
Software Agents and Computer Network Security

Pikoulas J, Mannion M, Buchanan W
Napier University,

2 19 Colinton Road,
EH14 lDJ, Edinburgh

Scotland, UK
Email: Cjohnp,bill}@dcs.napier.ac.uk

Email: m.mannion@napier.ac.uk

ABSTRACT

Preventing unauthorised access to corporate information systems is essential for many organisations.
To address this problem we built a security enhancement software system using software agents, in
which a core software agent resides on a server and user end software agents reside at each use)
workstation. By downloading a pattern of typical user behaviour and rules governing invalid behav-
iotufrom a core agent to each user end agent, all decisions and actions about atypical or invalid user
behaviour can be taken by a user agent. This permits security detection to continue even when the
core agent fails to operate

1 Introduction
Computer network security is concerned with preventing the

intrusion of an unauthorised person into a computer network.
As computer connectivity increases, computer network secu-
rity becomes more complex. Intrusion [l] is any set of actions
that attempt to compromise the integrity, confidentiality or
availability of a computer system resource (for example, unau-
thorised distribution of sensitive material over the Internet).

Security enhancement software usually consists of pro-
grams written by computer network administrators in an oper-
ating system script language to ensure that normal usage pat-
terns occur. The most commonly used security-enhancement
method is a user name and a password checking facility. This
is a simple and robust system but has drawbacks. One draw-
back is that if someone manages to overcome the user name
and password barrier there are few means of preventing the
system being modified or destroyed. A second drawback is
that whilst some of these programs can be written in advance
(proactively), it is difficult to anticipate every possible case of
abnormal behaviour. In addition, most organisations cannot
afford to have an administrator working full time on writing
security programs. One solution for tackling these problems is
to create and maintain historical user profiles of normal usage
and compare them with current usage, and monitor the differ-
ences.

Most users have normal usage patterns. These patterns
occur on a system wide level (for example, the type and mix of
jobs being run) and on a user level (for example, average job
length, type of job user run, normal user usage hours). An
historical user profile is the synthesis of these patterns over a

defined period.
A profile of a user can be created from an audit log file. An

audit log file is a text file that a system maintains and updates
daily. It records every action by every user that has logged on
to the server.

During each login session, a user’s profile is reviewed to
ensure that their behaviour pattern lies within their permitted
behaviour. If a user pattern does not match their profile, then
appropriate actions are taken, the most extreme of which might
be to automatically terminate the user’s session. There are
several issues to be resolved when applying the profiling
technique including:

Deciding the format of the profile.
How to change the profile.
How to compare a profile with current usage so that it is
clear whether any differences highlight legal or illegal be-
haviour.
How often to update a user’s profile.
The storage requirements of user’s profile.

We tackle some of these issues by using a software agent
system to monitor and predict the behaviour pattern of a user,
and then comparing this pattern with the user’s historical pro-
file.

We applied this paradigm to security enhancement software
for a Windows NT client server environment. A core agent
resides on one server of the system. User agents reside in
each user workstation, monitor the various actions of a user,
and take appropriate action if a user exhibits invalid behav-
iour. The user agent then informs the core agent. We report

211
O-7695-0604-6/00 $10.00 0 2000 IEEE

the results of experiments in which software engineering stu-
dents attempted to breech the security of the networked sys-
tem.

This paper is organised as follows. Section 2 explains corn
mon computer network security techniques for constructing
patterns of typical user behaviour and previous work in net-
work security using software agents. Section 3 describes our
software agent security enhancement system. Finally, our
experimental results are discussed in Section 4.

2 Computer Network Security Systems

Computer network security programs can be categorised as
follows [2]:

Security enhancement software enhances or replaces an
operating system’s built-in security software (for exam-
ple, Mangle It, Passwd+, Shadow).
Authentication and encryption software encrypts and
decrypts computer tiles (for example, Kerberos, MD5,
RIPEM, and TIS Firewall Toolkit).
Security monitoring software monitors different opeta-
tions of a computer network and outputs the results to
system administrators (for example, Abacus Sentry,
COPS, Tripwire, Tiger).
Network monitoring software monitors user’s behaviour
or monitors incoming or outgoing traffic (for example, Ar-
gus, Arpwatch, ISS).
Firewall software resides in the Internet entrance of a
computer network, and checks all incoming network traf-
fic for valid Internet Protocol (IP) addresses, and also
TCP connections.

Figure 1 OSI layer classification

Figure 1 shows the contribution each of these programs
makes with respect to the Open Systems Interconnection Ref-
erence Model (OS1 Model). Typical network attacks [3] are:

L IP spoofing attacks. This is where the hacker steals an
authorised IP address. Typically, it is done by determin-
ing the IP address of a computer and waiting until there is
no-one using that computer, then using the unused IP
address. Several users have been accused of accessing
unauthorised material because other users have used

their IP address. A login system which monitors IP ad-
dresses and the files that they are accessing over the
Internet cannot be used as evidence against the user, as
it is easy to steal IP addresses.
Packing sniffing. This is where the hacker listens to
TCP/IP packets which come out of the network and steals
the information in them. Typical information includes user
logins, e-mail messages, credit card number, and so on.
This method is typically used to steal an IP address, be-
fore an IP spoofing attack. A hacker listens to a conver-
sation between a server and a client. Most TELNET and
FTP programs actually transmit the user name and pass-
word as text values; these can be easily viewed by a
hacker.
Passwords attacks. This is a common weak-point in any
system, and hackers will generally either find a user with
a easy password (especially users which have the same
password as their login name) or will use a special pm-
gram which cycles through a range of passwords. This
type of attack is normally easy to detect. The worst
nightmare of this type of attack is when a hacker deter-
mines the system administrator password (or a user who
has system privileges). This allows the hacker to change
system set-ups, delete files, and even change user pass-
words.
Sequence number prediction attacks. Initially, in a
TCP/IP connection, the two computers exchange a start-
up packet which contains sequence numbers. These se-
quence numbers are based on the computer’s system
clock and then run in a predictable manner, which can be
determined by the hacker.
Session hi-jacking attacks. In this method, the hacker
taps into a connection between two computers, typically
between a client and a server. The hacker then simulates
the connection by using its IP address.
Shared library attacks. Many systems have an area of
shared library files. These are called by applications when
they are required (for input/output, networking, graphics,
and so on). A hacker may replace standard libraries for
ones that have been tampered with, which allows the
hacker to access system tiles and to change file privi-
leges. A hacker might tamper with dynamic libraries
(which are called as a program runs), or with static librar-
ies (which are used when compiling a program). This
would allow the hacker to possibly do damage to the lo-
cal computer, send a11 communications to a remote com-
puter, or even view everything that is viewed on the user
screen. The hacker could also introduce viruses and
cause unpredictable damage to the computer (such as
remotely rebooting it, or crashing it at given times).
Social engineering attacks. This type of attack is aimed
at users who have little understanding of their computer
system. A typical attack is where the hacker sends an
email message to a user, asking for their password. Many
unknowing users are tricked by this attack. From the ini-
tial user login, the hacker can then access the system and
further invade the system.
Technological vulnerability attack. This normally in-

212

volves attacking some part of the system (typically the
operating system) which allows a hacker to be access to
the system. A typical one is for the user to gain access to
a system and then run a program which reboots the sys-
tem or slows it down by running a processor intensive
program. This can be overcome in operating systems
such as Microsoft Windows and UNIX by granting re-
boot rights only to the system administrator.

L Trust-access attacks. This allows a hacker to add their
system to the list of systems which are allowed to log
into the system without a user password. In UNIX this
file is the “.rhosts” (trusted hosts) which is contained in
the user’s home directory. A major problem is when the
trusted hosts file is contained in the root directory, as
this allows a user to log in as the system administrator.

In choosing a combination of the computer network security
programs that mentioned above, the dominant issues are cost,
the desired level of security and the characteristics of the ex-
isting operating system environment. Three techniques for
illegal behaviour detection are commonly used in computer
network security programs [4].

L Statistical anomaly detection.
L Rule based detection.
L Hybrid detection, an amalgam of statistical anomaly de-

tection and rule based detection.

These techniques can be applied to all five categories of corn
puter security program.

2.1 Statistical anomaly detection
Statistical anomaly detection systems analyse audit-log data

to detect abnormal behaviour. A profile of expected online
behaviour for a normal user is predefined and derived from
how an organisation expects a user to behave and from a sys-
tem administrator’s experience of the way a user is expected to
use the resources of a system. Typically, periodically, ana-
lysing audit logs and looking for statistical patterns of events
for typical operations establish usage patterns for an average
user. These patterns are compared to the user’s profile.

Debra Anderson led a project called Safeguard [5], to adapt
the NIDES statistical anomaly-detection subsystem to profile
the behaviour of individual applications. Statistical measures
were customised to measure and differentiate the proper us-
age of an application from an inappropriate usage. Under the
Safeguard model, a statistical score is assigned to the opera-
tion of applications and represents the degree to which cur-
rent behaviour of the application corresponds to its estab-
lished pattern of operation. The Safeguard effort demon-
strates the ability of statistical profiling tools and clearly dif-
ferentiates the scope of execution among general-purpose
applications. It also showed that statistical analyses could be
very effective in analysing activities other than individual
users; by instead monitoring applications, the Safeguard
analysis greatly reduced the required number of profiles and
computational requirements, and decreased the typical false-
positive and false-negative ratios. These results suggest the

possible utility of performing statistical analyses on activities
at higher layers of abstraction.

Supervisors of the system are warned of a possible intm-
sion when a profile is different to a usage pattern. The major
drawback of this technique is that it cannot predict extreme
changes in user behaviour. If a user radically changes their
habits, the assumption is that the user is trying to harm the
system.

2.2 Rule-based detection
In rule-based detection systems a set of rules of typical ille-

gal user behaviour are created. The rules are formed by ana-
lysing previous different patterns of attack. A rule based de-
tection system analyses audit-log data of a particular user and
compares it with the rules. The drawback of this system is that
the basic rules are predefined by system administrators, and
can not detect new attack techniques. If a user exhibits be-
haviour that is not prescribed by the existing rules, the user
can harm the system without being detected.

The IDES system [6] is security enhancement software that
stores knowledge about a system’s known vulnerabilities, its
security policies and knowledge of past intrusions. The h-
formation it uses to determine network state is limited to
packet header data. Since this system does not examine the
whole packet, it can miss critical information about the nature
of the data that goes throughout the network. It also scales
very poorly where many machines are on a high-speed net-
work.

Kumar and Spafford’s 01 security enhancement software
uses pattern matching. Attacks can be classified as patterns,
which match against occurrences (status of the system at that
moment) in the system. These patterns can encode depend-
encies between system conditions and temporal conditions.

Crosbie and Spafford’s @] system security enhancement
software uses autonomous agents, The agents are trained to
detect anomalous activity in network system traffic. A draw-
back to this approach is that the system requires considerable
training by a human operator to be trained before it becomes
effective.

2.3 Hybrid Detection
Hybrid detection systems are a combination of statistical

anomaly detection and rule-based detection systems. Typi-
cally, rules are used to detect known methods of intrusion and
statistical based methods are used to detect new methods of
intrusion.

The CMDS (Computer Misuse Detection System) [9] is se-
curity-monitoring software that provides a way to watch for
intrusions even in switched networks. CMDS detects and
thwarts attempted logins, file modifications, Trojan horse in-
stallation, changes in administrative configurations and many
other signs of intrusion. In addition, CMDS constantly moni-
tors for the difficult detection problems like socially engi-
neered passwords, trusted user file browsing and data theft
that might indicate industrial espionage. CMDS supports a
wide variety of operating systems and application programs.
The drawback of this system is that it uses statistical analysis
to make additional rules for the system. That can be a draw-

213

back, because it can only detect attack patterns that had be-
ing used in the past and being identified as attack patterns, or
predefined by the system operators. It also generates long
reports and graphs of the system performance that still R-
quires the presence of an expert to read and analyse their
meaning.

In most cases, the implementation of the three techniques
above has been achieved by locating the security enhance-
ment software on a centralised server. When this software
crashes or is breeched, network security is at risk. To address
this we have built a security enhancement environment in
which security management is dispersed across the network
using software agents.

3 Software agents and their use for secu-
rity enhancement
Software agents have the following properties [IO]:

L Autonomy. They can operate without the direct interven-
tion of humans.

L Cooperativity. They can cooperate with other agents.
L Reactivity. They can perceive their environment and te-

spond in a timely fashion to changes that occur in it.
L Proactivity. They can detect patterns in their environ-

ment, and exhibit goal directed behaviour by taking the
initiative.

Scvcral security enhancement approaches deploy agent tech-
nology as a tool for detecting abnormal behaviour in the sys-
tem AID (Adaptive Intrusion Detection system [ll]) consists
of a core agent running on a server and a user agent running
on each client workstation. The core agent hosts a manager
and an expert system. The manager continually polls each
client requesting data about current user behaviour. This data
is then examined by the expert system, which contains rules
governing valid user behaviour. If invalid behaviour is de-
tected the manager takes an appropriate course of action.

In the Autonomous Agents for Intrusion Detection 821
system, a core agent hosts a manager and an expert system
but at each client workstation, there are several user agents
and a monitor. The behaviour of each user is recorded by the

type of agent was written in SUN Java JDK Version 1.2 on a
Microsoft Windows NT Version 4 environment running over
a lO/lOOMbps network. There was 1 server and 10 clients.

Figure 2 shows a core agent communicating with many user
agents and Figure 3 shows the steps taken by the user agent.
A communication thread is a unique process that the core
agent creates to transmit data to the user end agent in E-
sponse to message transmitted from the user end agent.
Unique processes enable the core agent to communicate with
each user agent effectively and efficiently thereby enabling a
fast response to network monitoring. Once the core agent has
responded to a user agent, the process is killed.

The system uses a hybrid detection technique. Invalid be-
haviour is determined by comparing a user’s current behav-
iour with their typical behaviour and by comparing their cur-
rent behaviour with a set of general rules governing valid be-
haviour formed by systems administrators. Typical behaviour
is contained in a user historical profile. The core agent builds
a user’s historical profile from a statistical analysis of an
audit-log tile of the system server using Marcov chains [I3].
In this work, the period covered by the audit-log tile was one
month.

Figure 2 Software agent security enhancement system

user agents and sent by the monitor to the core agent. The
core agent determines if invalid behaviour has been detected
but sends instructions to the monitor to take an appropriate
course of action.

In our approach all decisions and actions about invalid user
behaviour are taken by the user agent at the client worksta-
tion In addition, we combine a set of rules governing invalid
behaviour with a profile of typical user behaviour.

4 Software agent computer intrusion sys-
tem

We built intelligent agent security enhancement software
system, in which a core software agent resides on one server
in a Windows NT network system and user end software
agents reside in each user workstation. The software for each

Figure 3 User agent flow diagram

214

Figure 3 User agent flow diagram

The user agent software has four components: a transmitter; a
sensor; profile reader; and a comparator. The sensor monitors
the various software applications (for example, a word proces-
sor, a spreadsheet) that are currently being run by the user on
that workstation. When a user logs in the sensor polls the
user’s activity every five seconds and records the user’s
identifier and each application’s name and process identifier.
After the first polling by the sensor, the transmitter sends this
information to the core agent. The core agent responds by
sending a user historical profile. With an audit-log file for a
period of one month, we observed that the size of an average
user profile was between 400KB and 600KB. The download
time for this size of file was about three to five seconds.

The profile-reader reads the user’s historical profile. The
comparator compares the user’s historical profile with the
information read by the sensor. Comparison is made by the
sensor every five seconds.

If the current behaviour profile does not fall within the ac-
cepted behaviour pattern defined by the user historical pro-
file, the comparator provides the transmitter with the following
information that is then sent to the core agent: user identifier,
invalid behaviour type and corresponding invalid behaviour
type data. For example, if the invalid behaviour type were un-
authorised directory access then the invalid behaviour type
data would be the name of the directory attempting to be ac-
cessed. When invalid behaviour occurs, several courses of
action are available. The choice depends on the severity of
the invalid behaviour. The options can be a combination of:

i. Warn the system administrator.
ii. Warn the end user.

ill. Kill the specific application that has caused invalid be-
haviour.

iv. Prevent the end user from running any further applica-
tions.

V. Prevent the end user from running any applications.

Cases (ii-v) can be achieved locally at the client workstation.
Case (1) is achieved by the user agent informing the core
agent and the core agent informing the systems administrator.
The user agent terminates when a user logs off.

Within a period of a day, users were allowed to log on and
log off and work freely. However, each user was also given
instructions to:

L Read the contents of any directory for which permission
was not granted.

L Read, write or execute any file from any directory for
which permission was not granted.

L Detect and shut down the user agent.
L Report changes in the performance of the computer net-

work.

With the server and core agent operating as described
above, we observed that a user agent was successful in de-
tecting attempted breeches of security using both methods of

statistical anomaly and rules bases, The range of invalid be-
haviour was such that each course of action was exercised.
However, the software agent system cannot detect breeches
of security when a valid use of an application transmits data
to the server and the data can cause breeches of security on
the server.

As part of the experiment, we killed off the core agent proc-
ess. The implications of this were that new users posed a high
security risk because neither the user’s historical profile or
systems administrator’s behaviour rules were downloaded to
the user agent. The detection of invalid behaviour from exist-
ing users continued unchanged but without reports being
made to systems administrators of their invalid behaviour.

The user agent process was automatically given administra-
tor access rights when the user logged in and when the user
agent process was created. This meant that although a user
could detect a user agent it could not be shut down.

Figure 4 NT task manager

Some users did report a perceived drop in performance. Figure
4 shows the status of a workstation before, during and after a
user agent’s operation. During the operation of a user agent
the available memory decrease is small but the CPU Usage
increases from approximately 19% to 40%. The core agent was
written in Java, a machine-specific executable .exe tile gener-
ated. The user agent was a combination of Java classes and
C++ dynamic link libraries, which were used in the sensor to
retrieve the details of a user’s identifier and each application’s
name and process identifier. The Java Virtual Machine (JVM)
environment was deployed to run the user agent software.
The increase in CPU usage was attributable to the running of
JVM, which had a run-time priority, set to low.

5 Discussion

To date we have only experimented with a network topology
of up to 10 clients. We believe that further increases will not
adversely affect the performance of the system in responding
to security breeches. This is because the responsibility for
security detection resides primarily with a user agent and each
user agent operates independently from every other user
agent. Only if many users logged in simultaneously and hence
the core agent downloaded many user historical profiles and
rules at the same time, would security be at risk because of the
delay between responding to the first user and the last.

We do not regard as critical the speed with which informa-

215

tion about invalid behaviour is transmitted from the user
agent to the core agent. This is because it is the user agent
that is taking the action against any security breech. The in-
formation that sent to the core agent is a log of events to be
processed by systems administrators at their convenience.
Thus adding extra clients will not place a significant additional
burden on the performance of transaction processing between
core agent and user agent.

WC chose the period of one month over any shorter period
to analyse a user’s typical behaviour pattern believing this
period would provide a representative profile of user behav-
iour. We could have taken a longer period than a month. This
may have provided a more accurate picture of behaviour.
However to do so would have meant maintaining an audit-log
file of considerable size. For example, the audit-log tile for 10
users over a one-month period was about 200MB. This may
jeopardise the performance of the core agent and other proc-
esses running on the server. In addition, it would increase the
size of each user historical profile thus increasing the time
taken to download this profile to the user agent. Since a user
agent prevents a user from running any applications until the
user historical profile and rule set have arrived from the core
agent, the size of these files can affect the length of time a
user must wait to login before they can commence working.
There must be a balance between downloading files contain-
ing sufficient behaviour information to prove effective in se-
curity detection and prohibitive login times.

The set of user historical profiles also can cause space
problems if the average profile is 500KB and there are a large
number of users. To save space one approach is to create
groups of users and to generate historical profiles of group
behaviour. Individual user behaviour can go into user histori-
cal profiles. When a user logs in both the user’s group be-
haviour profile and user historical profile are downloaded to
the user agent and used by the comparator. However the
downloading of two profiles rather than one may increase the
download time.

Several approaches can be used for adapting a user’s his-
torical profiles. One approach is that a system administrator
updates the user historical profile after judging that the illegal
behaviour that triggered a warning from the core agent was in
fact permissible behaviour for that user. Another approach is
that user historical profiles are re-created every month by
merging the previous month’s behaviour pattern with the cur-
rent month’s behaviour pattern derived from statistical analy-
sis of the current month’s audit log file.

Currently the security breeches are detected by comparing a
behavioural event with valid behaviour after the event has
occurred. This has the limitation that some damage may have
been caused in the time it takes the user agent to detect the
invalid behaviour. For example, if a user starts Word, then
starts a file manager and then runs a command line shell in
order to read other users tiles, it is only after user files have
been read that a security breech is reported.

One approach to managing this is for the user agent to take
over the scheduling of processes from the operating but this
is not practical. An alternative approach is to predict a set of
events from a given series. This is a focus of our current work.

For example the user agent can predict that if the first two
steps occurred then there is a possibility that the third step
will occur, thus issuing a warning to the user that it can exe-
cute the third step but he or she is being monitored.

The rules governing illegal behaviour are reviewed monthly
at the same time as the audit-log tiles are analysed. Over time,
we would expect that the rate of change to the rules would
decrease.

Since the responsibility for security detection resides with a
use agent, once the user historical profile and systems al-
ministrator’s behaviour rules are downloaded to the user end
agent, system administrators can take the server down for a
maintenance or any other reason without jeopardising system
security.

6 Conclusion

We built security enhancement software system using soft-
ware agents, in which a core software agent resides on one
server in a Windows NT network system and user end soft-
ware agents reside in each user workstation. The significance
of our approach is that the user agent at the client workstation
takes all decisions and actions about invalid user behaviour.
This means that even when the core agent process is no
longer operating security breeches at the client workstation
can still be detected and an appropriate course of action
taken.

7

PI

PI

[31

[41

[51

P51

[71

References

R. Heady, G. Luger, A. Maccabe, and M. Servilla. The Architec-
ture of a Network Level Intrusion Detection System Technical
Report Dept. of Computer Science, University of New Me+
ice, New Mexico, August 1990.

National Institutes of Health. Center for Information Technol-
ogy.http://www.alw.nih.gov/Security/securi~prog.html#com
mercial, October 1998.

W.J. Buchanan. Handbook of Data Communications and Net-
works. Kluwer, 1998.

Chris Herringshaw. Detecfing Attacks on Networks. IEEE Com-
puter Magazine, pages 16-l 7, December 1997.

Debra Anderson. Detecting Unusual Program Behavior Using
the NIDES Statistical Component. IDS Report SRI Project
2596, Contract Number 910097C (Trusted Information Sys-
tems) under F30602-91-C-0067 (Rome Labs), 1995.

T. Lunt, H. Javitz, and A. Valdes, et al. A Real-Time Intrusion
Detection Expert System(IDES). SRI Project 6784, February
28 1992. SRI International Technical Report.

Sandeep Kumar and Gene Spafford. A Pattern Matching model
for Misuse Infrusion Detection. Proceedings of the 17th I&
tional Computer Security Conference, October 1994.

[8] Mark Crosbie and Gene Spafford. Active Defence of a Compufer
System using Autonomous Agents. COAST Group, Dept. of
Computer Science, Prudue University, Technical Report (95-
008):2-3, February 15 1995.

[9] The Computer Misuse Detection System.
http://www.cmds.net/, 1998.

216

[lo] M. Wooldrige and N. Jennings. Intelligent Agents: Theory
and Practice. 1995.

[I I] M. Sobirey, B. Richter, and H. Konig. The Intrusion Detection
System AID. Architecture, and Experiments in Automated
Audit Analysis. Proceedings of the IFIP TC6/TCll, pages
278-290, September 1996.

[12] Diego Zamboni, Jai Sundar Balasubramaniyan, Jose Omar
Garcia-Femadez, David Isaco, and Eugene Spaord. An Archi-
tecture _/or Intrusion Detection using Autonomous Agents.
COAST Technical Report 98/05, COAST Laboratory, Purdue
University, Purdue University, West Lafayette, IN 47907-
1398, June 11 1998.

[13] Donald P. Gaver and Gerald L. Thompson. Programming and
Probability Models in Operations Research. Brooks Cole
Publishing Company, Monterey, California, USA, 1987.

217

