
Providing Views and Closure for the ODMG

Object Model

Mark Roantree

School of Computer Applications, Dublin City University, Ireland.
mark.roantree@compapp.dcu.ie

Jessie B. Kennedy and Peter J. Barclay

School of Computing, Napier University, Scotland.

Abstract

The ODMG Object Model offers a standard for object-oriented database designers,

while attempting to address some issues of interoperability. This research is focused

on the viability of using the ODMG data model as a canonical data model in a

multidatabase environment, and where weaknesses are identified we have proposed

amendments to enable the model to suit the specific needs of this type of distributed

database system. This paper describes our efforts to extend its relational style alge-

bra, and to provide query closure and a viewing mechanism for OQL to construct

multidatabase schemas.

Key words: Object Model, Multidatabases, ODMG, Views, OQL

1 Introduction

The term federated database system is used to refer to a collection of au-
tonomous heterogenous software systems. A Federated Database architecture
was introduced in [20], with a more detailed classification described in [2].

Preprint submitted to Elsevier Preprint

The term multidatabase has been used to refer to all types of distributed
database systems [13] and not just those with an architecture where partic-
ipating systems use different data models. A more specialised form of mul-
tidatabase system has emerged in the form of object-oriented multidatabase
systems [1] where these systems use an object model to represent the global
schema. As a federated system contains a quite specific architecture, we will
use the term multidatabase system as it covers all types of heterogenous dis-
tributed database systems which do not have a single global schema. This
paper employs the terminology in [20] when discussing the architecture of
multidatabase systems. The paper is structured as follows: the remainder of
§1 will provide a brief description of multidatabase systems; §2 describes our
evaluation process for the Object Data Management Group (ODMG) model
and the results of this evaluation; §3 describes Multidatabase Object Query
Language (MOQL) which amends the use of the ODMG Object Model for
multidatabase systems; finally, §4 offers some conclusions.

1.1 Multidatabase Systems

A multidatabase system allows local databases (LDB) to interoperate with
other LDBs even though they may use a different data model. This is achieved
by converting each LDB data model into a canonical data model (CDM) rep-
resentation. We have chosen an object model as our CDM in agreement with
the conclusions reached in [19] which advocate a model with strong expres-
sive qualities, at least as expressive as each local data model; moreover in the
ODMG object model an attempt has been made to provide a standard object
model. The conversion process involves the creation of a new schema called the
component schema [20] which is modelled using the CDM and contains map-
pings to the local schema. A separate conversion process for each type of data
model is required involving many issues which are discussed elsewhere [4,14].
Once the component schema has been generated, various export schemata are
derived on top of each component schema in the same way as we derive views
on traditional data models. This helps to provide a layer of security for the
architecture. Federated schemata are then constructed using export schemata.
In the architecture of [20] they also provide an external layer where the fed-
erated schema (which uses the canonical model) is transformed to the model
of choice for the end-user.

2 Evaluation of ODMG and OQL

The ODMG group has proposed a standard object model in an attempt to
address the incompatability problem of each object-oriented database using

2

its own object model. As a result of this standard, many multidatabase groups
[7,8] have chosen to adopt the ODMG model as their canonical data model. As
the ODMG object model was originally designed for object-oriented database
systems, part of our research focused on identifying enhancements required
for multidatabase systems [16]. In this evaluation we chose to modify an ex-
isting framework and compare the ODMG object model with other object
models in terms of base model functionality and any possible multidatabase
functionality. Our goal is that a potential canonical model should support all
the necessary operators to construct not only the component schema, but also
export and federated schemata. In [22] the authors proposed a framework for
evaluating some of the first generation object models such as ENCORE and
IRIS. The purpose of that particular research was to evaluate object query
models. Five metrics were employed as part of their evaluation framework:
object-orientedness, expressiveness, formalness, performance and database is-
sues. We chose to use this framework as a basis for our evaluation process
for canonical data models while modifying some aspects to support multi-
database systems. Some of the characteristics of these metrics are modified
and the performance metric was replaced with a multidatabase metric to suit
the requirements of this particular area. In table 1 each individual evaluation
property is listed together with the result for the ODMG OM.

Property Code Description ODMG

Object-Oriented OO1 Class/collections Not Satisfied

Object-Oriented OO2 Heterogenous sets Partial

Expressive E1 Extension to relational algebra Partial

Expressive E2 Dynamic type creation Not Satisfied

Expressive E3 Manipulation of Behaviour Not Satisfied

Formal F1 Formal Semantics Not Satisfied

Formal F2 Closed Algebra Not Satisfied

Database D1 Object Calculus Not Satisfied

Database D2 Database Operators Satisfied

Multidatabase M1 Views (virtual schemata) Partial

Multidatabase M1 Multidatabase Operators Not Satisfied

Multidatabase M1 Mapping Language Not Satisfied

Table 1. Evaluation Framework and ODMG Model Results

3

2.1 Evaluation Framework

The first of the object-oriented metrics, the class/collection metric (OO1) pro-
vides a facility for managing collections of objects. It requires that some mech-
anism be available to split instances of the same type into separate collections.
For example, an attribute Dept may have different values and it may be un-
suitable to place each instance of the Lecturer type into one single collection.
Instead, it may be desirable to group all Lecturer types by Department. A new
instance of a Lecturer type becomes a member of one of these collections when
created, based on its value for Dept. The second metric (OO2) advocates sup-
port for heterogenous sets and sequences. This allows subtypes to be grouped
as long as they have a common supertype.

The first of the expressive properties (E1) is essential to the object model i.e.
the ability to be able to perform operations on the data. The data model should
supply an algebra with operators for selection, projection, join, union and
difference. Property E2 requires support for dynamic type creation. The third
expressive property (E3) advocates support for the manipulation of behaviour.
This property is also useful in multidatabase systems where behaviour needs
to be modified as part of the integration process.

The formal properties require a formal semantics (F1) and closed algebra (F2)
for the object model.

The database properties require the inclusion of an object calculus and we
have included a new property D2, which tests for operators specifically de-
signed for database functionality. For example, integrity constraints and pri-
mary key functions, and some mechanism for building relationships between
types should form part of a data model for database design.

The multidatabase properties are support for views (M1), a multidatabase alge-
bra (M2), and a mapping language (M3). The support for views property could
have been placed under the database properties as it is regarded as a fun-
damental part of relational databases. However, since multidatabase systems
require a special form of view (export and federated schema) they are included
here. Conventional views provide a 1-1 mapping between the attribute name
in the view and the attribute value in the base relation or class. However,
some federated schema attributes will require a 1-n mapping. An example of
this in a healthcare environment is where an attribute such a patient id is
used to combine results subsets from different participating databases. The
federated schema will contain an attribute called patient id which will map
to a similar attribute in multiple participating databases. A good example
of a multidatabase algebra is found in [12] where it is necessary to create a
virtual schema (federated schema in our architecture) which maps to various

4

local schemata through a series of schema editing operations. When a query is
passed to a federated schema, it can be decomposed and passed to the relevant
local schemata by examining the operations which constructed the federated
schema (multiview in some literature [12]). A mapping language is used to
aid in the conversion of schemata to the canonical data model. This language
is part of the interface between component schemata and local schemata de-
scribed briefly in §2.3. All three properties are required for construction of
an integrated (federated) schema and should all be incorporated in a suitable
view mechanism. However, we deliberately identified these properties sepa-
rately as it is possible that some models could support mapping (to create
derived attribtes) but not not a full viewing mechanism. Additionaly, models
could support integration operators but again, not support a full view mech-
anism where integrated schemata could be stored and subsequently reused to
form new federated schemata.

2.2 ODMG Object Model Performance

The Object Data Management Group’s Object Model (ODMG-OM) uses its
Object Definition Language (ODL) to define schemata and its Object Query
Language (OQL) to perform retrieval and update 1 operations. The basic unit
for modelling in the ODMG OM is the object which itself is categorised into
types. The state of an object is modelled by its attributes and its relationships
with other objects.

2.2.1 Object-Oriented Properties

The ODMG OM does not support OO2 as all collections must be of the same
type. A collection such as a list is specifically defined using type generators
and a collection is an instance of a collection type. It is then necessary to
maintain the group by adding or deleting objects. This implies that property
OO1 is not satisfied either. The ODMG standard [6] states that even if new
objects are instantiated which satisfy the predicate for a collection they are
not automatically added to the collection. It also goes on to state that objects
which no longer satisfy the collection remain in the collection: they must be
removed by some direct operation. Although research is ongoing in this area,
a solution to satisfy the OO1 property is mentioned in §3.

1 Although data retrieval operators are defined as part of OQL, no update
operators are defined. OQL relies upon update methods defined in the schema
to handle these operations.

5

2.2.2 Expressive Properties

OQL does not fully satisfy property E1 as not all relational operators are
supported. Queries can return either objects, values or sets. However, no new
objects can be defined as a result of a query. This implies that project and
join operators are only supported through the retrieval of structures. This
demonstrates that the closure property is not satisfied. Only the select op-
erator is present in the examples given. Even minimal query languages such
as NOODL [3] can be used to construct views because the closure property is
satisfied. To illustrate this, example 1 requires a projection of the Patient type
which is valid in SQL (for relational databases), but not permitted in OQL(
for o-o databases).

Example 1 An OQL query which returns a set of structs and not objects

select name,dob,bloodtype

from Patients P

Property E2 is not supported either as there is no provision for the dynamic
creation of virtual types. Instead ODL is used to predefine all types in the
schema. In the previous example, we may not wish to create a supertype in
the schema for Patient that contains the selected attributes. Instead we may
prefer to create a virtual type which acts as a view of the Patient base type.

No provision exists for manipulation of behaviour. Behaviour is defined using
ODL and is not modifiable. For example, an operation to derive an attribute
to calculate a person’s net salary in Irish Pounds may need to be modifed to
derive the salary in Euros. This is not possible in ODL, and thus, property E3

is not satisfied either.

2.2.3 Formal Properties

No formal semantics exist for the object model so property F1 is not satisfied.
This is not surprising as the model is still evolving and is thus difficult to
formalise. Since the algebra allows the retrieval of objects, sets and values, it
is not closed and property F2 is not satisfied. This is a more serious problem.
While it is possible to infer the output from an OQL query by examining the
operator (select or select struct), it requires a degree of preprocessing which
is cumbersome, and it leads to a loss of independence in the sense that query
result types are bound to specific query operators. This is contrary to the
relational algebra where all operators generate a single structure: a relation.
Furthermore, as it does not appear to be possible to query a structure, a query
which returns a structure cannot form the inner part of a nested query.

6

2.2.4 Database Properties

No object calculus has been defined and thus property D1 is not satisfied. The
ODMG OM was designed specifically to model databases and is equipped with
operators to support this. One of the constructs used to model state is the re-
lationship type. Relationships are bi-directional denoted by the relationship
and inverse keywords.

ODMG OM supports a nested transaction model by providing a Transaction
type which may be reused. There is also Database, Schema and Subschema
types which are part of the object model. Metadata access is also part of the
OM. It uses the fact that ODL definitions are predefined and available as
objects of type Type. Thus, property D2 has been satisfied.

2.2.5 Multidatabase Properties

There is no mechanism for views, no multidatabase algebra nor any mapping
language in the ODMG OM so properties M1, M2 and M3 are not satisfied.
This is understandable since the model was not intended for multidatabase
systems. Although views are ’supported’ in the latest version of the model,
they exist only as ’named defined queries’ and do not appear to be reusable
as input to new queries.

2.3 ODMG Object Model in a multidatabase environment

The role of the ODMG OM is demonstrated in figure 1 where the canonical
model schemata are represented by component schemata (C1, C2, C3), export
schemata (E1, E2, E3, E4, E5, E6, E7), and federated schemata (F1). The
component schemata are defined using ODL although functions rather than
attributes are used to model data. We take the view that the component
schema is an ODMG schema where attributes are represented as return values
of functions. These functions serve to encapsulate the inter-model mappings
and schema transformations. This has been done in the past using mediators
[15] or agents [10] which reside at the local database. These agents are local
applications at each local database, and may hold the component schema of
the local database, which acts as a client (when the local site wishes to make
global queries) and as a server (where the local database supplies results to
external global queries). At an implementational level, the ODL schema is
no different from a centralised ODMG schema where retrieval and update
operations are performed using functions to read/write the actual data values.
This is a common practice where it is desirable to preserve encapsulation.
However, the retrieval functions are more complex in the multidatabase model
as they will form the interface between the multidatabase system and the local

7

MDB Data
Dictionary

Export Schemas
(MOQL Definition)

Component Schemas
(ODL Definitions)

Legacy
System Versant

OODB

MS SQL
Server

C1 C2 C3

E1 E2 E3 E4 E5 E6 E7

F1

Transformation Processor

Filtering Processor

Constructing Processor

Fig. 1. The ODMG model used as a canonical model in a federated database archi-
tecture. A Transformation Processor is used to convert local schemata to component
schemata; A filtering processors are used to filter data into export schemata; and a
Construction Processor is used to build the federated schemata.

database system. In earlier work [17] the construction of such interfaces for
four different healthcare software systems was described. Although the ODMG
model was not employed, the definition and construction of interfaces between
the common model and local models is similar.

Once the component schemata have been defined, OQL is used to derive views
which can be used as export schemata. This is made possible through the use
of query definitions in the existing ODMG model but it will not be possi-
ble to reuse these views which make them useless for definitions of federated
schemata. A federated schema must reuse the existing export schemata in its
definition. The extended version of OQL proposed in this paper can be used
to define both export and federated schemata.

3 MOQL: An Multidatabase Extension to OQL

In this section we discuss Multidatabase Object Query Language (MOQL)
which is a result of our efforts to provide closure for OQL, to make the algebra
at least as expressive as the relational algebra, thereby providing the facility
to define views for ODMG databases. Before we can define our view semantics
it is necessary to have a closed algebra similar to the relational algebra where
the output is always known (i.e. a relation). It is then necessary to ensure
that our algebra is sufficiently expressive to (appear to) create the new types
required. Finally, we require the facility to define and store views which provide

8

Relation

Base Relation
(DDL schema definition)

Derived Relation
(SQL view or query)

Type

Base Type
(ODL schema definition)

Derived Type
(OQL view or query)

Fig. 2. Database Objects for Queries. A relational query results in a set of tuples of
a base relation or some derived relation. An object-oriented query results in a set of
objects of a base type or some derived type.

mappings to data values in the object schema.

In our extended model we use ODMG types defined by ODL and classes as
implementations of types. However, we permit both base classes (based on
ODL type definitions) and virtual classes defined in MOQL. A type can have
any number of classes which are used to manage collections of objects. This
is similar to the architecture employed in the COCOON model [21]. A simple
example is where a type called TaxablePerson which represents people who pay
income tax and are grouped by an attribute called SalaryBand. A predicate
based on the SalaryBand type is used to create collections of TaxablePerson
objects. We may have three collections based on three values, SalaryBand ≤
20k, SalaryBand ≥ 20k and ≤ 50k, and SalaryBand ≥50. Thus, ODL is used
to define types and OQL is used to define a predicate for each type which
leads to the separation of n classes for each type. for these examples, we are
still dealing with concrete types which are present in the type hierarchy

3.1 Query Closure for OQL

The OQL language has potential problems in that queries can return objects,
sets or values, and thus it is difficult to nest queries or create views when the
return type is not consistent. Our flavour of OQL has been modified slightly
to restrict queries to return only a set of objects. We have modelled our design
on the relational model which returns a relation, i.e. a set of tuples.

9

To examine the analogy, we first take the relational model which deals with
Relation objects. There are two types of these objects: Base and Derived Re-
lation objects. Figure 2 demonstrates a simple inheritance hierarchy where
the type Relation has two sub-types, BaseRelation and DerivedRelation. A
query will always return the supertype and the database management system
determines whether it is a base or derived structure before calculating the
results.

In the ODMG model, a type is the main modelling primitive in much the same
way as a relation is the modelling primitive in the relational model. Whereas
a relation is a simpler structure containing a set of attributes, a type contains
a set of attributes (some of which may be other types), some behavioural
characteristics, and it may inherit some of its structure and behaviour from
an existing type.

3.2 Extensions to the OQL Algebra

OQL does not create new types as a result of a query but returns existing types.
Although MOQL obeys the same rules, it can return derived types in the same
way as the relational model returns derived relations. This is contrary to the
ODMG 2.0 specification where OQL returns ”atoms, structures, collections
and literals” [5]. In the following examples for selection and projection the
difference between OQL and MOQL is demonstrated. In §3.4 an example of a
join is provided.

3.2.1 Selection

The following example taken from [5] demonstrates a selection query using
OQL. The query demonstrates the power of object-oriented databases where
objects can navigate to other objects following a particular relationship. The
query in example 2 retrieves the address for the children of each Person in the
database.

Example 2 Retrieval of base objects

select c.address

from Persons p, p.children c

The MOQL format for the query is identical. The difference is in the returned
values: OQL returns a set of structs containing addresses whereas MOQL
returns a set of objects of a derived type. A derived type results from the need
to filter (or hide) data before exporting. Our derived types can be used as

10

input to subsequent queries in order to filter data further for different types
of users. As it stands the MOQL query can be nested as the result is a set
of objects. It can also be reused if it is contained inside a view definition (see
§3.3).

3.2.2 Projection

The projection query in example 3 is also taken from [5] where a predicate is
used to restrict the output of the previous query. Once again the syntax for
OQL and MOQL queries are identical.

Example 3 Projection Query

select c.address

from Persons p,p.children c

where p.address.street = ”Main Street” and

count(p.children) >= 2 and

c.address.city != p.address.city

This particular example highlights a potential problem for views in object-
oriented databases where updates are required, and also for future view defini-
tions which reuse this view. The problem is that the attribute Person.children
which is part of the predicate is not present in the view. Subsequent view def-
initions cannot see this attribute and additions to the database through this
view are impossible. In [11] they employ a materialisability rule which states
that a view which does not contain attributes used in the condition part of
the view definition are not updatable. We choose to include the attribute in
the display part of the view. OQL returns a set of structs for this modified
query whereas MOQL returns a set of derived objects

3.2.3 Preserving Encapsulation

In §2.3 we discussed the fact that attributes exist as functions at the compo-
nent schema level. Multidatabase schemata are virtual schemata with map-
pings between higher level schemata and attributes at the local database level.
This type of mapping supports encapsulation as access to local attributes
is available only through an ODL interface. When defining views on ODL
schemata or OQL query results, MOQL accesses functions which return at-
tribute values. Component schemata are defined using ODL. Each attribute is
encapsulated with Get and Set functions. In a conventional OODB, the Get

11

1..*

Address
StreetName : string
Town : string
County : string
Country : string
PostCode : string

lives in

1

1

Consultant
StaffNo : integer
LastName : string
FirstName : string
Title : string
Dept : string

are seen by

*

*

takes

*

Patient
ID : string
Lastname : string
Firstname : string
Address : Address
DOB : date
NextOfKin : string
Doctor : consultant
LabTest : LabTestResult

1..*1

1

*

LabTestResults
Ref : string
Test : BloodTest
Date : date
Result : long

*

*

BloodTest
TestId : short
Name : string
MinVal : long
MaxVal : long1** 1

are of type

Fig. 3. A simple healthcare database modelling using the Unified Modeling Language.

function returns or computes an attribute value and returns the value to the
retrieval query. In our proposed multidatabase architecture, each Get function
must interface with the local schema to retrieve the required value from the
physical database.

3.3 Providing View Support for the ODMG OM

In this section we discuss howMOQL can be used to provide a view mechanism
similar to that of the relational model. For simplicity the sample views are
created at a single site and represent export schemata. The sample views
are intended to demonstrate the difference between OQL and the extensions
provided by MOQL. Research which is focused on the view mechanism itself
is presented in [18] and contains a series of complex view samples.

The example in figure 3 demonstrates a subsection of the Component Schema
for a Laboratory Information System (LIS) using the Unified Modelling Lan-
guage [9]. There are five objects that contain information to be shared with
another participating database. We have a requirement to export patient data
to senior administration (ManagementView), a subset of this view to medi-
cal staff (StaffView), and a different subset of the same view for a particular
consultant (WardView).

An OQL user will have no problem creating the first query or view. Using the
named query definition feature a query can be created and stored persistently
which also serves as a view.

12

The management query is for patient id, name, address, dob, consultant, blood
test reference, blood test name, blood test result for all patients in the ’HIV’
department.

Using OQL we can define a query as illistrated in example 4.

Example 4 OQL Query

define ManagementView as

select D.id, D.lastname, D.firstname, D.address.StreetName,

D.address.Town, D.address.County, D.address.Postcode, D.dob,

D.doctor.name, B.Ref, B.test.name, B.result

from Demographics D, BloodTest B

where D.doctor.dept = ”HIV”

Using MOQL the query is similar.

Example 5 MOQL Query

CreateView ManagementView as

select D.id, D.lastname, D.firstname, D.address.StreetName,

D.address.Town, D.address.County, D.address.Postcode, D.dob,

D.doctor.name, B.Ref, B.test.name, B.result

as PatientID, lname, fname, addr1, addr2, addr3, addr4, dob,

consultant, testref, testname, testresult

from Demographics D, BloodTest B

where D.doctor.dept = ”HIV”

The above OQL query definition cannot be reused as an input into a second
query. In OQL it will be necessary to define three separate queries, although
subsequent queries (examples 6 and 7) should be able to reuse the first query
(illustrated in example 5). Additionally, it is not clear how the first query can
be used as the inner query in a nested structure as it will return a set of structs
which OQL cannot use as an input to a query.

Using MOQL the first query returns a derived object which we can use to

13

create the remaining views shown in examples 6 and 7.

Example 6 Reuse of ManagementView

CreateView StaffView as

select M.lname, M.fname, M.dob, M.testresult

from ManagementView M

where M.testresult > 40

This provides a list of patients who have a positive result to their blood test.

Example 7 Reuse of ManagementView

CreateView Wardview as

select M.lname, M.fname

from ManagementView M

where M.consultant = ”Ward”

This provides Doctor Ward with his list of HIV patients. Note that there is
no reason why a view cannot use more than one view, or a combination of a
views and base schema objects.

4 Conclusions and Future Research

In this paper we attempted to use the ODMG object model in a multidatabase
environment. As it stands, it falls short of meeting the needs of this type of
database system. Its shortcomings are due to the fact that it was mainly
designed for object-oriented databases and not for multidatabase systems.
Additionally, the failure of OQL to return a single modelling primitive leads
to difficulty in constructing reusable views and nested queries. We have shown
how to overcome this problem by returning ODMG derived types as a result
of all OQL queries. This has also provided us with a mechanism for defining
reusable views.

One of our objectives has been to retain compatibility with the ODMG-93
OM specification. Our enhancements have been for the purpose of providing
multidatabase functionality in the form of reusable views which can be used
to define export and federated schemata. To that extent, we have not com-
promised compatibility with the ODMG standard. MOQL is a multidatabase

14

extension for OQL with the capability to create and manipulate derived types.
OQL and MOQL queries return the same results.

Although the ODMG model has fared badly in the evaluation process [16]
and was not intended for usage in a multidatabase system, we have decided to
continue to use it for multidatabase design and implementation. Our reasons
are mainly of a practical nature. A standard for object database modelling
and design is necessary for the future of object oriented databases and mul-
tidatabases. In addition, there are some planned features which are beneficial
to multidatabase systems. For example, versioning will enable us to manage
schema evolution at local database level. Integrity constraints can be declared
on attribute types; transactions may access objects in more than one database;
and metadata is available as a predefined schema. These are all characteristics
required of multidatabase systems.

Although our initial appraisal of the model, and our first definition of views
and MOQL were all based on the ODMG 1.2 specification, we have recently
updated to the ODMG 2.0 [6] specification. There are many similarities be-
tween the versions which meant that the major thrust of ur work is unchanged.
Improvements in the model (for example the specification of an access inter-
face for the schema repository) has helped in the design of an implementation
for our view mechanism. This implementation extends the ODMG schema
repository and is breifly described in [18], with a fuller description due for
submission shortly.

Finally, we are specifying a process for transferring export schemata between
information servers and the multidatabase kernel. This is based on using a
CORBA object to browse the schema repository of the component schema
and retrieve export schemata before passing them to the kernel where they
will undergo an integration process.

The authors would like to acknowledge the helpful comments of the annony-
nous referees which clarified some of the issues discussed in the paper.

References

[1] O. Bukhres and A. Elmagarmid (eds). Object-Oriented Multidatabase Systems.
Prentice Hall, 1996.

[2] M. Bright, A. Hurson and S. Pakzad. A Taxonomy and Current Issues in
Multidatabase Systems. IEEE Computer, December 1991.

[3] P. Barclay and J. Kennedy. Viewing Objects. Proceedings of 11th British
Conference on Database Systems, Springer, 1993.

15

[4] C. Batini, M. Lenzerini and S. Navathe. A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Computing Surveys, vol.
18, no. 4, December 1986.

[5] R. Cattell (editor). The Object Database Standard: ODMG-93. Morgan
Kaufmann, 1996.

[6] R. Catell and D. Barry (eds). The Object Database Standard: ODMG 2.0.
Morgan Kaufmann, 1997.

[7] S. Conrad, B. Eaglestone, W. Hasselbring, M. Roantree, F. Saltor, M. Schonhoff,
M. Strassler, M. Vermeer. Research Issues in Federated Database Systems.ACM
SIGMOD Record, Vol. 26, No. 4, December 1997.

[8] S. Conrad, W. Hasselbring, A. Heuer, G. Saake. Engineering Federated
Database Systems. Proceedings of the CAISE 97 Workshop, Preprint 6/1997,
University of Magdeburg, 1997.

[9] H. Eriksson and M. Penker. UML Toolkit, Wiley, 1998.

[10] W. Hasselbring. Federated integration of replicated information within
hospitals. Intl. Journal on Digital Libraries, Vol. 1, No. 3, Nov. 1997.

[11] W. Kim andW. Kelley. On View Support in Object-Oriented Database Systems
in Modern Database Systems: The Object Model, Interoperability, and Beyond,
Won Kim (ed), Addison-Wesley, 1995.

[12] A. Motro. Superviews: Visual Integration of Multiple Databases. IEEE
Transactions on Software Engineering, vol. se-13. no. 7, 1987.

[13] M. Tamer Özsu and P. Valduriez. Distributed Database Systems: Where are we
now? IEEE Computer vol. 24, no. 8, 1991.

[14] E. Pitoura, O. Bukhres and A. Elmagarmid. Object Orientation in
Multidatabase Systems. ACM Computing Surveys, Vol. 27, No. 2, June 1995.

[15] M. Papazoglou, Z. Tari and N. Russell. Object-Oriented Technology for
Interschema and Language Mappings. In [1].

[16] M. Roantree. Evaluating the ODMGObject Model for Usage in a Multidatabase
Environment. Technical Report No. CA-2597, Dublin City University, 1997.

[17] M. Roantree, P. Hickey, A. Crilly, J. Cardiff, J. Murphy. Metadata Modelling
for Healthcare Applications in a Federated Database System. Intl. Workshop
on Trends in Distributed Systems, LNCS No. 1161, 1996.

[18] M. Roantree, J. Kennedy and P. Barclay. A Multidatabase Layer for the ODMG
Object Model. Proceedings of 5th International Conference on Object-Oriented
Information Systems, Springer, 1998.

[19] F. Saltor, M. Castellanos and M. Garcia-Solaco. Suitability of Data Models
as Canonical Models for Federated Databases. SIGMOD Record vol. 20, no. 4,
1991.

16

[20] A. Sheth and J. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, vol. 22,
no. 3, September 1990.

[21] M. Scholl, H. Schek and M. Tresch. Object Algebra and Views for Multi-
Objectbases. Proceedings of Workshop on Distributed Object Management,
1992.

[22] An Evaluation Framework for Algebraic Object-Oriented Query Models.
Proceedings of 7th International Conference on Data Engineering, IEEE
Computer Society Press, 1991.

17

