
Tracking Stream Quality Issues in Combined
Physical and Radar Sensors for IoT-based

Data-driven Actuation
Oluwaseun Bamgboye

School of Computing
Edinburgh Napier University

Edinburgh,UK
O.Bamgboye@napier.ac.uk

Xiaodong Liu
School of Computing

Edinburgh Napier University
Edinburgh,UK

X.Liu@napier.ac.uk

Peter Cruickshank
School of Computing

Edinburgh Napier University
Edinburgh,UK

P.Cruickshank@napier.ac.uk

Qi Liu
Nanjing University of Information Sc & Tech

Nanjing, 210044, China
qi.liu@nuist.edu.cn

Yonghong Zhang
Nanjing University of Information Sc & Tech

Nanjing, 210044, China
zyh@nuist.edu.cn

Abstract—In this paper, a stream quality tracking for mea-
surements from combined radar and physical sensors is devel-
oped. The authors proposed the use of RDF stream processing
system and semantic rules to provide semantic reasoning for
tracking erroneous data points from real time sensor readings.
We demonstrated the effectiveness and the efficiency of the
approach using the dataset produced from smart home project.
Experiments were conducted with simulated arbitrary sensor
values for inconsistent and missing sensor readings at various
data points. The results was able to show the feasibility of the
approach and that quality requirement of sensor streams can be
verified at lower granularity level (data layer) of smart actuators.

Index Terms—Actuator, C-SPARQL, Radar, IoT, Sensor, Stream
Quality

I. INTRODUCTION

In general, sensors represents components that provides
certain response to specific property within its own environ-
ment. Both physical and radar sensors have recently been used
by different applications, while the Internet of Things (IoT)
has become a perfect enabler for their interactions and data
processing operations. In recent time, the combination of radar
sensor and physical sensor have been seen in applications
such as wearable devices, smart buildings, and autonomous
vehicles. Physical sensors usually measures physical quantity
(such as temperature) and produce processed signals that can
be read by observer or certain instrument. Radar sensors on
the other hand are signal conversion devices that uses wireless
technology to detect motion. Compared to physical sensors,
radar sensors are capable to detect obstructions like glass
and walls. The output produced by both type of sensors are
available as data streams, which are used by smart applications
to support related data-driven operations.

While the IoT focuses on infrastructure issues by identifying
and connecting real-life objects, the streaming data produced

from these radar and physical sensors are useful in driving
data-driven actuation in smart building critical and monitoring
systems. In spite of the numerous robust IoT platforms that
support data streams produced from these categories sensors,
there exists a number of quality issues with the data streams.
Such quality problems generated from each category of the
sensors often results in false actuation by certain critical or
monitoring systems. For example, both radar sensor and phys-
ical sensor have been known to be source of inconsistent data
streams (redundancy or noise) [1]. In other category, quality
issues such as incompleteness (Missing data) and plausibility
(Cross Sensitivity) [2]–[4], are known to compromise the
accuracy of data streams in physical sensors. These problems
can often result in false-positives (e.g. false fire alarm) or
erroneous actuation [5], hence making the system’s efficiency
to be compromised at run-time.

This work contributes by exploring the feasibility of
semantic-driven approach for error tracking in sensor streams
in order to achieve effective and efficient actuation within the
smart home environment. It demonstrate the use of semantic
rules and RDF1 stream processing to achieve semantic reason-
ing with serialised RDF sensor streams.

The organization of this paper is as follows. Section II
introduces the overview of smart actuator and the significance
of data stream. The proposed stream quality approach is
presented in Section III. Section IV, demonstrates the imple-
mentation and deployment of proposed stream quality tracking
approach. The Experimental setup and sensor data stream
tracking evaluation and results are discussed in Section V.
Finally, the paper is concluded in Section VI.

1Resource Description Framework

II. SMART ACTUATOR OVERVIEW

The process of actuation within a smart environment
(e.g.smart home) are usually driven by a special entity known
as the Smart actuator. The smart actuator is incorporates
sensors, processors and communicators within its elements
which are manipulated by programmable logic or computer
software/interface [6]. The application of various types of
smart actuators are based on the domain requirements and
the type of actuation needed. For example, Smart actuators
are used in biomedical field for converting different types of
energy e.g. physical energy into mechanical work in response
to different natural stimuli such as pH, heat, moisture or
humidity, electric or magnetic field. Similarly, in the smart
home environment the smart actuator can be used to convert
switch the state of thermostat or fire alarm in response to
temperature readings or other physical properties measured by
the sensors. Figure 1 show the generic architecture for smart
actuator as proposed by [7]. The architecture shows sensor
data to be at the heart of the decision and actuation process.
This indicates that every data involved in the actuation process
must be void of noise or quality issues to guarantee effective
and efficient system.

Fig. 1. Generic Architecture for Smart Actuator [7]

III. SEMANTIC-DRIVEN APPROACH FOR
TRACKING SENSOR STREAMS

In this section, a description of the semantic-driven ap-
proach for the tracking of inconsistent sensor data streams
within a smart home is presented. The author’s view of the
smart home is an intelligent environment that is equipped
with both physical and radar sensors, which are connected to
the IoT platform and software interfaces for smart actuation.
The radar sensor in this case is a multi-channel surveillance
system that is used in detecting motion within the home
environment.The physical sensor represents the categories of
sensors measuring the indoor properties such as temperature,
pressure, humidity, CO2, etc.

The semantic analysis of the sensor streams is conducted
using the approach specified in the subsequent sub-sections
with focus on the RDF serialised data formats. The semantic
stream quality tracking approach is similar to that proposed in
[8], [9]. The major difference when compared with the current
approach is that it considers output from both radar sensors
and physical sensors.

A. Stream Preprocessing

Raw streaming data are received from different physical sen-
sor nodes within the smart home using the MQTT protocol2.
The Data is then pre-processed for deduplication to resolve
the possibility of redundant quadruples statement by using the
hash table indexing key/value to provide unique identification
for each data stream. Flexible data delivery between software
module of the IoT platform are managed by Apache camel3.
Apache Camel is a lightweight data/file transfer framework
that allows integration between different components of a
system. It also accepts streaming data in any serialised format
and routes the data between modules of software. The unique
individual raw sensor stream is later converted into semantic
stream through an a method of semantic annotation with the
help of the domain ontology. This is discussed in more detail
in the following sub-section.

B. Semantic Modelling and RDF Serialisation

In an attempt to provide a suitable data model for semantic
querying and reasoning, each of the sensor streaming data
is annotated with the support of RDF manager using the
domain ontology that describes the smart home entities. The
annotation converts each data to triple statement (Subject,
Predicate, Object) with the timestamps (Quadruple statement)
by extracting the namespace including class and property types
from the domain ontology. The resulting statement is read
as RDF stream which is defined by the RDF model4. The
RDF streams is further converted into RDF serialised formats
using the native Jena RIOT API5. This allows to achieve
better expressivity and faster processing of streams. The major
alternative format for RDF data that has been considered as
the serialisation formats for the approach are RDF/XML, N-
Triple, Turtle and N3 formats. Figure 2 shows a sample of the
RDF/XML serialisation format of a typical semantic stream
for temperature reading from a smart home. The RDF data
format is able to model both the raw sensor readings and the
timestamps.

C. Semantic Reasoning Approach

Semantic reasoning describes the process of producing new
knowledge or inference from an existing facts. This method
has been developed to achieve the stream quality tracking
approach. One way of achieving the semantic reasoning ap-
proach is by layering RDF stream processing system (RSP)
with a semantic rule [9]. The advantage of this approach
in dealing with quality issues provides support for multiple
stream querying and data interoperability, which is currently
missing in statistical approaches. Furthermore, the use of
data quality rules in defining methodologies for processing
and detecting anomalies in data is an approach considered
in ensuring high data quality [10]. In attempt to achieve

2Available: http://mqtt.org/
3Available: http://camel.apache.org/
4A Standard semantic language
5https://jena.apache.org/documentation/io/rdf-output.html

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:smartSpace="http://localhost:8080/smartSpace#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
 <rdf:Description rdf:about="http://localhost:8080/smartSpace#pressureReading8">
 <smartSpace:hasPressureReading rdf:datatype="http://www.w3.org/2001/

XMLSchema#float">752.17</smartSpace:hasPressureReading>
 <smartSpace:pressureHasTimestamp rdf:datatype="http://www.w3.org/2001/

XMLSchema#dateTime">2020-01-20T09:42:12.084Z</
smartSpace:pressureHasTimestamp>

 <rdf:type rdf:resource="http://localhost:8080/smartSpace#pressureValue"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://localhost:8080/smartSpace#pressureReading10">
 <smartSpace:hasPressureReading rdf:datatype="http://www.w3.org/2001/

XMLSchema#float">753.76</smartSpace:hasPressureReading>
 <smartSpace:pressureHasTimestamp rdf:datatype="http://www.w3.org/2001/

XMLSchema#dateTime">2020-01-20T09:42:22.085Z</smartSpace:pressureHasTimestamp>
 <rdf:type rdf:resource="http://localhost:8080/smartSpace#pressureValue"/>
 </rdf:Description>

Fig. 2. RDF/XML Listing

an effective and efficient semantic reasoning process, the C-
SPARQL6 library is adopted as the most appropriate RSP to
be combine with the Jena rule langauage7.

The serialised data streams are selected based on continuous
aggregated sliding windows using the C-SPARQL while a set
of three explicit rules defined by the Jena rule language are
executed over each of the sliding windows for quality tracking.
Figure 3 shows these types of rules that are suitable for
stream quality tracking within the smart home. The feasibility
of the approach including its effectiveness and efficiency are
considered in the subsequent section.

Fig. 3. Sensor Streams Tracking Rules

IV. APPROACH IMPLEMENTATION

This section describes the implementation of the stream
quality approach as a software solution. The implementation
is realised using the libraries of Jena, C-SPARQL and JSON8.
The approach implemented in a case study involving the
smart home with integrated sensors connected to IoT platform.
The dataset generated from REFIT9 smart home project was

6http://streamreasoning.org/resources/c-sparql
7Available: http://jena.apache.org/documentation/inference
8json-simple-1.1.1.jar
9https://www.refitsmarthomes.org/datasets/

used for the purpose of tracking inconsistent data streams
from temperature sensor. These are data specifically produced
from one radar sensor (CCTV or weather satellite) and three
physical sensors (temperature, pressure and humidity sensors).
Each raw data stream produced from each of the sensor types
are modelled based on all the four types of RDF serialised
data formats. The vision of the smart home is to be able to
respond appropriately to specific situation using the actuation
process that is void of false alarm/response.

The semantic representation of the raw data is produced
with an annotated timestamp using the domain RDF graph
(derived from domain ontology) and RDF manager. The
resulting RDF quadruple statement is further re-written with
the RIOT API to derive the four serialisation formats. These
serialised RDF formats consist of the RDF/XML, N-Triple,
Turtle and Notation Formats. The new serialised RDF formats
are then subjected to further processing by the framework for
the semantic validation process. The serialised triples with
timestamps were later subjected to semantic reasoning with
rules.

REGISTER QUERY sensorValueOf AS
PREFIX smartSpace: http://localhost:8080/smartSpace#
?pressureValue ?humidityReadings ?humidityValue "
 SELECT *
 FROM STREAM http://localhost:8080/smartSpace/streamTemperature [RANGE 25s STEP 7s]
 FROM STREAM http://localhost:8080/smartSpace/streamPressure [RANGE 25s STEP 7s]
 FROM STREAM http://localhost:8080/smartSpace/streamHumididty [RANGE 25s STEP 7s]

WHERE {
 ?tempReadings smartSpace:hasValue ?tempValue.
 ?tempReadings smartSpace:hasTimestamp ?tempTime.
 ?tempReadings smartSpace:hasId ?tempId.
 ?tempReadings smartSpace:hasSeason ?tempSeason.
 ?tempReadings smartSpace:hasTimestamp ?tempTime.
 ?pressureReadings smartSpace:hasPressureReading ?pressureValue.
 ?pressureReadings smartSpace:pressureHasTimestamp ?pressureTime.
 ?humidityReadings smartSpace:hasHumidityReading ?humidityValue.
 ?humidityReadings smartSpace:humidityTimestamp ?humidityTime.
 }
 ORDER BY ASC(?tempTime)

Fig. 4. C-SPARQL Query for selection of Sensor Streams

The semantic reasoning for quality tracking begins with
the execution of stream query in figure 4. It adopts window-
based processing to support multiple RDF streams selection.
During the C-SPARQL query execution stage, continuous
pattern matching of concepts and properties are performed
on each semantic statement describing physical properties,
which includes temperature, pressure and humidity and the
corresponding values and timestamps. The selection of the
streaming data variable within each streaming window is
ordered by timestamps and executed over a period of 25
seconds with step interval of 7 seconds for indoor temperature
values and 7 seconds for other related physical properties
(indoor pressure and humidity values). It is expected that
using a shorter step length than the streaming window length
can sometimes result in unnecessary duplication of the query
result. Therefore, the results from each query processing
window are received by the ActiveMQ broker which is later
managed by Java Message Service (JMS) and subsequently
processed concurrently by the reasoning engine.

@prefix rdf: http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf‐schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#
[consistencyCheck:

(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,39)
lessThan(?humidityValue,51)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,17)
lessThan(?tempValue,24)
(?pressureReadings smartSpace:hasPressureReading ?pressureValue)
(?pressureReadings smartSpace:pressureHasTimestamp ?pressureTime)
greaterThan(?pressureValue,750.1)
lessThan(?pressureValue,761.0)
le(?tempTime,?humidityTime)
le(?tempTime,?pressureTime)
‐>
(?tempReadings smartSpace:isValid 'Consistency Check')

]

Fig. 5. Consistency Validation Rule for Temperature Stream

To achieve a complete reasoning process and for proper
inference, each serialised format of the semantic streams ex-
tracted from the current window are executed against the three
specified tracking rules and supported by the Jena inference
subsystem and API. The reasoning rules in this case are
defined based on specific policy in a smart office specified as
health and safety regulations. Specifically, the rules are defined
from the occupational health and safety10 recommendation
for indoor temperature, pressure and humidity. The order of
execution of each rule set is considered in terms of firstly anal-
ysis each stream for completeness, followed by the execution
of the rule in figure 5 to maintain consistency and, finally
executing the plausible rule based on the output of the radar
sensor. In this context, a plausible reading is a correct sensor
reading that does not represent the expected reading of target
property within the indoor environment. Plausible reading are
estimate of the target property that has been influenced by an
external property e.g. aggregating human body temperature
readings instead of indoor temperature due human closeness
to temperature sensor. This type of example will require data
from radar sensor before such readings can be classified as
plausible data.

The tracking rules executes at run-time to provide sensor
values with corresponding timestamp that satisfy the condi-
tions in the rules and, make such available to web applications
through API. Figure 6 is a snapshot of the inference from
the semantic reasoning process. The output of the reasoning
process is a new knowledge confirming the consistency or
otherwise of each data point, which is available as a quadru-
ple statement(triple statement and timestamp). The software
implementation in figure 7 contains the real time analytic
interface of the approach. It is deployed as a plug-in and
integrated with a cloud-based Microsoft Azure platform in
order to demonstrate the feasibility of the approach and allows
for continuous integration and tracking of sensor streams.

10http://www.ohsrep.org.au/hazards/workplace-conditions/heat

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:smartSpace="http://localhost:8080/smartSpace#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >

<rdf:Description rdf:about="http://localhost:8080/smartSpace#temp2Readings2">

<smartSpace:isInconsistent>Erroneous reading</smartSpace:isInconsistent>

<smartSpace:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float">-27.4</smartSpace:hasValue>
<smartSpace:tempHasTimestamp rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-28T03:32:58.992Z

</smartSpace:tempHasTimestamp>

<smartSpace:hasId rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Sensor 2</smartSpace:hasId>
<smartSpace:hasSeason rdf:datatype="http://www.w3.org/2001/XMLSchema#string">summer</smartSpace:hasSeason>
<rdf:type rdf:resource="http://localhost:8080/smartSpace#tempValue"/>

</rdf:Description>

<rdf:Description rdf:about="http://localhost:8080/smartSpace#humitidy2Readings2">
<smartSpace:hasHumidityReading

rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">43</smartSpace:hasHumidityReading>
<smartSpace:humidityHasTimestamp rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-28T03:33:01.984Z

</smartSpace:humidityHasTimestamp>
<rdf:type rdf:resource="http://localhost:8080/smartSpace#humidityValue"/>

</rdf:Description>
<rdf:Description rdf:about="http://localhost:8080/smartSpace#pressureReading2">

<smartSpace:hasPressureReading
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">756.75</smartSpace:hasPressureReading>

<smartSpace:pressureHasTimestamp rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-
28T03:33:21.986Z</smartSpace:pressureHasTimestamp>

<rdf:type rdf:resource="http://localhost:8080/smartSpace#pressureValue"/>
</rdf:Description>

</rdf:RDF>

Fig. 6. Sample output from Sream Quality Tracking with RDF/XML
serialisation

Fig. 7. Real-Time Data Validation Analytic

V. EVALUATION AND RESULTS

To provide better understanding of performance of the sen-
sor stream quality tracking approach, a simulated experiment
on a single node centralized server with multiple processor.
The simulated experiment involve large dataset consisting of
raw sensor readings with the timestamps, which was produced
from radar and physical sensors. The simulation consists of
eight rounds of experiments running for six hour each and,
completed in two separate experimental runs. Each of the
two experimental runs is allowed to perform stream quality

tracking on the same type data set generated by streamer using
the four RDF serialised formats.

In particular, outputs from ten sensor nodes that measures
temperature, pressure, humidity, door open/close, window
open/close, the motion of body and climate data are simulated.
Specifically, the configuration of the sensors consists of 3
temperature sensors, 2 humidity sensors, 2 pressure sensors,
1 door sensor, 1 window sensor and 1 motion sensor. Corre-
spondingly, each class of sensors generates the related stream-
ing data for the property it measures at a different streaming
rate measured in seconds. Each of the temperature sensor
nodes is simulated to generate both true values and erroneous
streaming values that explicitly represents typical Inconsis-
tent, Plausible and missing readings respectively. Inconsistent
streaming data values were injected into specific streaming
windows at different intervals of a single (1) and ten (10) data
points in separate experimental runs. In all rounds of the ex-
periment, inconsistent and missing temperature sensor streams
are data points represented explicitly by −27.40 Celsius and
a pseudo-value of ’8888’ respectively. Plausible values are
temperature readings recorded from direct interference with
external or climatic/weather temperature readings.

The evaluation process specifically targets estimating the
semantic tracking of Inconsistent data point produced within
each processing window. The summary of semantic validation
is produced over continuous validation windows with the
cycle. In an attempt to get a smooth trend in interpreting the
output of each validation cycle concerning the effectiveness
and efficiency evaluation, the Cumulative Moving Average
(CMA) is applied in all the evaluation results.In the first round
of the experiment involving a single point of an inconsistent
data point, the approach can perform semantic validation on
average of 49 quadruples in each streaming window and a total
of 3150 per cycle. The approach produced a total of 338,904
inferred quadruple statements over 2000 cycles. Similarly, in
the second experimental run, the approach is able to produce
an average of 103 quadruples in each streaming window with
a total of 3035 quadruples statements per cycle. The reduction
in the total quadruples processed by each validation cycle in
the second experiment is due to the presence of the Hash
function built as part of the approach. This is responsible for
removing duplicate value with the same timestamps among
raw streaming data. A total of 341,472 inferred quadruples
are produced at the end of 2000 cycles.

The effectiveness of the approach is determined by the
estimation of Relevance score and Validation Accuracy of the
intervals of the processing cycles involving the serialised RDF
formats. The method of deriving the effectiveness of the frame-
work is similar to what is currently used Information Retrieval
(IR). This similarity is seen in terms of classification problem,
which also adopt a similar technique for pattern matching
during the semantic query and reasoning process. Furthermore,
efficiency Metrics further evaluate the performance of the
approach as a means of its cost (time performance) on the
system resources in which it is deployed. In an IoT domain
that is heavily dependent on streaming data for data-driven

Fig. 8. Relevance Ratio of Serialised RDF Formats at two different experi-
mental Runs with Injections of Inconsistent Data Points per Streaming window

processing such as critical system, the importance of time is
inevitable. As such, systems or applications will require to
operate promptly with possible limited resources. Therefore,
the time-based metrics include the Semantic reasoning time of
the stream quality tracking approach.

Fig. 9. Validation Score of RDF Formats at Two Experimental runs with
Injection of Inconsistent Data Points per Streaming window

The two experimental runs are able to produce a total of
680,376 inferred quadruple statements (triple statement with
timestamp) from the semantic validation process. The number
of quadruples produced within each streaming window de-
pends on the maximum duration of semantic stream selection
and sleep duration. Figure 8 shows the results of the estimation
of the Relevance score of the validation of SISDaV from both
experimental runs. The score was stable between 86% and
88% for the two experimental runs with not much significant
difference among the serialised formats. The spike in the first
10 windows is due to low plausibility count at the earlier stage
of the streaming node. In addition, the drop in the relevance
ratio between the 250th and 1000th validation cycle is caused
by aggregated streaming windows with a significant number of
Plausibility count. Similarly, Figure 9 presents the validation
score showing the Validation score (accuracy) of SISDaV
framework above 88% across all the validation cycles in both
experimental run. Furthermore, the RDF serialise formats do
not have any significant effect on the semantic validation
process as all of them can reach a peak of 90% in both
experiments from the 10TH Cycle. The implication of the
results from the evaluations suggests a slight change in terms

of effectiveness, particularly in application with a high error
rate. In addition, the result corresponds to the total fraction of
the inconsistent data points injected into each validation cycle
during both experiments.

Fig. 10. Reasoning Time of RDF Formats at Two Experimental runs with
Injection of Inconsistent Data Points per Streaming window

The efficiency of approach has been considered in terms
of estimates of the average time required to complete the
reasoning task for each processing cycle. Figure 10 shows
the performance of the reasoner when the validation rules
were executed in each processing window. The graph provides
the estimate of the average time to complete a semantic
reasoning task and provide an inference within a validation
cycle.The N-Triple and RDF/XML formats require more time
in seconds to perform inference in the first experiment, which
is slightly lesser in the second experiment compared to coun-
terpart serialised formats. The estimate from both experiments
indicates the structure of N-Triple and RDF/XML serialised
formats has effects on their expressivity. Most likely due to the
resource-constrained feature, which will require more time to
be processed by the semantic reasoner or semantic reasoning
engine. Also, the speed of processing decreases along with
the validation cycles for all the serialised format, thanks to the
optimized matching technique embedded in the Jena2 reasoner
[11], in which the reasoning engine was built upon.

VI. CONCLUSION

In this paper, a semantic approach to dealing with stream
quality issues in a to minimise false actuation is proposed.
The approach takes advantage of the semantic query and
reasoning to achieve stream interoperability and validate each
raw data point before been consumed by the actuator. The
work further demonstrate the feasibility of the approach and
evaluate the expressivity of serialised data formats while
using the approach.The effectiveness and efficiency evaluation
proves that the approach can be reasonably sustained in a
temporal or time-critical software applications.

REFERENCES

[1] I. D. Castro, M. Mercuri, A. Patel, R. Puers, C. Van Hoof, and T. Torfs,
“Physiological driver monitoring using capacitively coupled and radar
sensors,” Applied Sciences, vol. 9, no. 19, p. 3994, 2019.

[2] A. Karkouch, H. Mousannif, H. Al Moatassime, and T. Noel, “Data
quality in internet of things: A state-of-the-art survey,” Journal of
Network and Computer Applications, vol. 73, pp. 57–81, 2016.

[3] L. M. Ang, K. P. Seng, A. Zungeru, and G. Ijemaru, “Big Sensor Data
Systems for Smart Cities,” IEEE Internet of Things Journal, vol. PP,
no. 99, pp. 1–13, 2017.

[4] P. Barnaghi, M. Bermudez-Edo, and R. Tönjes, “Challenges for Quality
of Data in Smart Cities,” Journal of Data and Information Quality,
vol. 6, no. 2-3, pp. 1–4, 2015.

[5] P. E. Brown, T. Dasu, Y. Kanza, and D. Srivastava, “From rocks
to pebbles: Smoothing spatiotemporal data streams in an overlay of
sensors,” ACM Transactions on Spatial Algorithms and Systems (TSAS),
vol. 5, no. 3, pp. 1–38, 2019.

[6] R. Agrawal, C. Koteswarapavan, N. Kaushik, and P. Matre, “Chapter 7
- smart actuators for innovative biomedical applications: An interactive
overview,” in Applied Microbiology and Bioengineering, P. Shukla, Ed.
Academic Press, 2019, pp. 101–119.

[7] M. Bayart and M. Staroswiecki, “Smart actuators: generic functional
architecture, service and cost analysis,” in Singapore International
Conference on Intelligent Control and Instrumentation [Proceedings
1992], vol. 1. IEEE, 1992, pp. 642–646.

[8] O. Bamgboye, X. Liu, and P. Cruickshank, “Towards Modelling and
Reasoning About Uncertain Data of Sensor Measurements for Decision
Support in Smart Spaces,” 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), pp. 744–749, 2018.

[9] ——, “Semantic Stream Management Framework for Data Consistency
in Smart Spaces,” 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), vol. 2, pp. 85–90, 2019.

[10] L. Li, T. Peng, and J. Kennedy, “A rule based taxonomy of dirty data.”
GSTF Journal on Computing, vol. 1, no. 2, 2011.

[11] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson, “Jena: implementing the semantic web recommendations,”
in Proceedings of the 13th international World Wide Web conference on
Alternate track papers & posters, 2004, pp. 74–83.

