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1  Introduction
The ocean is one of the most critical areas to maintain the ecology of Earth, which is 
rich in natural resources and economic and social values. The trend of ocean temper-
ature change in the future will have great importance in environmental protection as 
well as industrial development. Many experts and scholars have done a lot of research 
on the problem of SST prediction, and put forward many innovative methods, but basi-
cally they have encountered such problems as short prediction time range, low accuracy, 
high algorithm complexity, and poor adaptability. Moreover, these methods often do not 
directly reflect the impact of environmental factors such as global warming on tempera-
ture variation, resulting in a decrease in the reference value of the prediction results

For the reason that the characteristics of regional sea surface temperature (SST) 
variation accord with the Grey system, combining theories of the Grey model and 
RCPs indexes. The prediction model of regional SST under atmospheric radiation, a 
Regional Sea Surface Temperature-Atmospheric Radiation Grey Model (RSST-ARGM) 
is built. Based on historical SST data, it can accurately predict the SST variation over 
the next 50 years in the same region and quantify the impact of different Representative 
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Concentration Pathways (RCPs) indicators on SST variation, building the relationship 
between the environmental factor and the SST.

Through the simulation experiment, taking the North Atlantic region as an example, 
using the data of 1870–1966, the summer sea surface temperature in 2016 was predicted. 
Through the cosine similarity test, the error cosine value between the expected result 
and the actual SST was 0.99984, and the error angle was 1.0115◦ . Under different RCPs 
indexes, the average SST over the North Atlantic will reach 13.2 ◦C , 13.8 ◦C , 14.2 ◦C and 
15.3 ◦C , respectively, in summer 2070. The results show the irreversibility of SST rise and 
the severe influence of global warming and climate destruction on SST. The same simu-
lation data were used to verify the prediction accuracy of the BP neural network, and the 
error angle reached 2.2445◦ , which was much lower than the effect of RSST-ARGM. By 
comparison, RSST-ARGM has the advantages of long-term prediction ability, high pre-
diction accuracy, low complexity, good robustness, and strong adaptability, which can 
provide reliable data support for Marine research and environmental governance in rel-
evant areas, and has a high practical value.

The following sections are organized as follows:
Part 2 describes the current research on the prediction of sea temperature change 

and the use of the main prediction models, and analyzes the challenges faced by these 
methods.

Part 3 puts forward the requirements for the new prediction model according to these 
challenges. By analyzing the causes of SST variation, a new prediction model is designed, 
and the main principles used in the model are introduced.

Part 4 describes in detail the construction process of RSST-ARGM method and the 
related calculation derivation, constructing a complete prediction model.

In Part 5, a set of simulation experiments are designed to verify the accuracy of the 
model results and calculate the prediction results of regional SST for the next 50 years.

Part 6 compares the classical neural network prediction methods, and shows that 
RSST-ARGM has obvious advantages in time span, prediction accuracy, complexity and 
adaptability.

In the last part (Part 7), the effects, advantages and simulation experiments of RSST-
ARGM method are summarized, and some thoughts on future optimization and 
improvement are put forward

2 � Related work
The ocean is one of the most critical areas to maintain the earth’s ecology, in which 
abundant natural resources provide support for human life and production. The increas-
ing severity of global warming leads to the irreversible rise of sea surface temperature, 
which has a significant impact on marine organisms and the physical and chemical indi-
ces of regional seawater. The trend of sea warming will cause future rise, and it is dif-
ficult for the economic, social, and other fields to sustain growth. Therefore, the trend 
of ocean temperature variation in the future will play an essential role in environmental 
protection and industrial development.

In recent years, many scholars around the world have used mathematical models to 
predict sea temperature trends. Timmermans (2018) studied the predicted results of the 
Arctic Ocean in the past 30 years and found that the ocean heat content nearly doubled. 
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This warming was related to the abnormal heating of local surface water by the sun. The 
research results found that the heat absorbed by the local basin edge would accumulate 
in the ocean interior, causing the rise of sea temperature [1]. Zheng (2020) proposed an 
algorithm instead of the mathematical, physical model to predict the seawater tempera-
ture field by combining satellite data and a deep learning model [2]. Ratnam (2020) veri-
fied the superiority of the ANN algorithm in predicting Indian Ocean dipoles [3]. 
Hervieux (2017) proposed an anomaly prediction assessment method based on NMME 
for large Marine ecosystems off the coast of the USA and Canada, with a leveled 
approach to monthly SST to improve the overall prediction [4]. Qian (2020) compares 
the prediction effect of the statistical model of SST and the dynamic global circulation 
model on the seasonal precipitation in the Yangtze River Basin, finding that the statisti-
cal model had higher prediction performance, especially in long time span [5]. Dias 
(2019) adopts the inverse linear statistical model to forecast the sea temperature and sea 
temperature changes in the North Pacific Ocean, which is better than NMME in sea-
sonal forecasting ability [6]. Sohn (2016) used the multi-mode integration method to 
predict the accuracy of seawater temperature. The ENSO intensity had a serious impact 
on the accuracy of seawater temperature prediction, indicating that the ENSO predic-
tion model was not fully applicable to the global SST prediction [7]. Capotondi (2019) 
explored the influence of ENSO and local SST on USWC, and proposed a sensitivity 
model analysis method. They found that tropical SST anomalies have a significant 
impact on USWC, which can increase the predictability of anomalous SST [8]. Ionita 
(2020) studied low flow in the Rhine and Elbe river basins in Europe in summer and 
could use historical SST, sea-level pressure, precipitation and other environmental infor-
mation to predict low flow [9]. Taye (2020) analyzed the differences between SST drivers 
of the rainy season (July–September) in different regions of Ethiopia, and proposed an 
improved regional seasonal forecasting method based on the local topography and cli-
matic environment [10]. Counillon (2021) used the Norwegian climate prediction model 
in different configurations to study the impact of climate bias in the tropical Atlantic 
Ocean on seasonal prediction. Combined with the coupling of NORCPM and ensemble 
Kalman filter, Counillon corrected the SST field exchange seen in the atmosphere and 
the ocean, reduced the climate model bias between precipitation and SST, and improved 
the accuracy of seasonal prediction [11]. Kale (2020) used monthly temperature, evapo-
ration and precipitation data as input and combined with a variety of statistical methods 
to build an adaptive neuro-fuzzy reasoning system for regional SST, and verified the 
accuracy of the prediction from statistical standards [12]. Hotta (2019) proposed a 
method to improve the prediction accuracy of EPS in JMA by seawater temperature per-
turbation. The experiment proved that the perturbation of SST did not affect the ensem-
ble mean forecast quality [13]. Jacox (2017) used the NMME Global Climate Prediction 
System to evaluate the maximum prediction period of seasonal SST in the California 
Ocean Current System (CCS) for up to 4 months and found that ENSO has varying 
degrees of impact on the sustainability of SST prediction [14]. Narapusetty (2017) pro-
posed an interactive global method (CFSIE) using climate prediction system models to 
integrate the initial perturbation states of different CFS. It was found that the application 
of noise reduction in this method would reduce the ability of SST prediction [15]. New-
man (2017) discussed the performance improvement space of the forecast model, 



Page 4 of 18Zhu et al. J Wireless Com Network        (2021) 2021:171 

compared the difference between the NMME results and the LIM results, and found 
that the prediction ability of the two models was close to the potential limitations. The 
study found large differences in some areas, but similar results in most areas [16]. 
Aurélien (2021) designed a new climate model to reduce the uncertainty of SST warm-
ing estimates by improving observational and statistical methods [17]. Francisco (2017) 
found that the areas most severely affected by global warming will experience an 
increase in regional water temperature dispersion, a gradual slowing down of water cir-
culation, and a continuous decline in regional production capacity, by studying the rea-
son why the location of the special biodiversity areas overlaps with the areas with severe 
global warming [18]. Ham (2019) used the transfer learning method to train the CNN 
neural network algorithm and improve its prediction time length for the ENSO phe-
nomenon. Through the training and verification of historical data, the prediction accu-
racy is due to the traditional model prediction effect [19]. Sévellec (2018) found that the 
chaos of the climate system would affect the accuracy of the prediction model. Then he 
designed a probabilistic prediction method based on the transfer operator, which has a 
good prediction effect on the global average temperature and SST [20]. Chikamoto 
(2020) proved that a prediction system with fully coupled climate models could predict 
the annual water supply to the Colorado River years in advance. The model result 
showed that chronic water shortages in the Colorado River are significantly correlated 
with precursors of sea surface temperatures, including cooling in the tropical Pacific, 
warming in the northern Pacific and warming in the southern tropical Atlantic [21]. 
Hermanson (2017) studied the drift detection of SST and precipitation by two seasonal 
forecast systems, and also asked that the drift was different between different forecast 
systems, which would produce phenomena such as overdraft and inverse drift, thus 
affecting the accuracy of model forecast [22]. Seager (2019) found that the concentration 
of greenhouse gases in nature for the sharp rise in a short time, caused by the west to the 
east of cold and warm to the strengthening of the surface temperature gradient, and the 
current model have obvious difference, through the introduction of atmospheric dynam-
ics and thermodynamics of regression analysis can reduce the deviation of parallel to the 
surface. However, in some areas, the warming trend is still hard to predict, especially the 
SST in the sensitive region of serious distortion prediction results [23]. Shaltout (2019) 
studied the history of the red sea surface temperature data, found in the spring and 
autumn season, seawater temperature gradient is higher than in the summer and winter 
season. Mean sea-level pressure, elevation, and the temperature are major influential 
factors of sea surface temperature. At the same time, Shaltout explores the effect of dif-
ferent carbon dioxide concentrations in the future temperature changes, and the 
GFDL—CM3 method of sea surface temperature change is forecasted, found the red sea 
will experience a significant increasing trend [24]. Long (2017) discussed how the cli-
mate changes influence the SST in the Barents Sea, showing that the estimation of local 
SST and ice volume by traditional model simulation was biased to a certain extent, so it 
could not accurately reflect the influence of heat on SST. By introducing a new model to 
calculate the contribution of solar radiation to SST change, and through historical data 
prove that heat transport and solar radiation are the main reasons for the increase in 
local SST, so as to predict the trend of SST change from 2010 to 2040 [25]. Folland (2018) 
using multiple regression rebuilt the GST sequence since 1891, compared with CMIP5 
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model obtained the different force factor’s contribution to the GST change, mostly was 
caused by the increase in greenhouse gases and artificial aerosol, weakened the solar 
radiation can produce cool, but for the near region of sea surface temperature forecast 
will produce greater uncertainty [26]. Melissa (2018) pointed out that the warming of 
North Atlantic SST is one of the significant features predicted by global climate models. 
Through the simulation analysis of the large set of community earth system models, he 
explained the relationship between the development of warm hole and AMOC, and 
studied the influence of the change of North Atlantic regional ocean current on the 
change of local SST, finally found an increasing ocean advective heat flux divergence 
within the center of the subpolar gyre, causing this warming deficit in the SST of North 
Atlantic, causing the slowdown of AMOC [27]. Ogurtsov (2016) analyzed regional sum-
mer temperature, North Atlantic SST and solar activity during 1567–1986, and the study 
showed that thesolar activity and regional summer temperature were significantly corre-
lated with North Atlantic SST during 1715–1896, and the change of SST may be the 
physical factor that transferred the influence of the sun on the regional temperature [28].

In terms of research content, the main research direction is to use SST as a meteoro-
logical element to make short-term prediction of climate phenomena such as drought, 
ENSO, hardness like a dipole and regional water flow, and global warming will affect 
regional SST. Obviously, these predictions just tried to build a relationship between the 
SST and other climates, and no research has shown that how the two factors cause and 
affect each other [29].

In the aspect of prediction methods, there are relatively a few studies on the prediction 
of SST variation. Most of them use neural networks, classical climate models or math-
ematical statistical methods. However, whether these methods are suitable for long-
term SST prediction needs to be discussed. As for the most popular neural network 
methods, the model must be modified according to the data characteristics [30]. Chen 
(2020) applied deep learning to traffic cloud computing, especially improved the abil-
ity of extracting feature information from the original training model, and improved the 
detection effect and accuracy of equipment [31]. Zhao (2019) pointed out that machine 
learning alone cannot achieve ideal results on all occasions. He proposed an optimiza-
tion analysis method that reduces fuzzy bias and improves the accuracy and flexibility of 
deep learning [32]. Gao (2020) systematically evaluated the performance of deep learn-
ing features in model retrieval, and compares hand-crafted features and deep learning 
features in 3D model retrieval. Thus, the robustness and computational complexity of 
this deep learning algorithm were verified [33]. And that is clear that the results only 
obtained by applying different neural network methods are still limited: Neural networks 
and climate models have good prediction accuracy in the short term through big data 
training and adding variables [34]. If the same method is used to apply deep learning to 
the long-term prediction, the amount of data in the training set will continue to climb 
with the increase in the prediction time range. What’s more, deep learning studies in 
other fields have found that the robustness and processing power of the model under 
large data volumes are not as good as the effect of short-term prediction [35].

Except for deep learning, mathematical statistical methods have vital require-
ments on sample distribution law and lack the ability to deal with abnormal situa-
tions, resulting in disconnection with the actual situation, What’s more, mathematical 
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statistical methods have substantial requirements on sample distribution law and they 
lack the ability to deal with abnormal situations, resulting in disconnection with the 
actual conditions [36]. Besides, few studies have explored the relationship between 
SST variation from the perspective of global warming, ignoring the effect of climate, 
one of the most important factors, on SST variation.

3 � Preliminary work and proposed methods
These problems above are the characters of SST prediction, and this paper attempts 
to build a model with the ability to predict regional long-term sea temperature change 
[37]. The model can have a high prediction accuracy in a long-time span and investi-
gate the impact of global warming on SST variation, which provides data support for 
improving people’s understanding of sea surface temperature variation law and pro-
moting the sound development of economy and society. Because the ocean is influ-
enced by many factors, including climate, region, and human activities, the causes 
of SST variation is very complex, and it is difficult to quantify the influence of differ-
ent factors on SST. Due to the complexity of SST variation, its changing progress is a 
Grey system on the whole. This paper hopes to propose a method to reveal the char-
acteristics and degree of SST variation and predict the SST in the future based on the 
grey model.

Based on the analysis, the construction method of the model is described as follows:
Firstly, the steps of introducing the Grey model and getting the prediction result 

sequence by using the regional historical SST are introduced.
Moreover, a quantitative model of the impact of different greenhouse gas emission 

scenarios on future SST variation is established.
Finally, the North Atlantic Ocean was taken as the simulation object to predict the 

local SST in 2016 according to the local data from 1870 to 1966, to verify the effec-
tiveness of the method, and to predict the SST in this region in the next 50 years 
under different greenhouse gas emission scenarios.

3.1 � Grey model

Grey model (GM) is established based on Grey system theory. When the hierarchical 
or structural relationship of a system is fuzzy, the dynamic change is random, and the 
indexes data are incomplete or uncertain, the system with these characters is a Grey 
system. The Grey model is insensitive to data regularity, information content and 
information integrity [38]. After processing, the randomness of the system is signifi-
cantly reduced, becoming a regular system with generation numbers. Therefore, the 
dynamic model in the form of differential equation is constructed, which has approxi-
mation and non-uniqueness.

For the prediction of SST, the Grey model helps us analyze the correlation between 
historical sea surface temperature observation data and infer the future seawater tem-
perature trend through the dynamic change. After the existing temperature data is 
quantified, the generated number with strong regularity is obtained by the cumulative 
generation method, and then the model is obtained through the function change.
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3.2 � RCPs

Global climate model is the primary tool for predicting climate changes, studying cli-
mate change and its response. The Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC AR5) [39, 40]. CMIP5 introduces a new greenhouse 
gas emission scenario, named representative concentration pathways (RCPs). RCPs 
are a set of greenhouse gas emission scenarios set in global climate models for the 
study and prediction of future climate change [41]. It mainly reflects the situation of 
carbon dioxide emissions and the impact of different levels of carbon dioxide emis-
sions on the atmospheric radiation.

By studying the relationship between RCPs and SST variation, the influence of 
global warming on SST can be established. RCPs mainly target four levels of green-
house gases: 2.6, 4.5, 6.0, and 8.5. RCP8.5 stands for the highest level of carbon diox-
ide emissions, that is, unregulated emissions of carbon dioxide; RCP2.6 represents the 
minimum level of carbon dioxide emissions. RCP4.5 and RCP6.0, which are between 
RCP8.5 and RCP2.6, are considered as the most likely carbon emission scenarios in 
the future.

4 � RSST‑ARGM: a Regional Sea Surface Temperature‑Atmospheric Radiation 
Grey Model

The following conclusions can be drawn from the study of SST variation: SST changes 
are related to past sea surface temperatures, the changes are affected by many fac-
tors: sea surface temperature trends exist regionally and global warming is one of the 
main reasons that affect sea water temperature rise. So that we can conclude that the 
changing progress of SST conform to the Grey Model, and the prediction model has 
regional restriction, which means the prediction model has better performance in the 
specific area than that in the whole world. The different degrees of global warming in 
the future will also affect the degree and speed of SST variation.

Based on the above method, a Grey model of regional sea surface temperature 
under atmospheric reflection is established according to the characteristics of SST, 
named a Regional Sea Surface Temperature-Atmospheric Radiation Grey Model 
(RSST-ARGM).

In the process of building this model, several steps are needed, including data pre-
processing, Grey system of SST and influence of future atmospheric reflection.

4.1 � Data checking and preprocessing

According to the requirements of RSST-ARGM, and the characteristics of data set 
in the Grey model, the data of SST needs to be to be preprocessed, in which the 
defects of the data set itself should be properly cleaned to ensure its integrity and 
effectiveness.

Because the SST data are collected from observed historical records, and the main 
problems are abnormal data, namely data missing and incorrect statistics.

Data cleaning is needed for abnormal data. Delete or fill in the missing data, which 
depends on the proportion of the accurate data. In this paper, RSST-ARGM stipu-
lated that if the missing rate of the data set is less than 5%, the data will be deleted 
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(the data of the month or year will not be counted, to prevent the artificial influence. 
If the missing rate is greater than or equal to 5%, the lost datum will be filled by tak-
ing the mean value of the two data before and after the missing datum, to reduce the 
introduction of new errors as much as possible.

The change of sea surface temperature is relatively flat, and the temperature in a region 
does not change dramatically.

Therefore, the error statistics were checked by using box plot: the data of every month 
in a fixed position in a year were plotted using box plot. If several points were too high 
or too low, statistical errors at that point would be considered and treated as missing 
values. After processing the abnormal data, the feasibility of the Grey system model is 
needed to be ensured, the data need to be checked and processed. The main steps are as 
follows: 

1.	 Set the data at the same latitude at the same time as a reference sequence 

2.	 Calculate the series ratio of the sequence above 

3.	 If every step ratio �(k) is within the tolerable coverage θ = (e(−
2

n+1
)
, e(

2
n+2

)) , then a(0) 
can be performed as data of Grey model GM (1, 1). Otherwise, we need to perform a 
translation transformation on a(0) , 

 The sequence y(0) = (y(0)(1), y(0)(2), . . . , y(0)(n)) is 

4.2 � Grey model prediction of SST

In RSST-ARGM, we take the data as the original sequence (0), offering the original data 
and generate a new row (1) through accumulation changes, to waken the randomness of 
the original SST data and exposure its hidden characteristic rules. A differential equa-
tion model was established for the generated sequence (1) [42].

The GM(1, 1) model used in this paper represents the differential equation model 
of 1 order and 1 variable. The data set of SST after data inspection and preprocessing 
meets the requirements of the RSST-ARGM system, and the data is put into the system 
through the following steps: 

1.	 Select the original data sequence from the SST 

 Add up to generate a new sequence 

(1)a(0) = (a(0)(1), a(0)(2), . . . , a(0)(n))

(2)�(s) =
a(0)(s − 1)

a(0)(s)
, s = 2, 3, . . . , n

(3)y(0)(s) = a(0)(s)+ c, s = 1, 2, . . . , n

(4)�y(s) =
y(0)(s − 1)

y(0)(s)
∈ θ , s = 2, 3, . . . , n

a(0) = (a(0)(1), a(0)(2), . . . , a(0)(n))
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 among them, a(1)(s) =
∑s

i=1 a
(0)(i), s = 1, 2, . . . , n

2.	 Calculate the mean number of the sequence 

 So 

 The differential equation is 

 The corresponding albino differential equation is 

 After calculation, the SST data sequence is transformed into the corresponding dif-
ferential equation.

3.	 Solve the above equation
	 Mark-related parameter

  Obtained by least squares û = (x, b)T = (BTB)
(−1)

BTY  , which make 
J (û) = (Y − Bû)T (Y − Bû).

	 The result of the corresponding albino differential equation is 

 among them, â(0)(s + 1) = â(1)(s + 1)− â(1)(s), s = 1, 2, . . . , n− 1, . . .

4.	 Test the predicted sequence.
	 According to the model requirements, if ε(s) < 0.2 , ε(s) = [a(0)(s)− â(0)(s)]/a(0)(s)

,  s = 1, 2, . . . , n , â(0)(1) = a(0)(1) , the predicted results meet the requirements. And 
then, calculate �(k) according to a(0)(s − 1) and a(0)(s) . Use coefficient an in Eq. (6) 
to calculate ρ(s) = 1− [(1− 0.5x)/(1+ 0.5x)] × �(s) . If ρ(s) < 0.2 , it meets the 
requirement of RSST-ARGM. If neither ε(s) nor ρ(s) meet the requirements, we are 
required to re-examine the SST data set and readjust the model parameters until the 
results meet inspection standards.

4.3 � RCPs

The temperature changes under different RCPs indexeses are very other. Try to quan-
tify the effect of different RCPs indices on temperature variation, we need to divide the 

a
(1)

= [a
(1)(1), a(1)(2), . . . , a(1)(n)] = [a

(1)(1), a(1)(1)+ a
(0)(2), . . . , a(1)(n− 1)+ a

(0)(n)]

(5)z(1)(s) = 0.5a(1)(s)+ 0.5a(1)(s − 1), s = 2, 3, . . . , n

z(1) = (z(1)(2), z(1)(3), . . . , z(1)(n))

(6)a(0)(s)+ xz(1)(s) = b, s = 2, 3, . . . , n

da(1)

dt
+ xa(1)(t) = b.

u = (x, b)T ,Y =

�

a(0)(2), a(0)(3), . . . , a(0)(n)
�T

, b =











−z(1)(2) 1

−z(1)(3) 1

.

.

.
.
.
.

−z(1)(n) 1











(7)â(1)(s + 1) =

(

a(0)(1)−
b

x

)

e−xk
+

b

x
, s = 0, 1, . . . , n− 1, . . .
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existing data set into prediction data set and detection data set. The influence factors of 
RCP 2.6, 4.5, 6.0 and 8.5 are defined as:

among them, ti is the temperature predicted by using the prediction data set under the 
ith RCP condition, tr is the actual current temperature.

On that basis, the final predicted SST sequence is:

5 � Result
Theoretical derivation alone is not enough. The simulation experiment is needed to 
prove that the RSST-ARGM prediction model has a high prediction accuracy. There is 
the world-famous North Sea fishing ground in the North Atlantic, and many neighbor-
ing countries have developed advanced marine fishery with good natural environment. 
The future change of this sea area is of great significance in ecological, environmental 
protection and social and economic aspects [43]. Thus, take the sea area of the North 
Atlantic (from 14.5◦W to 10.5◦ E , and 45.5◦N to 65.5◦N ) as an example, as shown in 
Fig. 1, explore local sea surface temperatures over the next 50 years.

5.1 � Data source

The data set used for model simulation in this paper is Hadley Centre Sea Ice and Sea 
Surface Temperature data set (HadISST), which is derived from the Met Office Hadley 

γi =
tr

ti
, i = 1, 2, 3, 4

T (k + 1) = γi × x̂(1)(k + 1), k = 1, 2, . . . , n− 1, . . .

Fig. 1  Results of model (left is the real situation; right is the model result)
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Centre observations data sets. This data set records surface temperatures in all waters 
from 1870 to November 2020 [44]. This data set maintains high reliability in tempera-
ture statistics and equipment updates over the years, and can be used in professional 
data research [45]. The location data of the North Atlantic Ocean are selected in the data 
set and brought into the model for simulation.

5.2 � Simulation design

The simulation experiment is divided into two parts. First, the accuracy of the prediction 
results of the model needs to be tested using historical data. If the accuracy meets the 
requirements, we use RSST-ARGM to predict future SST.

The simulation predicted the North Atlantic SST, and the geographical location repre-
sented by the data was from 14.5◦W to 10.5◦ E , and 45.5◦N to 65.5◦N , and the data set 
was from January 1870 to December 2020.

In order to improve the test efficiency, we mainly investigate the 2 months when the 
sea temperature is the highest (July and August). In the detection part, we chose the data 
from 1870 to 1966 to predict the results in 2016. In the prediction section, data from 
1870 to 2020 are used to predict the SST over the next 50 years, from 2021 to 2070.

5.3 � Simulation result

Because of the large amount of data, it is obviously difficult to test each data result. 
Therefore, in this paper, we need to analyze the prediction effect in the 50-year time 
range.

The data from 1870 to 1966 are used as the model input to predict 50 years later, 
namely SST in 2016, and compare it with the actual SST measured in 2016. In order 
to restore the real situation as much as possible, RCP is set to 6.0. The predicted result 
of the model is the temperature of each point in this area, which is an extensive three-
dimensional data set. In order to compare the products more intuitively, the tempera-
ture point set is presented in the form of heat map. Set the same temperature ruler as the 
actual temperature chart, and get two heat maps of the same region (from 0 to 10.5◦ E , 
and 45.5◦N to 65.5◦N ) successively, as shown in Fig. 1. Cosine similarity algorithm is 
used to compare the differences between two pictures [46]. According to the theory of 
cosine similarity algorithm, if the error cosine value is close to 1, the error angle is rela-
tive to 0◦ (the coincidence state), and the two vectors have high similarity. Conversely, 
the more error cosine value is close to −1 , the more significant the difference.

The cosine similarity algorithm uses the cosine value between two vectors, and uses 
the Euclidean dot product formula to obtain the cosine similarity θ of two given attribute 
vectors A and B from the dot product and the vector length:

where Ai , Bi represents the components of the vectors A, B.
The test results show that the error cosine value of the sea temperature map based 

on the model’s predicted sea temperature and the actual temperature is 0.99984, and 

(8)S = cos(θ) =
A · B

||A||B||
=

∑n
i=1 Ai · Bi

√

∑n
i=1 (Ai)

2
·

√

∑n
i=1 (Bi)

2
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the error angle is 1.0115◦ at the resolution of 1 longitude times 1 latitude. Prove the 
validity of data prediction.

The 2016 comparison showed the accuracy of the model’s predictions. RSST-ATGM 
model is used to predict the regional SST for the next 50 years. Based on the RSST-
ARGM prediction model, we obtained sea surface temperature pictures 50 years later 
(2070) in the situation of RCP6.0, as shown in Fig. 2.

It can be seen from the model results that the July–August sea surface temperature 
in the North Atlantic region (from 14.5◦W to 10.5◦ E , and 45.5◦N to 65.5◦N ) will gen-
erally rise in 2070, and the highest sea temperature in the region will reach 14.2 ◦C , 
which is 1.7 ◦C higher than the maximum temperature 50 years ago. What’s more, 
warming is more pronounced at high latitudes, resulting in the spread of hot areas.

In addition, as can be seen from the prediction result, the boundary between SST 
and land is becoming increasingly clear, especially in the western hemisphere. This 
may be because the waters in the Western Hemisphere are more integrated and less 
affected by ground than in the Eastern Hemisphere. This is further evidence that the 
range of ocean warming is increasing, leading to closer heat exchange between the 
oceans, which may further contribute to future warming.

Seawater temperature rises to a certain extent in the short term will increase local 
marine resources. Still, in the long term, this will no doubt cause more significant 
damage to the ecological balance of the whole, from existing research areas of water 
temperature rise will be found in seawater nutrient loss gradually, eventually make 
the production capacity of the water drops in the region until lost.

At the same time, the rise of sea temperature and the spread of high temperature 
range will further lead to the melting of glaciers, so as to raise the sea level and cause 
natural disasters.

Fig. 2  Regional SST in 2070
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In this case, the physical and chemical indexeses of seawater will change to some 
extent, and the impact is difficult to estimate.

From the perspective of average SST, no matter what RCPs indexes is, SST keeps grow-
ing during 2021–2030, and the temperature of growth is similar to that of about 13 ◦C . 
After 2030, the seawater temperature at RCP2.6 tends to be stable, and will remain at 
13.2 ◦C in 2070. RCP4.5, RCP6.0 and RCP8.5 increased continuously, reaching 13.8 ◦C , 
14.2 ◦C and 15.3 ◦C respectively in 2070, as shown in Table 1. The comparison of tem-
perature changing trend is shown in Fig. 3.

The data of the four prediction results have vividly shown that the higher the RCP 
indexes is, the more pronounced the growth of SST will be, indicating the influence 
degree of atmospheric radiation on SST variation under the influence of global warming.

It is worth noting that even the predicted SST under RCP2.6 does not show an appar-
ent downward trend after rising to 13.2 ◦C , which means that the warming of SST is 
almost an irreversible process under the advanced technical means.

Strict control of greenhouse gas emission and environmental pollution can slow down 
the trend and speed of warming. If the arbitrary emission and destruction will make the 
sea surface temperature rise to 15.3 ◦C , the damage to the global climate is unimaginable.

6 � Discussion
In order to further evaluate the performance of the RSST-ARGM prediction model, 
this paper attempts to compare the prediction results of the RSST-ARGM model in the 
North Atlantic with the neural network method commonly used in the current SST pre-
diction, and to show the characteristics of the proposed method.

To make the comparison test representative, we choose the most classic BP neu-
ral network to compare with the RSST-ARGM. Using the same data set as model 
input, the prediction accuracy and time complexity of the two models were compared 

Fig. 3  Results of SST variation under the influence of different RCPs

Table 1  Prediction result in 2017 under different RCPs

RCPs Temperature ( ◦C) Trend

2.6 13.2 Stable

4.5 13.8 Rise slowly

6.0 14.2 Rise

8.5 15.3 Rise sharply
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during the calculation process. We still use the data from 1870 to 1966 are used as 
the model input to predict 50 years later, namely SST in 2016 and compare it with 
the actual SST measured in 2016 [47]. Considering that the neural network model 
needs to be trained in advance, the eastern hemisphere part data of the North Atlan-
tic (from 0 to 10.5◦ E , and 45.5◦N to 65.5◦N ) are selected as a training set, and the 
data of the western part ( 14.5◦W to 0, and 45.5◦N to 65.5◦N ) are used as the predic-
tion result, and are compared with the products of RSST-ARGM.

In the BP network, data from 1870–1966 are used as the input layer, and tempera-
ture data from 2016 are used as the output layer. Input layer points are 96, output 
layer points are 1. According to the empirical formula of hidden layer neuron , the 
number of neurons are among 11 to 20 [48]. In this paper, we choose 14 as the neuron 
number. The excitation functions of hidden layer and output layer, which have great 
importance in the performance of the system, are set as tansig and logsig functions, 
respectively, traindx is set as the network training function, and the network itera-
tions number matters a lot setting as 5000. To get good results, the expected error is 
0.01 [49], as shown in Fig. 4.

The test set data is brought into the model, and the cosine similarity method is also 
used to get the predicted results and actual data. The average error is 0.99923, con-
vert into angel is 2.2445◦ , its accuracy is significantly lower than that of RSST-ARGM. 
(The neural network results are different each time, repeat 5 times to take the aver-
age value.) The comparison of the prediction effects of the two models is shown in 
Table 2.

Fig. 4  BP neural network structure diagram

Table 2  Comparison of the prediction effects of the two models

Training set Prediction set Angle ( ◦) Vector Calculation 
time (min)

RSST-ARGM 1870–1966 2016 1.0115 0.99984 38.56

BP network 2.2445 0.99923 8.62
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The comparison in Table 2 directly shows the characteristics of the two models:

1.	 Calculation time Under the condition of the same prediction accuracy, BP network 
model needs a large amount of data and repeated training, which seriously affects 
the prediction efficiency of BP network, resulting in more than 80% of the calcula-
tion time of BP network is used for model training. On the other hand, RSST-ARGM 
model only needs to calculate the historical data set to get the predicted results with-
out repeated training process, so it has a significant advantage in time complexity, 
and this advantage will become more obvious with the increase in data amount.

2.	 Model applicability In principle, there are some differences between the two models 
in their wide applicability. The prediction accuracy of BP network is based on model 
training, so the premise of using BP network model is to train a lot in specific areas, 
which means that the prediction scenarios of the model cannot be changed at will. 
However, the RSST-ARGM model only calculates the relationship between the data 
to get the prediction result, so it can make the temperature prediction for any water 
at any time.

3.	 Prediction accuracy Even though BP network model has carried out a lot of train-
ing, RSST-ARGM model is still better in the prediction accuracy using the same data 
set. The cosine similarity test compares the errors between the data predicted by the 
model and the actual data. The closer the error angle between the two is to 0, the 
higher the similarity between the two is. The error angle of RSST-ARGM prediction 
is only 1.0115◦ , while the error angle of BP network prediction is as high as 2.2445◦ . 
This fully indicates that the RSST-ARGM model is more suitable for the prediction of 
SST variation.

Through the comparison of three main features, the result can be clearly proved 
that the prediction accuracy of RSST-ARGM model is high, and the requirement of 
computing ability is low. In addition, the introduction of RCPs indexes can further 
reflect the extent to which global warming changes atmospheric radiation and thus 
affects SST, which can provide more scientific data support for the long-term study 
on dynamic variation of SST.

7 � Conclusion
In this paper, we combine the Grey model and representative concentration path-
ways in climatology, establishing a Regional Sea Surface Temperature-Atmospheric 
Radiation Grey Model, RSST-ARGM. Based on the calculation of historical SST, the 
model explores the trend of SST variation in the future, and introduces the influence 
of atmospheric greenhouse gas concentration change on SST variation in the form 
of RCPs indexes, to reflect the correlation between global warming and SST varia-
tion. Through simulation, in this article, the RSST-ARGM model is applied to pre-
dict the temperature variation of the next 50 years of the North Atlantic waters. By 
contrast with classical neural network model, the result manifests the RSST-ARGM 
model is easy to calculate, with advantages of the high accuracy and good robustness. 
The model’s prediction data results reveal a rise in sea surface temperatures in the 
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future of sustainability and diffusivity and the promoting effect of global warming on 
sea surface temperature rising (different RCPs indexes has a huge impact on overall 
temperature).

The prediction model constructed in this paper has high accuracy over a 50-year 
time span. However, in order to simplify the calculation, historical SST data were only 
used as much as possible in this model, while the influence of different historical data 
capacity on the accuracy of the results was not studied. In the future, the influence of 
different data set richness on prediction accuracy and prediction time length can be 
further investigated. Since the trend of SST variation and global warming in different 
stages in the past are not the same, the RCPs indicators corresponding to various his-
torical data stages can be further explored in the future, to further improve the perti-
nence and accuracy of the prediction. Besides, the relationship between climate and 
seawater temperature can be further quantitatively analyzed supported by the results 
of the model and the knowledge of seawater physical and chemical composition and 
thermodynamics.
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