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Abstract: This paper presents a new optimization algorithm based on the behavior of the fungi
kingdom expansion (FKE) to optimize the radiation pattern of the array antenna. The immobile
mass expansion of the fungi is mimicked in this work as a chaotic behavior with a sinusoidal map
function, while the mobile mass expansion is realized by a linear function. In addition, the random
germination of the spores is utilized for randomly distributing the variables that are far away from
the best solution. The proposed FKE algorithm is applied to optimize the radiation pattern of the
antenna array, and then its performance is compared with that of some well-known algorithms. The
MATLAB simulation results verify the superiority of the proposed algorithm in solving 20-element
antenna array problems such as sidelobe reduction with sidelobe ratio (SLR = 25.6 dB), flat-top
pattern with SLR = 23.5 dB, rectangular pattern with SLR = 19 dB, and anti-jamming systems. The
algorithm also results in a 100% success rate for all of the mentioned antenna array problems.

Keywords: fungi kingdom; antenna array; array factor; immobile mass; mobile mass

1. Introduction

In recent years, the increasing complexity and difficulty of real applications have led
to more efficient metaheuristic algorithms. Most of these algorithms use random vari-
ables and can estimate the best solutions for different fields of optimization problems [1].
Metaheuristic algorithms outperform traditional algorithms due to their gradient-free
techniques and avoidance of dropping in local optima [2]. During the solving process of
any optimization problem, metaheuristic algorithms depend on two techniques namely
intensification and diversification [3]. Intensification searches for the best solution within
the local search space while diversification explores the search space globally to avoid
dropping in local optima. The outstanding performance of an algorithm demands an
appropriate balance between these two techniques. All collective solutions-based algo-
rithms employ these features but with various operators and strategies [1]. Metaheuristic
collective solutions-based algorithms can be grouped based on various inspiration fields
into seven categories: biology, physics, chemistry, mathematics, social/human, music, and
sport/games.

Biology-based algorithms are categorized into two dominant groups: evolutionary
algorithms and bio-based/swarm intelligence techniques. Evolutionary algorithms are
simulated Darwin’s theory of evolution. A genetic algorithm (GA) was the first evolu-
tionary algorithm proposed by John Holland [4]. On the other hand, the second group of
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biology-based algorithms includes bio/swarm intelligence-based algorithms that can be
sub-categorized into seven classes based on their behavior of

1. Wild animals like grey wolf optimizer [5], camel algorithm [6], and wild horse opti-
mizer [7].

2. Aquatic animals such as whale optimization algorithm [1] and salp swarm search [8].
3. Insects like ant colony optimization [9,10] and moth search algorithm [11].
4. Birds such as particle swarm optimization (PSO) [12] which has widely been used for

antenna applications in recent years [13,14], bat algorithm [15], and African vultures
optimization algorithm [16].

5. Plant such as plants tree growth optimization algorithm [17] and smart flower opti-
mization algorithm [3].

6. Viruses as virus colony search [18] and coronavirus herd immunity optimizer [19].
7. Human body parts such as heart optimization algorithm [20] and kidney algo-

rithm [21].

The second group of metaheuristic algorithms is the physics-based algorithms which
simulate the physics rules in nature like Archimedes optimization algorithm [22] and
atomic orbital search [23]. The third group that relies on chemistry in their optimization
procedure such as artificial chemical reaction optimization [24] and gases Brownian motion
optimization [25]. Math-based algorithms are the fourth category of metaheuristic algo-
rithms that mimic the mathematical rules. The most common math algorithms are the sine
cosine algorithm [26] and the arithmetic optimization algorithm [2]. Social/human algo-
rithms are the fifth type of metaheuristic algorithms which include the student psychology
optimization algorithm [27] and harmony search [28] which is a music-based algorithm.
The last category is sports and games algorithms like football optimization algorithm [29]
and billiards optimization algorithm [30].

Basically, the majority of high-gain antennas suffer from undesired sidelobe levels,
and hence several approaches have been proposed to manipulate these kind of issues
such as using all-metal wideband metasurface [31] and using non-uniform metallic lat-
tice [32]. Moreover, the side lobes of the antenna radiation pattern can also be improved
by manipulating the primary antenna phase [33] and placing a 3D superstructure in the
nearfield [34].

In this paper, the Fungi Kingdom Expansion (FKE) behavior is utilized for optimizing
the radiation pattern of the antenna array. The immobile and mobile mass expansions
are emulated by a chaotic sinusoidal map function and linear deterministic function,
respectively. The parameters that are far away from the best solution are randomly spread
out to explore other more suitable locations. The proposed FKE algorithm is simulated
using MATLAB to solve some of the array antenna beamforming problems like sidelobe
reduction with SLR = 25.6 dB, flat-top pattern with SLR = 23.5 dB, rectangular pattern with
SLR = 19 dB, and anti-jamming systems. After comparing the performance of the proposed
algorithm with some other prominent algorithms, the results show the FKE algorithm has
an almost flawless optimization performance in solving the antenna array problems.

2. Fungi Kingdom Expansion Behavior

The filamentous fungi shown in Figure 1 have a special form called mycelium [35].
Before extending their biomass, the fungi spread filament structures called (hyphae whose
singular is hyphen) which begin the growth of the fungi kingdom in a form starting with
the germination of spores. The expansion of the fungal colony is based on the availability
of warmth and moisture within the surrounding area. The fungi extend their hyphae
chaotically in different directions but within a small area to check the directions at which
the amount of the moisture and warmth are suitable [35]. Subsequently, the biomass flows
through tubes inside the hyphae toward the terminals of the hyphae that are oriented
toward suitable conditions [35]. In concise, the materials that contribute to the fungi
expansion behavior can be categorized into two types:
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(a) Immobile biomass expansion: which represents the materials that are used to build
the hyphae and the tubes inside them.

(b) Mobile biomass expansion: this part represents the material flowing through the
tubes of the hyphae to provide nutrition to the terminal of the hyphae.
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Therefore, the aforementioned behavior can be translated into an optimization algo-
rithm that searches for the best solution to a certain problem. It is worth mentioning that
the behavior of the Fungi in [35] is mimicked as a routing algorithm. In this work, the
fungi expansion behavior is exploited to form an optimization algorithm that searches for
a certain optimum solution that is not related to the routing problems at all.

3. Implementation of the Fungi Kingdom Expansion (FKE) Algorithm

Consider that xi =
[

xi
1 xi

2 . . . xi
Dim

]
represents the position of the i-th fungus

where i = [1, 2, . . . , Pop], and Pop represents the population size of the fungi kingdom.
The initial population distribution can be determined by randomly (Rand) spreading spores
within the maximum allowed distance (xmax) and the minimum allowed distance (xmin) as
given below:

xiter = (xmax − xmin)Rand + xmin (1)

where iter represents the iteration number which is equal to zero at the initial step.
Based on what has been mentioned in the previous section, the authors noticed that

the fungi kingdom is expanded in three different modes:

• Mode 1: Chaotic Expansion Mode

This mode represents the generation of the hyphae for the immobile biomass expan-
sion which is equivalent to the local searching mechanism. Since the fungi spread their
hyphae in different directions but within a pre-determined area, this behavior is likely to
be chaotic rather than random. Let the parameter (hyp) denote the hyphen number, then
the proposed Equation that describes the immobile mass expansion is given as:

xi,hyp = xi + IEF× Fi,hyp (2)

where IEF represents the immobile expansion factor and F represents the chaotic function
which is selected to be the sine map function in this work:

Fi,hyp = sin
(

π Fi,hyp−1
)

(3)

It is worth mentioning that the value of the IEF should not be too small because that
results in too short hyphae, and the optimization process will take a very large number of
iterations. In contrast, the value of IEF should not be too large in order not to lose the local
searching property of this mode of expansion.
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After evaluating the positions of the terminals of the hyphae, they should be applied
to a certain fitness function to pick up the best local position among them (xlocal best,iter) for
the present iteration (iter), and then the mobile mass expansion will be applied.

• Mode 2: Deterministic Expansion Mode

This mode is corresponding to the mobile biomass expansion in which the nutrition of
the biomass is passed through the tube of the best hyphen. The Equation that is proposed
to find the new location of each fungus in the population at the present iteration depending
on the past iteration (xiter−1) and the present best local position (xlocal best,iter) is given by:

xiter = xiter−1 + conditer
(

xlocal best,iter − xiter−1
)

(4)

where cond represents the surrounding condition factor that is directly proportional to the
moisture and the temperature. This factor can be evaluated from the following formula:

conditer = 1− MTiter −MTmin
MTmax −MTmin

(5)

where MTiter denotes the Moisture-Temperature effect at the present iteration, MTmax
and MTmin are the maximum and minimum Moisture-Temperature effect, respectively.
MTiter can be evaluated by randomly (Rand) selecting a value between MTmax and MTmin
such that:

MTiter = (MTmax −MTmin)Rand + MTmin (6)

After applying (4), (5), and (6) to the entire fungi population, the position of each of
them is assessed by the fitness function to determine the global best position of the present
iteration (xglobal best,iter).

• Mode 3: Random Dispersion

The random dispersion in the fungi kingdom happens when some of the population
get far away from the nutrition sources. In this case, the fungi randomly germinate spores in
random directions within the nutrition region bounded by the distance [xmin, xmax] exactly
like that in Equation (1). The resulted population is also subjected to the fitness function
to determine whether the global best location of the present iteration is more preferable
to the previous best location or not. Thence, the new fungi population is generated, and
the next iteration (iter + 1) is started. This optimization sequence is repeated until the
required condition is met, or the number of iterations is terminated. The pseudo-code of
the proposed Fungi Kingdom Expansion (FKE) algorithm is given in Figure 2.
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4. Engineering Applications: Antenna Array Beamforming

The proposed FKE algorithm is implemented using MATLAB to optimize the opera-
tion of the antenna array. Based on the no free lunch theorem [36], there is no optimization
technique that can perfectly operate in all problems of optimization. However, the authors
found that the FKE algorithm is quite flawless in solving the antenna array beamforming
process. The structure of the M-element antenna array is illustrated in Figure 3a. The array
factor of the entire array is given by:

AF = wH a(Φ) (7)

where w represents the weights vector that described the magnitude and the phase of the
current that excites each element, the superscript H denotes the Hermitian transpose, and
a(Φ) represents the steering vector of the antenna at any azimuth angle (Φ):

a(Φ) =


1

exp[jβd1 cos(Φ)]
exp[j2βd2 cos(Φ)]

...
exp[j(M− 1)βdM cos(Φ)]

 (8)

The symbol d denotes the distance between every two adjacent elements in terms of
the wavelength (λ), and β represents the propagation phase constant:

β =
2π

λ
(9)

In fact, the array factor is exactly equal to the antenna radiation pattern if the antenna
elements are omnidirectional [37]. Figure 3b illustrates the general form of the array factor
of an arbitrary antenna array. It is clear that the array factor consists of the main beam
(major lobe) and minor lobes. The two minor lobes adjacent to the main beam are called
the side lobes, and they are often with the highest level compared to the other minor lobes.
To set the main beam toward Φ = 90

◦
the excitation phase angle between the excitation

current of each antenna element should be equal to 0
◦
. In other words, the weights vector

(w) has real values since the phase of this vector is set to zero in this work.
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It should be noted that the optimization process is applied under the following conditions:

1. Array size is 20-element.
2. Fungi population size is 50.
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3. MTmin = 20 and MTmax = 60.
4. Immobile expansion factor IEF = 0.01.
5. Number of hyphae hyp = 10.
6. Fungi dispersion = 5.
7. Number of runs = 30.

It is important to note that the immobile mass expansion requires to apply the fitness
function on each hyphen, so the actual number of steps for the entire optimization is
given by:

Actual number o f steps = number o f steps× hyp (10)

Consequently, to make a fair comparison with the other algorithms, the number of
steps applied for the other algorithms will be (hyp) times the number of steps of the
FKE algorithm.

The antenna array can be manipulated in two ways:

• Linear Optimization: by optimizing the magnitude of the weight vector.
• Nonlinear optimization: by optimization the inter-element spacing d.

4.1. Side Lobe Reduction

This section is about optimizing the sidelobe ratio (SLR) of the antenna array which is
given by:

SLRdB = 20 log
(

mainbeam level
side lobe level

)
(11)

It is well-known that decreasing the width of the main beam results in a very good
concentration of electromagnetic energy toward the target, but it also results in a higher
sidelobe level. It is found that the uniform distribution (equal excitation amplitudes and
equal element spacing) provides the narrowest beam compared to the other distributions
but with the highest side lobes [38]. The optimization problem in this subsection is con-
cluded by: providing a beam width as narrow as that of the uniform distribution but with
SLR as high as possible.

4.1.1. Side Lobe Reduction by Optimizing the Excitation Magnitude

This sub-section is about optimizing the SLRdB to be larger than 22 dB under the
constraint of narrow main beamwidth via optimizing the magnitude (w) of the excitation
current (as given in Equation (7)) of the antenna element while keeping the inter-element
spacing equal to d = 0.5λ. As mentioned earlier, the width of the main beam (null-to-null
beam width) is chosen to be equal to that of the uniform distribution which is equal to 14◦.
Therefore, the fitness function is based on the following condition:

Fitness =
{

max(SLRdB)
with beamwidth equal to that o f the uni f orm dstribution

(12)

Table 1 demonstrates a comparison between the success rate of the proposed FKE
algorithm with that of some other well-known optimization algorithms. The success rate is
given by:

SR% =
nunumber o f success f ul runs

total number o f runs
× 100% (13)

It is clear that the SR of the proposed algorithm is perfect for this kind of problem.
Table 2 gives the best excitation magnitude that results in SLRdB = 25.6023 dB with
null-to-null beam width equal to 14◦. Figure 4 illustrates a comparison between the
normalized array factor (in dB) resulting from the FKE algorithm and that of the uniform
distribution. The sidelobe reduction can clearly be seen from this figure for the same
number of antenna elements.
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Table 1. The success rate (SR) of the proposed FKE algorithm, PSO, and GA for the sidelobe reduction
using the magnitude of the excitation current (No. of runs = 30).

Algorithm Best SLR (dB) SR %

FKE (30 iterations) 25.6023 100

PSO (300 iterations) 24.6177 73.33

GA (300 iterations) 24.8263 66.67

Table 2. The best normalized value of the magnitude of the excitation current of FKE.

Element No. Excitation Magnitude

1 0.3963
2 0.3788
3 0.4980
4 0.4905
5 0.5334
6 0.7778
7 0.8593
8 0.8714
9 0.9791

10 0.9578
11 0.9376
12 1.0000
13 0.9482
14 0.7375
15 0.8107
16 0.6890
17 0.6734
18 0.3582
19 0.4529
20 0.4590
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4.1.2. Side Lobe Reduction by Optimizing the Enter Element Spacing

Based on Equation (7), the scenario of this optimization problem is concluded by
exciting the antenna elements with an equal amount of current magnitude while optimizing
the inter-element spacing (d with respect to λ) in order to obtain a large SLR with a narrow
beam. The range of the element-spacing is chosen to be [0→ λ]. The fitness function is
exactly the same as that given in (12). The success rate of the FKE algorithm compared to
some other prominent algorithms is given in Table 3, whereas the inter-element spacing
corresponding to the best SLR is shown in Table 4. The success rate of the proposed
algorithm for SLRdB ≥ 22 dB is also superior to that of the other algorithms in this type of
problem. The normalized array factor corresponding to the best element spacing is shown
in Figure 5 which also shows a noticeably reduced sidelobe level.

Table 3. The success rate (SR) of the proposed FKE algorithm, PSO, and GA for the sidelobe reduction
using the inter-element spacing (No. of runs = 30).

Algorithm Best SLR (dB) SR %

FKE (30 iterations only) 24.0017 100

PSO (300 iterations) 22.5721 40

GA (300 iterations) 22.3245 33.33

Table 4. The best normalized value of inter-element spacing with respect to the wavelength (λ)
using FKE.

Element No. Normalized Element Spacing

1–2 0.8138
2–3 0.7410
3–4 0.5958
4–5 0.3971
5–6 0.4453
6–7 0.4016
7–8 0.3914
8–9 0.3398

9–10 0.4283
10–11 0.2739
11–12 0.3961
12–13 0.3602
13–14 0.3708
14–15 0.3773
15–16 0.4626
16–17 0.5098
17–18 0.4441
18–19 0.6857
19–20 0.7318
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4.2. Flat-Top Pattern

This sub-section is about obtaining a wide beam with a flat-top pattern to transmit
an equal amount of radiation to the intended area with the constraint of a low sidelobe
level. In fact, this optimization problem is too complicated, so it is required two steps of
optimization. The first step includes providing a flat top regardless of the sidelobe level
by optimizing the excitation magnitude only. Thence, the optimization of the sidelobe
levels starts by modifying the inter-element spacing under the constraint of the obtained
flat-top pattern.

4.2.1. Step 1: Flat-Top Pattern Regardless the SLR

This pattern is obtained by optimizing the magnitude of the excitation (w) with
d = 0.5λ. The constraint is to obtain a ripple value less than 0.5 dB within the required
azimuth angle range. Therefore, the fitness function that describes this problem is given by:

Fitness =
{

for Φmin ≤ Φ ≤ Φmax
|AFmax − AF(Φ)| ≤ 0.5 dB

(14)

where AFmax represents the maximum value of the array factor in dB which is equal to
0 dB for the normalized array factor. In this work, the azimuth angle range is set to be
as Φmin = 80

◦
and Φmax = 100

◦
. Table 5 shows the success rate of the FKE algorithm

compared to some other algorithms, and the proposed algorithm surpasses the others by
its 100% success rate. The weights vector that is corresponding to the best solution that
the algorithm provides is listed in Table 6. The resulted normalized array factor of the
optimized antenna is exhibited in Figure 6. The flat-top pattern is clearly obvious from this
figure within the intended azimuth angle range, while the side lobe is quite high.
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Table 5. The success rate (SR) of the proposed FKE algorithm, PSO, and GA for the flat-top pattern.
(No. of runs = 30).

Flat-Top Regardless SLR Flat-Top with Reduced Side Lobes

Algorithm Best Flat-Top Ripple (dB) SR % Algorithm Best SLR (dB) SR %

FKE
50 iterations only 0.1044 100 FKE

30 iterations only 23.4612 100

PSO
500 iterations 0.2785 56.67 PSO

300 iterations 21.6342 43.33

GA
500 iterations 0.2255 46.67 GA

300 iterations 20.8564 30

Table 6. The best normalized value of the amplitude of the excitation current and element spacing
with respect to λ using FKE for flat-top pattern.

Flat-Top Regardless SLR Flat-Top with Reduced Side Lobes

Element No. Excitation Amplitude Element No. Normalized Element Spacing

1 −0.0126 1–2 0.3906
2 −0.3447 2–3 0.6579
3 −0.0309 3–4 0.6475
4 0.6800 4–5 0.4998
5 0.8999 5–6 0.2645
6 0.7992 6–7 0.3324
7 1.0000 7–8 0.3306
8 0.9985 8–9 0.4204
9 0.9001 9–10 0.4749
10 0.2385 10–11 0.4494
11 −0.1494 11–12 0.4343
12 −0.2813 12–13 0.2418
13 0.0128 13–14 0.2037
14 −0.3478 14–15 0.6407
15 −0.2256 15–16 0.3431
16 0.3540 16–17 0.5052
17 0.1807 17–18 0.1562
18 −0.1175 18–19 0.4494
19 0.3787 19–20 0.1466
20 −0.3687

Electronics 2021, 10, x FOR PEER REVIEW 10 of 19 
 

 

the algorithm provides is listed in Table 6. The resulted normalized array factor of the 

optimized antenna is exhibited in Figure 6. The flat-top pattern is clearly obvious from 

this figure within the intended azimuth angle range, while the side lobe is quite high. 

 

Figure 6. The normalized flat-top array factor for 20 element array antenna by modifying the 

excitation amplitude of the array antenna using FKE algorithm. 

Table 5. The success rate (SR) of the proposed FKE algorithm, PSO, and GA for the flat-top pattern. 

(No. of runs = 30). 

Flat-Top Regardless SLR Flat-Top with Reduced Side Lobes 

Algorithm Best Flat-Top Ripple (dB) SR % Algorithm Best SLR (dB) SR % 

FKE 

50 iterations only 
0.1044 100 

FKE 

30 iterations only 
23.4612 100 

PSO 

500 iterations 
0.2785 56.67 

PSO 

300 iterations 
21.6342 43.33 

GA 

500 iterations 
0.2255 46.67 

GA 

300 iterations 
20.8564 30 

Table 6. The best normalized value of the amplitude of the excitation current and element spacing 

with respect to λ using FKE for flat-top pattern. 

Flat-Top Regardless SLR Flat-Top with Reduced Side Lobes 

Element No. Excitation Amplitude Element No. Normalized Element Spacing 

1 −0.0126 1–2 0.3906 

2 −0.3447 2–3 0.6579 

3 −0.0309 3–4 0.6475 

4 0.6800 4–5 0.4998 

5 0.8999 5–6 0.2645 

6 0.7992 6–7 0.3324 

7 1.0000 7–8 0.3306 

8 0.9985 8–9 0.4204 

9 0.9001 9–10 0.4749 

10 0.2385 10–11 0.4494 

11 −0.1494 11–12 0.4343 

12 −0.2813 12–13 0.2418 

13 0.0128 13–14 0.2037 

14 −0.3478 14–15 0.6407 

Figure 6. The normalized flat-top array factor for 20 element array antenna by modifying the
excitation amplitude of the array antenna using FKE algorithm.



Electronics 2021, 10, 2057 11 of 17

4.2.2. Step 2: Flat-Top Pattern with Reduced Side Lobes

After optimizing the flatness of the main beam, SLR larger than 20 dB is achieved by
modifying the inter-element spacing while keeping the excitation magnitude as given in
the previous step. The fitness function consists of two parts. The first part is exactly the
same as the one given in (12) but with a beam width equal to 40

◦
, whereas the second part is

the same as the fitness condition of (14) to keep the flatness of the main beam. The success
rate of the FKE algorithm is found to be 100%, and it is superior to the other algorithms as
given in Table 5. On the other hand, Table 6 lists the inter-element spacing with respect to
the wavelength that results in the best solution for the proposed antenna. The obtained
normalized flat-top array factor with reduced side lobes is illustrated in Figure 7.
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4.3. Triangular Beam Pattern

This section is about obtaining a wide beam with a triangular pattern to focus the
transmitted power of the radiation toward the intended area with the constraint of low
sidelobe level. Therefore, it also requires two steps.

4.3.1. Step 1: Triangular Beam Regardless the Side Lobe Level

The magnitude of the excitation of the antenna elements (w) is optimized in this
problem to obtain a triangular edge in the main beam of the radiation pattern (with
d = 0.5λ). The problem is to provide a pattern with almost a straight line with a positive
slope in the range [85

◦ → 90
◦

], and another straight line with a negative slope along with
the range [90

◦ → 95]. Luckily, since the excitation weights are real, the pattern of the
array factor is symmetric. Therefore, the optimization process deals with the angular
range [90

◦ → 95], and the symmetry of the pattern has the custody of generating the other
straight line within the range [85

◦ → 90]. As a result, the fitness function corresponding to
generating the triangular shape pattern is given by:

Fitness =

{
f or 90

◦ ≤ Φ ≤ 95
◦{∣∣∣AF(Φ)−

(
−2
(

Φ× 180
π − 90

◦
))∣∣∣} ≤ 1 dB

(15)

The success rate of the FKE algorithm versus some other well-known algorithms is
demonstrated in Table 7, and the weights vector that results in the best triangular shape is
given in Table 8. In this problem, FKE algorithm results in a perfect success rate equal to
100%. Figure 8 illustrates the normalized array factor with a triangular shape regardless of
the value of the sidelobe level.
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Table 7. The success rate (SR) of the proposed FKE algorithm, PSO, and GA for the triangular pattern. (No. of runs = 30).

Triangular Pattern Regardless SLR Triangular Pattern with Reduced Side Lobes

Algorithm Best Triangular Pattern Ripple (dB) SR % Algorithm Best SLR (dB) SR %

FKE
(50 iterations only) 0.6345 100 FKE

30 iterations only 19.0123 100

PSO
(500 iterations) 0.7353 96.67 PSO

300 iterations 20.2093 30

GA
(500 iterations) 0.6453 93.33 GA

300 iterations 19.5364 36.67

Table 8. The best normalized value of the amplitude of the excitation current and element spacing
with respect to λ using FKE for triangular pattern.

Triangular Pattern Regardless SLR Triangular Pattern with Reduced Side Lobes

Element No. Excitation Amplitude Element No. Normalized Element Spacing

1 0.8004 1–2 0.3906
2 0.2412 2–3 0.6579
3 −0.2876 3–4 0.6475
4 −0.2911 4–5 0.4998
5 0.1939 5–6 0.2645
6 0.0115 6–7 0.3324
7 −0.0081 7–8 0.3306
8 0.3175 8–9 0.4204
9 0.4632 9–10 0.4749
10 0.6449 10–11 0.4494
11 0.9564 11–12 0.4343
12 1.0000 12–13 0.2418
13 0.6030 13–14 0.2037
14 0.8111 14–15 0.6407
15 0.4692 15–16 0.3431
16 −0.1326 16–17 0.5052
17 −0.0892 17–18 0.1562
18 0.3432 18–19 0.4494
19 0.3022 19–20 0.1466
20 0.3836

Electronics 2021, 10, x FOR PEER REVIEW 13 of 19 
 

 

element spacing with respect to the wavelength that results in the best solution for the 

proposed antenna is demonstrated in Table 8. The obtained normalized triangular-shaped 

array factor with reduced side lobes is exhibited in Figure 9. 

 

Figure 8. The normalized triangular-shaped array factor for 20 element array antenna by modifying 

the excitation amplitude of the array antenna using FKE. 

 

Figure 9. The normalized triangular array factor for 20 element array antenna by modifying the 

inter-element spacing of the array antenna using FKE algorithm. 

4.4. Anti-Jamming System 

Anti-jamming smart antennas are substantial in military applications especially in 

those vulnerable to intentional jamming that may be transmitted by the enemies. Figure 

10 reveals the parameters of M-element anti-jamming antenna system with its operation 

concept. The desired transmitted signal is in line of sight (LOS) with the antenna array of 

this system. The jamming signals are transmitted from different directions to interfere 

with the desired signal or to send fake information to the receiver. As shown in Figure 10, 

the anti-jamming antenna system should adjust its main beam in the direction of the 

desired signal and orient radiation nulls toward the directions of the jamming signals. The 

Figure 8. The normalized triangular-shaped array factor for 20 element array antenna by modifying
the excitation amplitude of the array antenna using FKE.



Electronics 2021, 10, 2057 13 of 17

4.3.2. Step 2: Triangular Pattern with Reduced Side Lobes

The side lobe of the triangular pattern can also be reduced by optimizing the inter-
element spacing between the antenna elements while keeping the excitation magnitude as
that given in Table 8. The fitness function of this problem is also with two parts. The first
part ensures the reduction of the sidelobe using (12), while the second part is a condition
that maintains the triangular shape of the main beam as given in (14). The success rate
(for SLR < 18 dB) of the FKE algorithm given in Table 7 is found to be 100%, and it clearly
surpasses the other algorithms. On the other hand, the list of the inter-element spacing
with respect to the wavelength that results in the best solution for the proposed antenna
is demonstrated in Table 8. The obtained normalized triangular-shaped array factor with
reduced side lobes is exhibited in Figure 9.
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4.4. Anti-Jamming System

Anti-jamming smart antennas are substantial in military applications especially in
those vulnerable to intentional jamming that may be transmitted by the enemies. Figure 10
reveals the parameters of M-element anti-jamming antenna system with its operation
concept. The desired transmitted signal is in line of sight (LOS) with the antenna array
of this system. The jamming signals are transmitted from different directions to interfere
with the desired signal or to send fake information to the receiver. As shown in Figure 10,
the anti-jamming antenna system should adjust its main beam in the direction of the
desired signal and orient radiation nulls toward the directions of the jamming signals.
The conventional beam-forming algorithms can orient its main beam toward the desired
direction, but unfortunately, they can only attenuate the jamming signals especially with
highly correlated jamming signals [37]. Since the jamming signals sometimes have power
values higher than that of the desired signal itself, the attenuation is inefficient in these
kinds of problems. In fact, FKE algorithm is independent of the correlation between signals,
so it can perfectly reject the jamming signals by positioning radiation nulls toward them
regardless of their amount of transmitted power. The output signal (y) of the anti-jamming
antenna array is given by [37]:

y = wH x (16)

where

x =
K

∑
k=0

√
Pk ak (17)
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where K represents the number of the received signals, Pk the power value of each signal,
and ak is the steering vector of each signal which is given by:

ak =


1

exp[jβd cos(Φk)]
exp[j2βd cos(Φk)]

...
exp[j(M− 1)βd cos(Φk)]

 (18)
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The problem that is wanted to be solved in this work is that there is a desired
signal with signal power equal to Powatt at Φo = 90

◦
with the presence of eight

interfering signals. The power values of the eight jamming signals are as follows:
[3Po, 2Po, 3Po, 2Po, 3Po, 2Po, 3Po, 2Po ], and their angle of arrivals are as follows:[
20
◦
, 40

◦
, 50

◦
, 55

◦
, 110

◦
, 120

◦
, 130

◦
, 145

◦]
, respectively. The magnitude of the excitation

vector (w) is the parameter to be optimized with d = 0.5λ. The fitness function that is
suitable for this kind of problem is given by:

Fitness = min
[∣∣∣√Po −

∣∣∣wH x
∣∣∣∣∣∣] (19)

Table 9 reveals the perfect success rate of FKE and all the other algorithms in solving
this problem, and the optimum magnitude of excitation is given in Table 10. The resulted
antenna-normalized array factor is shown in Figure 11 at which the main beam is forwarded
toward the desired signal and all the jamming signals are eliminated by locating radiation
nulls in their directions.

Table 9. The success rate (SR) of the proposed FKE algorithm, PSO, and GA for the anti-jamming
smart antenna system (No. of runs = 30).

Algorithm SR %

FKE (30 iterations only) 100

PSO (300 iterations) 100

GA (300 iterations) 100
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Table 10. The best normalized value of the magnitude of the excitation current using FKE algorithm
for anti-jamming optimization.

Element No. Excitation Amplitude

1 0.2876
2 0.5281
3 0.7154
4 1.0000
5 0.6386
6 0.7782
7 0.5270
8 0.5188
9 0.5191

10 0.3633
11 0.3661
12 0.3836
13 0.4718
14 0.4543
15 0.7104
16 0.7682
17 0.9019
18 0.9885
19 0.4997
20 0.4370
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5. Results Discussion

This section includes a comparison between the performance of the FKE algorithm and
those of the PSO and GA in terms of the average CPU time, memory size, and success rate.
Actually, the CPU time and the memory size were calculated for all problems discussed
in the previous section, and then the resulted numbers were averaged to give a concise
and clear comparison scenario. The algorithms were executed using a computer with
the following specifications: Processor (Intel (R) Core(TM) i7), RAM 16 GB. Table 11 lists
the CPU time average, the average memory size, and the average success rate of the FKE
algorithm, PSO, and GA. As mentioned in Section 4, the immobile mass results in extending
the number of hyphae, and this makes the total number of iteration of the FKE multiplied
by the number of hyphae as given in Equation (10). For this reason, the memory size of
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FKE is larger than that of the PSO and GA. However, the average CPU time is almost the
same for the three algorithms because the number of steps of the FKE algorithm should
be equal to that of the PSO and GA divided by the number of hyphae (as discussed in
Section 4). Nevertheless, the precision of the proposed FKE algorithm is highlighted by its
perfect average success rate in solving the aforementioned antenna array problems where
the average SR of the proposed algorithm is equal to 100%.

Table 11. The average CPU time, average memory size, and the average SR of FKE algorithm
compared to that of the PSO and GA.

Algorithm Average CPU Time (s) Average Memory Size (byte) Average SR %

FKE
(30 iterations) 30.863 4,046,848 100

PSO
(300 iterations) 31.387 2,072,576 62.857

GA
(300 iterations) 28.614 1,975,724 58.906

Generally, antenna array problems are single-objective problems. Therefore, as a
future work, the effectiveness of the FKE algorithm will be studied for multi-objective
optimizations problems since this require completely different applications and different
sets of results.

6. Conclusions

A new optimization algorithm based on the Fungi Kingdom Expansion (FKE) behav-
ior has successfully been implemented for antenna array beamforming problems. The
chaotic immobile mass expansion, deterministic mobile mass expansion, and the ran-
dom dispersion of the fungi are utilized for optimizing the magnitude of the excitation
and/or the inter-element spacing to attain the required shape of the antenna array factor.
The algorithm is applied on a 20-element antenna array to solve the problem of the side
lobe reduction, flat-top pattern, triangular pattern, and anti-jamming system. The perfor-
mance of the proposed algorithm is statistically compared with some other prominent
optimization algorithms, and the proposed antenna gives a 100% success rate for all of the
aforementioned problems.

Author Contributions: Conceptualization, F.M.A., D.S. and Y.I.A.A.-Y.; methodology, F.M.A.; inves-
tigation, F.M.A., Y.I.A.A.-Y., D.S., R.S.A., C.H.S. and R.A.A.-A.; resources, F.M.A., D.S. and Y.I.A.A.-Y.;
writing—original draft preparation, F.M.A., Y.I.A.A.-Y., D.S. and R.S.A.; writing—review and editing,
F.M.A., Y.I.A.A.-Y., D.S., R.S.A., C.H.S. and R.A.A.-A.; visualization, F.M.A., Y.I.A.A.-Y., D.S., R.S.A.,
C.H.S. and R.A.A.-A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
2. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]
3. Sattar, D.; Salim, R. A smart metaheuristic algorithm for solving engineering problems. Eng. Comput. 2021, 37, 2389–2417.

[CrossRef]
4. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; MIT Press: Cambridge, MA, USA, 1992.
5. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
6. Ali, R.S.; Alnahwi, F.M.; Abdullah, A.S.J.A.J.o.E.; Engineering, E. A modified camel travelling behaviour algorithm for engineering

applications. Aust. J. Electr. Electron. Eng. 2019, 16, 176–186. [CrossRef]

http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.cma.2020.113609
http://doi.org/10.1007/s00366-020-00951-x
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1080/1448837X.2019.1640010


Electronics 2021, 10, 2057 17 of 17

7. Naruei, I.; Keynia, F. Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems. Eng.
Comput. 2021. [CrossRef]

8. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

9. Dorigo, M.; Birattari, M.; Stutzle, T.J.I.C.I.M. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
10. Lalbakhsh, P.; Zaeri, B.; Lalbakhsh, A. An Improved Model of Ant Colony Optimization Using a Novel Pheromone Update

Strategy. IEICE Trans. Inf. Syst. 2013, 96, 2309–2318. [CrossRef]
11. Wang, G.-G.J.M.C. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic

Comput. 2018, 10, 151–164. [CrossRef]
12. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
13. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S. Design of an artificial magnetic conductor surface using an evolutionary

algorithm. In Proceedings of the 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona,
Italy, 11–15 September 2017; pp. 885–887.

14. Lalbakhsh, A.; Esselle, K.P. Directivity improvement of a Fabry-Perot cavity antenna by enhancing near field characteristic.
In Proceedings of the 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM),
Montreal, QC, Canada, 10–13 July 2016; pp. 1–2.

15. Yang, X.S.; Hossein Gandomi, A. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29,
464–483. [CrossRef]

16. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-
tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]

17. Akyol, S.; Alatas, B. Plant intelligence based metaheuristic optimization algorithms. Artif. Intell. Rev. 2017, 47, 417–462. [CrossRef]
18. Li, M.D.; Zhao, H.; Weng, X.W.; Han, T. A novel nature-inspired algorithm for optimization: Virus colony search. Adv. Eng. Softw.

2016, 92, 65–88. [CrossRef]
19. Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Abu Doush, I. Coronavirus herd immunity optimizer (CHIO). Neural Comput.

Appl. 2021, 33, 5011–5042. [CrossRef] [PubMed]
20. Hatamlou, A. Heart: A novel optimization algorithm for cluster analysis. Prog. Artif. Intell. 2014, 2, 167–173. [CrossRef]
21. Jaddi, N.S.; Alvankarian, J.; Abdullah, S. Kidney-inspired algorithm for optimization problems. Commun. Nonlinear Sci. Numer.

Simul. 2017, 42, 358–369. [CrossRef]
22. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new

metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]
23. Azizi, M. Atomic orbital search: A novel metaheuristic algorithm. Appl. Math. Model. 2021, 93, 657–683. [CrossRef]
24. Alatas, B. ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization. Expert Syst. Appl. 2011, 38,

13170–13180. [CrossRef]
25. Abdechiri, M.; Meybodi, M.R.; Bahrami, H. Gases Brownian Motion Optimization: An Algorithm for Optimization (GBMO).

Appl. Soft Comput. 2013, 13, 2932–2946. [CrossRef]
26. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
27. Das, B.; Mukherjee, V.; Das, D. Student psychology based optimization algorithm: A new population based optimization

algorithm for solving optimization problems. Adv. Eng. Softw. 2020, 146, 102804. [CrossRef]
28. Geem, Z.W.; Kim, J.H.; Loganathan, G.V.J.S. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
29. Fadakar, E.; Ebrahimi, M. A new metaheuristic football game inspired algorithm. In Proceedings of the 2016 1st Conference on

Swarm Intelligence and Evolutionary Computation (CSIEC), Bam, Iran, 9–11 March 2016; pp. 6–11.
30. Kaveh, A.; Khanzadi, M.; Rastegar Moghaddam, M. Billiards-inspired optimization algorithm; a new meta-heuristic method.

Structures 2020, 27, 1722–1739. [CrossRef]
31. Lalbakhsh, A.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Mandal, K. All-metal wideband metasurface for near-field transformation of

medium-to-high gain electromagnetic sources. Sci. Rep. 2021, 11, 9421. [CrossRef]
32. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L. Low-Cost Nonuniform Metallic Lattice for Rectifying Aperture Near-Field of

Electromagnetic Bandgap Resonator Antennas. IEEE Trans. Antennas Propag. 2020, 68, 3328–3335. [CrossRef]
33. Afzal, M.U.; Esselle, K.P.; Lalbakhsh, A. A Methodology to Design a Low-Profile Composite-Dielectric Phase-Correcting Structure.

IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1223–1227. [CrossRef]
34. Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. Additively Manufactured Perforated Superstrate to Improve Directive

Radiation Characteristics of Electromagnetic Source. IEEE Access 2019, 7, 153445–153452. [CrossRef]
35. Bento, C.R.d.C.; Wille, E.C.G. Bio-inspired routing algorithm for MANETs based on fungi networks. Ad Hoc Networks 2020, 107,

102248. [CrossRef]
36. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
37. Godara, L.C. Smart Antennas; CRC press: Boca Raton, FL, USA, 2004.
38. Balanis, C.A. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016.
39. Singh, J.; Pal, A. A Smart Antenna Beamforming Using LMS Adaptive Filter Algorithm. Semant. Scholar. 2014, 1, 1–3. [CrossRef]

http://doi.org/10.1007/s00366-021-01438-z
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1109/MCI.2006.329691
http://doi.org/10.1587/transinf.E96.D.2309
http://doi.org/10.1007/s12293-016-0212-3
http://doi.org/10.1108/02644401211235834
http://doi.org/10.1016/j.cie.2021.107408
http://doi.org/10.1007/s10462-016-9486-6
http://doi.org/10.1016/j.advengsoft.2015.11.004
http://doi.org/10.1007/s00521-020-05296-6
http://www.ncbi.nlm.nih.gov/pubmed/32874019
http://doi.org/10.1007/s13748-014-0046-5
http://doi.org/10.1016/j.cnsns.2016.06.006
http://doi.org/10.1007/s10489-020-01893-z
http://doi.org/10.1016/j.apm.2020.12.021
http://doi.org/10.1016/j.eswa.2011.04.126
http://doi.org/10.1016/j.asoc.2012.03.068
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.advengsoft.2020.102804
http://doi.org/10.1177/003754970107600201
http://doi.org/10.1016/j.istruc.2020.07.058
http://doi.org/10.1038/s41598-021-88547-3
http://doi.org/10.1109/TAP.2020.2969888
http://doi.org/10.1109/LAWP.2018.2840087
http://doi.org/10.1109/ACCESS.2019.2948735
http://doi.org/10.1016/j.adhoc.2020.102248
http://doi.org/10.1109/4235.585893
http://doi.org/10.15224/978-1-63248-028-6-02-32

	Introduction 
	Fungi Kingdom Expansion Behavior 
	Implementation of the Fungi Kingdom Expansion (FKE) Algorithm 
	Engineering Applications: Antenna Array Beamforming 
	Side Lobe Reduction 
	Side Lobe Reduction by Optimizing the Excitation Magnitude 
	Side Lobe Reduction by Optimizing the Enter Element Spacing 

	Flat-Top Pattern 
	Step 1: Flat-Top Pattern Regardless the SLR 
	Step 2: Flat-Top Pattern with Reduced Side Lobes 

	Triangular Beam Pattern 
	Step 1: Triangular Beam Regardless the Side Lobe Level 
	Step 2: Triangular Pattern with Reduced Side Lobes 

	Anti-Jamming System 

	Results Discussion 
	Conclusions 
	References

