of memory.
The first step involved splitting the data, allocating 60% of the data for learning and 40% for
testing, with the load of the training data containing 208 sequences of dimension 7 of a fixed
length equal to 265. Another categorical vector of labels was introduced corresponding to
the four wear levels. The learning time for the model was about 12 min and the inference
time using a sequence of vibration data was about six seconds. For the assessment of the
model performance, the following formulation was employed:

Accuracy =
∑(Levelpred == Leveltest)

Number o f test sequences
(7)

3.3.2. ResNet Model for Wear Severity Classification

Our intention in using a ResNet model was to solve the same problem using another
CNN architecture. The main difference between the first approach and the new one is the
way in which the data are fed into the machine learning model and the way in which the
data are pre-processed.

In the previous method, the vibration signals are used as tabular time series data to be
fed into the LSTM model after structuring and extracting the needed features from the raw
signals. For the ResNet model, the raw data are converted into spectrograms, which are
then used as input for training the model. We have selected the ResNet model because it
handles images better. The workflow of the second proposed approach is shown in Figure
9. In the ResNet model the same method is applied for processing the data as was applied
in the previous approach with the LSTM model, but the vibration data are changed to
images instead of tabular time series data.
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4. Results and Discussion
4.1. Vibration Measurements

To protect the installation and the cables shown in Figure 6, all the accelerometers
were located inside the point machine housing. A single-board computer (SBC) was used
with a LabView graphical user interface (GUI) to transfer commands and save the vibration
data. Various measurements were performed (Table 3) while the bogie was dragged with
the electric winch mounted on the bogie structure. The data were recorded as the bogie
moved over the middle part of the S&C in the turnout direction. The same scenario was
repeated for four different degrees of wear.

Table 3. Measurement scenarios.

When Repetition

Orig. wear level 1 4
1st wear level 3
2nd wear level 3
3rd wear level 3

1 The original condition of the S&C.

The vibrations resulting from the wheel–rail interaction, as well as the speed, were
collected at the point machine and saved on the hard drive. The speed was used to find
accurately the exact location of the bogie from the start to the end of the test (Figure 10).
Then it was possible to correlate the vibration response with the defect location on the
rail. We only used the data recorded when the bogie passed over the middle section
(S1S2 = 8 m), where the artificial wear had been created.
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4.2. Wear Measurement

The actual amount of wear in the S&C was measured with a special type of mechanical
measuring tool used by a Swedish railway maintenance contractor. The tool (an SJ50) was
placed using magnets on the top of the railhead in the location where the artificial wear
had been created. The wear measurements were performed in several locations in both the
vertical and the horizontal directions (see Figure 11). Table 4 shows the average evolution
of the artificial wear for all the parameters on the entire S&C. X0, X3, X6 and Z0 are specific
settings to take the measurement at one location on the rail.
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Table 4. Different levels of artificial wear.

Tool Position Orig. Wear Level 1st Wear Level 1 2nd Wear Level 1 3rd Wear Level 1

X0 0.51 1.31 2.62 3.82
X3 1.63 2.36 4.48 5.92
X6 4.30 4.54 6.54 8.00
Z0 0.96 0.94 0.96 0.96

1 All measurements are in millimeters.

4.3. Wear Measurement Using LSTM Model

As shown in the confusion matrix (Figure 12), the obtained LSTM model provides sat-
isfactory results with an average accuracy for all the testing data of 88%. The classification
is better when identifying the original wear level (L0) and the last level (L3), where we
have an accuracy of 96.1% and 95.7%, respectively. However, for (L1) and (L2) the results
indicate that there are some problems separating these low levels of wear (in the range
of 1–2 mm) from each other. Surprisingly, using learning did not result in a satisfactory
correlation between the wear and the extracted features. One explanation for this is the
change in the vibration response after the large change of the wear size between the original
state of the rail, level (L0) and level (L1). Furthermore, the last wear level is the case where
we have removed the largest amount of material from the rail to create artificial wear,
which is why the vibration response for this case is quite different from the response for
the original level of wear. However, if this level of detail in the wear detection (1–2 mm) is
required, more research is needed to explain this behavior.
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In this paper, we did not apply any specific task for hyperparameters optimization.
However, the main hyperparameters such as the number of training epochs and the size
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of training batches are merely tuned to interpret the accuracy of the results. A simple
comparison shows that the choice of setting the number epochs and the size of training
batches respectively to 100 and 32 is better than the tested alternatives.

The results obtained using the LSTM model show that extracting the time domain
features from the signal, i.e., the RMS, kurtosis, skewness, crest factor, shape factor, impulse
factor, and clearance factor, can be a good approach for indirectly quantifying the amount
of wear on the railway track. There are other features which can be used, for instance
frequency domain features, but if one intends to run the LSTM model locally on an edge
computing and low computing capability, then it is better to keep the computation cost low.

4.4. Wear Measurement Using ResNet Model

In this study, the convolutional neural network ResNet was used. The architecture
of our ResNet model is 18 layers deep and was designed with MATLAB 2020b using
the Deep-Learning Toolbox. We used a pretrained version of the ResNet18 which had
been trained on more than a million images from the ImageNet database. The pretrained
network had learned rich feature representations for a wide range of images. The input
of the network had an image format. The vibration signal from each run was converted
to a spectrogram, which was then saved as an image with a size of 224-by-224. All the
images were labelled regarding the wear level in question (Figure 13) and divided into
two datasets, one containing 60% of the data for learning and the other containing 40% of
the data for testing, keeping the same configuration as for the LSTM model and the same
hardware. For the assessment of the model performance, the same formula, Equation (7),
was used.
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Figure 13. Spectrograms obtained from the vibration data for different level of wear: (a) no wear,
(b) first level, (c) second level, (d) third level.

The ResNet-18 takes the spectrograms as an input for the indirect extraction of features
with respect to the wear level. The confusion matrix shows how accurate the ResNet is
(Figure 14). Using this CNN architecture, the model exhibits slightly better accuracy than
the LSTM model. In Figure 14, it can be observed that the ResNet can accurately distinguish
the correct level of wear on the railway track among all the detailed levels of wear. On the
other hand, the LSTM model fails to some extent, in that, for example, it does not succeed
in differentiating between the levels L1/L0, L1/L3 and L2/L1.
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5. Conclusions

Switches and crossings (S&Cs) are a crucial part of the railway infrastructure and are
subjected to various forms of wear which considerably decrease the useful operational life
of the track. The first task in this study was to confirm the assumption that it was possible
to measure vibrations that would reflect the amount of wear in the entire S&C. The second
task was to investigate how the measurement accuracy would be affected by the distance
between the sensor and the wear location.

This study demonstrates that measuring the vibrations is an effective and promising
way to monitor indirectly the amount of wear of the S&C, which is a critical component of
the railway infrastructure. Compared with other existing approaches based on vibration
measurement of several specific locations on the rail or onboard systems which are using
sensors located on the wagons, the major disadvantages of these approaches are low
reliability in harsh conditions, low accuracy, and high costs. Deep-learning applications
based on the LSTM and ResNet neural network are proposed.

The results show that the deep-learning solution can estimate the amount of wear
in the middle section in the S&C with an acceptable accuracy. In future this solution will
be developed and tested in a real S&C. The results will be used by a railway owner to
implement an integrated platform within their systems, to predict the wear evolution and
monitor and analyze the short-term and long-term condition of S&Cs.
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