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Abstract

Social learning plays a key role in the evolutiorcobperation
in humans and other animals. It has also been sHuntim
theoretically and experimentally that environmenthleasity is
also a key determinant of the evolution of cooperatimong
individuals. Here we investigate the impact of sotgalrning
on the evolution of cooperation in the context ofaage of
levels of environmental adversity. We used an abesed
simulated world of asexual individuals that commatgcand
play a probabilistic version of the Prisoner’s Dilemgame.
We considered simulated worlds either with or withouidan
spreading of the offspring and two variants of sociafrang,
either copying to some extent all communication rutes
copying fully some of the communication rules of thest
performing neighbor individual. The results show thatthe
case of spreading of the offspring, social learning irsgedhe
level of cooperation and reverses the association keties
and the level of environmental adversity, i.e. loweadity with
social learning implies higher level of cooperatiorop@ing
fully some communication rules also increases thadgtstate
level of communication complexity in the simulatedeat
communities. The results suggest that the levelooperation
in communities of individuals may get boosted alé¢ely by
highly adverse environments and by layers of sociahieg in
low adversity environments.

I ntroduction

The emergence and evolution of cooperation among

individual humans and animals is a fundamental tipreof
social evolution (Axelrod, 1997). In general itaissumed that
cooperation emerges either because of kin seleatiodirect
or indirect reciprocation, or because of some fafsocial
clustering or due to the group level selection afups with
more cooperating individuals (Rand and Nowak, 20k3)as
been also shown that social factors, such as esfent of
rule following, also contribute significantly todtevolution of
cooperation (Sigmund et al, 2010).

An external factor that has critical influencetbe level of
cooperation is environmental adversity, which ides both
the harshness of the environment (i.e. scarcityesburces)
and the variability of the environment (i.e. theiahility and
extent of the lack of predictability of the level available
resources) (Andras et al, 2007; Andras et al.
Theoretical, simulation and real world experimemasults
confirm that in general higher level of environmant
adversity implies higher level of cooperation intgounities

2003)

of individuals existing in the presence of suchiemmental
constraints (Krams et al, 2010; Spinks et al, 20R0énd et al,
2014; Potts and Faith, 2015).

Social learning in general means that individusithin a
community adapt their behavior such that they follo
behavioral patterns of other individuals (Flinn,9I% The
other individual may be chosen on various grourfds,
example it can be the most successful individuadme pre-
defined sense or it can be the oldest neighboridiyidual. It
has been suggested that social learning suppooisecation
in communities of individuals, especially in thentext of
humans (Boyd and Richerson, 2009), however, theralao
claims of the opposite effect in the relevant &tere (Heyes,
2013).

The level of cooperation can be measured direirtly
experiments (both in the case of agent-based siiontaand
in the real world). Having additional measures afrelates of
cooperation is useful to understand better theesardf the
measured level of cooperation. One such measurthes
communication complexity of the interactions betwebe
individuals of the community (Andras, 2008).
Communication complexity decreases with
environmental adversity and this contributes toittoeease in
the level of cooperation (Andras, 2008).

Here we present the use of an agent-based siowlati

which implements communicating agents that plagqurér’s
dilemma games (Axelrod, 1997) to investigate thke rof
social learning in the context of evolution of ceagtion in
communities of selfish individuals. We consideredo t
variants of the simulated world, one where the pffgy of
the asexual individuals do not get dispersed widiedyn the
location of their parent, and another where themifhg is
dispersed away from the location of the parentgeineral the
simulation without dispersal of the offspring hakegher
levels of cooperation at the steady-state leveln thhe
simulation with offspring dispersal (Andras et &003;
Andras et al, 2006). We also considered two vasiafitsocial
learning, in one case the learner copies to sontenethe
communication rules of the most successful neighimothe
other case the learner copies fully some of thensomication
rules of the most successful neighbor. The resfitsv that
copying fully some communication rules increaseslével of
cooperation more than the considered alternativeiako
learning method. Both social learning methods hawech
more effect if the offspring are widely disperseSiocial

increased
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learning with full copying of some communicatioras also
reverses the association between environmentaksitivand
the level of cooperation, making the level of caagien
increase with the decrease of the environmentatrady. In
addition, social learning with full copying of some
communication rules leads to higher
complexity in the simulated agent communities tiia® use
of the other social learning method or simulatiaithout any
social learning. The results suggest that the lewél
cooperation in communities of individuals may geb$ted
alternately by highly adverse environments and dyeis of
social learning in low adversity environments.

The rest of the paper is structured as followsstFive
review briefly the relevant results from the litenz. Next we
provide a description of the agent-based simulatfat we
used. This is followed by the presentation of thetaded
results. Finally the paper is closed by the disomssand
conclusions section.

Background

There are several theories about the mechanisniadoéie
emergence and evolution of cooperation in commesitf
selfish individuals. Kin selection assumes thatates
individuals recognize each other on the basis dirth
similarity and the likelihood of their cooperatiavith their
kin is high in order to support the success an@éating of
the kin (Rand and Nowak, 2013). Direct recipro@sumes
that individuals are likely to reciprocate the ceogive help
received from others and expect further reciprocatof
cooperation by others who benefit from this (Rantd a
Nowak, 2013). Indirect reciprocity relies on thes@mption
that individuals observe the behavior of othervidlials and
they are more likely to cooperate with those whe sgen to

communication

Theoretical and agent-based simulation analysisthef
environmental risk conceptualized as the variantethe
available resources shows that the experiencecstiig risk
is always bigger than the objective risk and théedince is
bigger in harsher environments (Andras et al, 20@7has
been also shown that the effective risk after tgkinto
account the effect of cooperation is always smdhan the
subjective risk and that the effective risk is picadly stable
across a range of subjective risk levels and thabls
effective risk is slightly increasing with the hlangss of the
environment (Andras et al, 2006). This implies thaher
subjective risk perceived by individuals triggersorm
cooperation in order to bring down the level of gféective
risk to the stable level of this.

In the context of communicating individuals whayogate
before making the decision about cooperation theptexity
of the communication language that they use caneb to
the overall environmental risk. It has been shoWwrough
agent-based simulation studies that indeed comratioic
complexity is lower in the case of higher
environmental risk (Andras, 2008). Note that theglaage
complexity is measured in terms of the variabildfy the
communication rules and not as the length of comaoation
sequences preceding the decision on cooperatida.résult
implies that the communication complexity measuseai
useful correlate of the extent of reduction of #ffective risk
through reduction of the unreliability of commurticas
between individuals.

Social learning plays a key role in organizing soeial role
of individuals in the context of their social eronment
provided by their community (Flinn, 1997). The ewse of
social learning is the copying or imitating the aeior of one
individual by another individual.
mechanisms of social learning, some being contegeddent
others being content-dependent, some are oriemedrds

external

There are several

cooperate with others (Rand and Nowak, 2013). Group

h : A specific individuals (e.g. richest, most succesdfldest, most
selection based mechanisms assume that individuals P (g ?

similar) others are driven by frequency of behavi@.g. most

belonging to groups characterized by higher levél o
cooperation are more likely to survive and havesmihg
because their group has a better chance of suradsal group
due to the benefits from the high level of coogeratvithin
the group (Rand and Nowak, 2013). Other models ogly
emergent population structure (e.g. spatial comgga that
drive cooperators together and exclude non-coopesat
giving in such way an advantage to the emergentoamnities
of cooperators over other
dominated by cooperators (Rand and Nowak, 2013).
Environmental adversity is an important determirafrthe
emergence and evolution of cooperation (Andrad,e2007;
Andras et al, 2003). Theoretical analysis shows tigher
environmental adversity (harsher
variable environment) implies higher level of cogi®n
among individuals in communities that survive inghni
adversity environment (Andras et al, 2007; Andrasak
2003). Experimental results about a range of arsinpfalmans
and agent-based simulation results confirm thisoretical
result, showing that indeed, exposure to highedatien risk
or higher variability of environmental resourcesrisks lead
to higher frequency of cooperative behavior
individuals (Krams et al, 2010; Spinks et al, 20B@nd et al,
2014).

emergent communities not

environment or emor

between

frequent is copied) or by the state of individudksg.
experiencing high dissatisfaction) (Rendell e28l10). Social
learning may work by copying a fully or partially whole
sequence of consecutive behaviors or by aimingnialate

the outcome of a sequence of behaviors, or by some

intermediate variant of behavioral copying (Rendefl al,
2010). Social learning may also be supported bgreafment
of rules in various forms of punishment appliedndividuals
who do not conform to the rules (Sigmund et al,®01

Agent-based simulations have been used to studgugar
aspects of social learning (e.g. choice of socedriing
mechanisms) (Nakahashi et al, 2012; Seltzer andn®mi
2015; Molleman et al, 2013). Such simulations ugual
implement a small range of alternative social lewyn
mechanisms and analyze their impact on the behagitine
simulated agent community.

The role of social learning in the context of egegrce and
evolution of cooperation has been considered inraber of
settings. In general it is suggested that soca@hiag is a key
contributor to the evolution of cooperation amongmians
and possibly also among other animals (Boyd andiérgon,
2009; Rendell et al, 2010; Chudek et al, 2013)ds heen
shown that in simulated social networks imitatidnsocially
distant individuals increase the level of cooperatiithin the
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agent community (Seltzer and Smirnov, 2015). Otgent-
based simulation studies show that certain formsafial
learning (e.g. conformism) reduces the level ofpsration in
simulated communities (Molleman et al, 2013; Burginal,
2015). There are also more theoretical
investigations that question the level of contribatof social
learning to the emergence and evolution of coojmerat
among humans (Heyes, 2013).

Simulated Agent Communities

The simulated world of agents is placed in a twoetisional
space arranged as a torus in both dimensions aridghthe
size of 1000 in both dimensions. The agents mordamly
in this space in each turn (up to 5 units in batheshsions).

Each simulation runs for 400 time turns. In eaaim teach
agent picks randomly another agent from
neighborhood to interact with. An agent is allowtednteract
with only one other agent at any time and some tagey
stay without interaction partner in some of thetitarns.

The agents own resources and they spend thesgvives
If the resource amount of an agent goes below trer@gent
dies. The agents use their current level of ressutt set their
level of resources in the next turn. They may giay a
resource generation game with their interactionngar

The agents interact using a communication language

consisting of the symbols: ‘0’,’s',’i",’y’,’'n’,’h’ and ‘t". The
meaning of the communication symbols are as folld@/s—
no intention of communication, ‘s’ — start of commization,
‘I — maintaining the communication, 'y’ — indicat of the
willingness to engage into resource sharing, ‘rihéication
of no further interest in communication, ‘h’ — eaffive
sharing of the resources, ‘t' — not sharing theoueses after
an indication of willingness to engage into sharifpe last
two symbols, ‘h’ and ‘t’ effectively mean the resoe-sharing
or no-resource-sharing actions of the agents. Ememtion

of communication symbols by agents is determined by

probabilistic communication rules of the agentsedéhrules
are expressed as follows
L: Q)

’ . .
UcurrenbU current—’plunew,:h - pZUnew,a---y nd pkUnew,k

whereUgyen IS the current communication symbol produced

by the agentU’.uent iS the current communication symbol
produced by the communication partner agepd,;is the j-th
possible communication symbol that may be produmethe
agent following the previous production of the syl en:
and the production of the symboU'e« by the
communication partner agent, amd is the probability of
producing U,e,; the symbol. Naturally we have that+

pot...+ p = 1. For example, a communication rule can be the

following
L: 2
Li" —o5l; —02Y: —o3N

which means that after producing the symbol ‘i’ aedeiving
the symbol ‘i from the communication partner, with5
probability the agent will produce the symbol ‘ith 0.2
probability the symbol 'y’ and with 0.3 probabilitie symbol
n.

/ conceptual

its spatial

An example of a sequence of communications between
agents is: 's S, iy, ip, i1, Ia, V1, I, Y1, ', Where the indices are
the identifiers of the two agents. If the commutia@aprocess
between two agents carries on for too long with@aiching
the production of the action symbols ‘t" or ‘h’ @&hength
limit was set to 20 symbols), the communicatiomieates as
it is considered too long for the time turn. Thencounication
between two agents may also terminate if eithehein starts
by producing the ‘0’ symbol, if one of them prodsdée ‘n’
symbol, or if they both produce a ‘t' or ‘h’ symbdh the
latter case the agents engage in a prisoners’ dilergame
where the outcome of the game depends on the aatiothe
involved agents, i.e. they cooperate if both ofrrthgroduce
the symbol ‘h’ otherwise one of them or both ofrthtries to
cheat (by producing the symbol ‘t’).

When the agents enter the playing of the prisoners

dilemma game they jointly invest their availablsaerces to
generate new resources. The overall payoff of Hmaais the
difference between the sum of the amounts of nsourees
that each agent would have without entering theegand the
amount of resources that can be generated by usiag
combined current resources of the agents. If antadeats
while the interaction partner is willing to coopirathe
cheating agent takes the full payoff and the otgent gets
no extra resources in addition to what it can gateelby itself
with its own available resources. If they both decito
cooperate they share the full payoff equally and thets
added to the amount of resources that they woultbrg¢e
individually. If both agents decide to try to chewi extra
resource is allocated to either of the agents.

The generation of effective new resources is zedliin a
probabilistic manner. The actual value is pickednfr a
uniform distribution where the mean value of thstrithution
is given by the calculated value of new resourcekthe half-
width (equivalent of variance) of the distributiangiven by
the environmental risk level gf that characterizes the
simulated world of the agents. Low environmentak r{low
variance) means than the actual value of the neauree is
close to the calculated mean value of the resouedae
distribution, while high environmental risk (highanance)
means that the actual value may differ significaftbm the
calculated mean value (can be also much smallernaunch
larger).

The agents have a memory of their most recentaictiens
with other agents (last ten interacting agentskg ftemories
record the outcome of the interactions with theenagents
and depending on the experience of the agent theapility
of the resource sharing action of the agent igegte- it gets
more likely to cooperate again with interactiontpars who
cooperated previously and less likely with thoseowheated
previously (i.e. the probabilities of the rule caments

y.y' —ptandyy -4 hchange — e.g. the latter gets bigger if the

sharing gets more likely according to the past Bgpee).

The agents engage in social learning. They sefeet
individual with the highest amount of resources tiveir
neighborhood as target of imitation — the neighboth
consists of the 10 closest other agents. Two kofdsocial
learning approaches have been implemented. In ase the
agents copy to some extent the communication behafi
the imitated agent by setting their communicatiasier
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probabilities similar to the matching probabilitief the
imitated agent. This is implemented as
previse((UcurrenbU,currenv UneV\) = (1',7) L poriginal (3)
(Ucurrenv U current Unevx)"' ”mmitated
(UcurrenbU,currennUHEV\)

where p(Ucurrens U’ currens Unew 1S the probability of generating
the symbol U, by the agent after previously having
generated the symbal.,; and having received the symbol
U’ current from the communication partner, arpis the extent
of the fidelity of the imitation. In the second &dearning
approach the agent copies fully some of the comaoatioin
behaviors of the imitated agent. In this cagdahe extent of
the fidelity of the imitation, is the probabilityf @opying for
all communication ruleg (i.e. includes the copying of all
related probabilities).

The agents have a limited life span (60 time t@t®ost in
the simulations that are reported here — the agimt their
life at a randomly set starting age that is at nifjt When
they reach the end of their life they reproducexasky, by
generating potentially mutated offspring which irihehe
communication rules with possible small changestte
relevant probabilities. The number of offspring eegs on
the resources available to the agegt 4t the time of death
and it is determined by the equation

N=[8:((0— Lnea) Petce) + 1 4)

where Ohnean aNdoggey are the mean and standard deviation of

the resource across the whole agent community eatithe

when the offspring is generated afichnd y are parameters,
[] is the integer part function8(=1.5, y = 1.5). We also

capped the number of offspring, i.e. rif > nu,, then the

number of offspring iSNma (max = 15). If the above
calculation gives < 1 then the agent has no offspring.

The offspring of the agent may be spread closedyirad
the location of their parent or may get widely @isged in the
full extent of the two dimensional world in whichet agents
exist. The first offspring location option may dealumps of
cooperating agents, while the second option previtig. We
implemented both options of placing of the offsgrof dying
agents.

More details about the simulated agent world desdr
above can be found in Andras et al (2003), Andragle
(2006) and Andras (2008). The code developed ipldbr
the implementation of the simulated agent worldaviailable
on request from the author.

Resultsand Analysis

We considered the following six simulation scenstrigl)

partial copying of all rules without wide dispemsiof the
offspring; (1) partial copying of all rules withide dispersion
of the offspring; (Ill) full copying of some rulesithout wide
dispersion of the offspring; (V) full copying obsie rules
with wide dispersion of the offspring; (V) no sdciearning
and without wide dispersion of offspring; (VI) nmcsal

learning and with wide dispersion of offspring. Fal

scenarios with social learning we considered twiawns with
low and high levels of copyingy, i.e.,7=0.2and; = 0.8.

We ran 20 simulations for five levels of environrtenisk (o
=0.1, 0.3, 0.5, 0.7, 0)9or each variant of the simulation
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Figure 1. The evolution of the level of cooperation and the

level of language complexity for agent communitiéghout
wide dispersion of offspring and social learning fogrtial
copying of all language rules (scenario I): A) lewaf
cooperation with7 = 0.2; B) level of cooperation witl =
0.8; C) level of language complexity with= 0.2; D) level of
language complexity witlp = 0.8; where 77 is the level of

copying.
scenarios. All data shown in the figures are awsagf 20

simulation runs, the standard deviations are sarall are not
shown to not clutter the figures.

In the case of scenarios without wide dispersion of

offspring the starting size of the agent populatisri,800,
while in the case of scenarios with wide dispersion
offspring the populations have 7,500 individualsstrt. In

scenarios with wide dispersal of the offspring likelihood

that an agent dies without offspring is higher tihaecenarios
with closely located offspring. Thus in scenarioghwwvide

dispersal of the offspring the likelihood that aafler agent
population goes extinct is relatively high. Forsthéason the
population size was increased in these scenarioail&ions

with larger population sizes take more time to burt do not
influence the nature of the results presented here.

We measured the level of cooperationly calculating the
percentage of agents that engage in a cooperatieraction
(i.e. both agents communicate the symbol ‘h’ at ¢inel of
their interaction) among all agents in the curregent
population.

We also measured the complexity of the agent laygua
For this purpose we considered all language rules =
1,...,R(in the presented agent world simulations we Rad?2
language rules) and all corresponding probabilipgs j =
1,....k and calculated the variance of the values for azfch

where K = 5. k. This language complexity measure is

inspired by the concept of Kolmogorov complexity énd
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Figure 2. The evolution of the level of cooperation and the ( 7 C) level of language complexity wir= 0.3; D) level of

level of language complexity for agent communitieighout language complexity witho = 0.7; where g is the level of
wide dispersion of offspring and social learning ful environmental risk.

copying of some language rules (scenario Ill): Ayel of . . . .
cooperation withy = 0.2; B) level of cooperation witty = cooperation for different levels of environmentakr for
0.8, C) level of language complexity with= 0.2; D) level of example the differences far = 0.7 and o = 0.9 become
language complexity wittp = 0.8, where 77 is the level of statistically not significantly different for bottinds of
copying. & 5

Vitanyi, 1997) in the sense that more variable i@pgibn of
the language rules (higher variance of the cornedipng
probability values) requires a longer descriptioh the
language than the description of a language with same
number of rules but less variable application efthles.

We expect that allowing the agents to use soeiaitning M1 M1 .
increases the steady-state level (i.e. after mang turns, 0 0 i
when this level gets stabilized) of cooperation dgent i "
communities due to the copying of successful nesghly Time tums Time tums
agents who are expected to be the ones that aftgpecate. It o1

is also expected that social learning will redudee t 00 WK 008 ¢
. .. 0.08 \\ 0.08
complexity of the language across the agent comtyyuagain £ 0o \ £ oo \
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due to the copying of language rules between agents oo \ ooe
First we considered the scenarios without wid@etision 004

of the offspring of the agents — scenarios (l)I) ind for oos

0.03

language complexity
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reference also scenario (V). For both variants o€ia o oo

learning we analyzed the evolution of the levetobperation P ecrorsszncczo: Tiefomszancczon

and of the communication complexity for low andthigvels e e

of behavioral copying. The results are shown irufég 1 and

2. These confirm that in both cases of social earrihe

steady-state level of cooperation grows with theelleof Figure 4. The evolution of the level of cooperation and the

environmental risk similar to previously reportedsults level of language complexity for agent communitrgghout

(Andras et al, 2003; Andras et al, 2007). Also, ilsirty to wide dispersion of offspring and social learning fl

previous results (Andras, 2008) the results shoat the copying of some language rules (scenarios IIl ajidAy level

steady-state language complexity decreases with the Of cooperation witho=0.3; B) level of cooperation withr =

environmental risk. 0.7, C) level of language complexity wiitn= 0.3; D) level of
Increased level of copying in social learning leads language complexity witto = 0.7, where o is the level of

smaller differences in terms of steady-state legtls environmental risl

1202 JoquiaAoN 60 U0 3sanb Aq ypd° | G0U0-0-9E6EE-292-0-8L6/2EE Y06 L/062/82/9 1 0ZIepd-sBuipasdid/|es)/npa jiwrjoalip//:dpy woly papeojumoq



A)OG EOG*
05 05 4

04 041

03 034

—Risk

=01

02 02 - —Risk=03

Risk=05

c - percentage of cooperators
¢ - percentage of cooperators

01 01 4
Risk = 0.7

0 0 —Risk=09
1 35 69 103 137 171 205 239 273 307 341 1 35 69 103 137 171 205 239 273 307 341
Time turns Time turns

2|
=
S
>

M
-~
S
>

—Risk=01

02 - ——Risk=03

.
02 4

Risk=05

c - percentage of cooperators
o
o

¢ - percentage of cooperators
o
o

Risk =07

—Risk=09

1 35 69 103 137 171 205 239 273 307 341 1 35 69 103 137 171 205 239 273 307 341
Time turns Time turns

S, D)o,
0.09 - 009 -
0.08 - 008 -

2007 4 2007 4

3 3

2006 1 2006 A

S0.05 1 $005

° °

2 2
S0.04 A S004 1
2 E)

2 2
£0.03 4 =003 4
002 002

001 4 001 4

0 0
1 35 69 103 137 171 205 239 273 307 341 1 35 69 103 137 171 205 239 273 307 341
Time turns Time turns

Figure 5. The evolution of the level of cooperation and the

level of language complexity for agent communitigth wide
dispersion of offspring and social learning by f@értopying
of all language rules (scenario Il): A) level ofoperation
with n = 0.2; B) level of cooperation with = 0.8; C) level of
language complexity wittm = 0.2; D) level of language
complexity withn = 0.8; where is the level of copying.

social learning. On the other hand, increased lefrebpying
in social learning leads to increased differencesveen the
steady-state levels of language complexity assetiatith
different levels of environmental risk.

We also note that an impact of the social learméniat at
the beginning (until over 120 time turns) the ondgrof the
language complexity levels associated with riskelgvis
reversed, i.e. low risk level implies low languagsmplexity.
In the absence of social learning the steady-statering of
risk level associated language complexity levelsaligady
established by around 80 time turns (see Figuieasd34). The
time point, by which the steady-state ordering afiguage
complexity levels emerges, changes with the lefeopying.
Interestingly in the case of social learning witirtfal copying
of language rules, higher extent of copying impliedaying
this time point, while in the case of social leatiwith full
copying of some rules, the increase in the extérdopying
makes this time point earlier.

Next we compared the levels of cooperation anduage
complexity for different extents of copying in theo kinds of
social learning for two fixed levels of environmahtisk o =
0.3ando= 0.7. The results are shown in Figures 3 and 4.

The results indicate that social learning at sreatent of
copying does not change the level of cooperatiamwéVer, at
lager extent of copying the impact is a statistycaignificant

(t-test,p=0.05) increase in the level of cooperation. In terms

of language complexity both kinds of social leagimas a
major effect in reducing earlier and by a considkraxtent
the level of language complexity. Interestinglystbifect is
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Figure 6. The evolution of the level of cooperation and the
level of language complexity for agent communitiéth wide
dispersion of offspring and social learning by fedipying of
some language rules (scenario IV): A) level of cragion
with 77 = 0.2; B) level of cooperation witky = 0.8; C) level of
language complexity withy = 0.2, D) level of language
complexity withn7 = 0.8; wheres; is the level of copying. The
blue and red-purple lines stop early in B) and D do the
early growth of the simulated populations beyonc th
population size limit.

larger at lower level of environmental risk andtle case of
social learning by partial copying of all languagdes the
increase in the level of copying reduces the redoctffect
on the language complexity.

Next we considered the simulation scenarios witldlewi
dispersion of the offspring — scenarios (ll), (Iahd (VI) for
reference. The wide dispersion of the offspringuces in
general the level of cooperation in the agent conitias, but
the ordering of the levels of steady-state coopmrat
associated with levels of environmental risk reraahre same
as in the case without wide dispersion of the offgpin the
case of agent communities without social learning.

For both kinds of social learning that we impleneehtve
found that the steady-state level of cooperatiosociated
with levels of environmental risk do not follow tleedering
pattern found without social learning or with séd@arning
but without wide dispersal of the offspring. In thases of
social learning with wide dispersal of the offsgrifower
environmental risk leads to higher level of cooiera— the
difference becomes statistically significant fogtnér extent
of copying in the social learning. In terms of laage
complexity again the ordering of the steady-statels is the
reverse of the ordering that we found for scenavithout
wide dispersion of the offspring. Lower environnmantisk
implies higher language complexity in the case géra
societies with widely dispersed offspring and aittoeem of
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Figure 7. The evolution of the level of cooperation and the
level of language complexity for agent communitiéth wide
dispersion of offspring and social learning by f@rtopying

of all language rules (scenarios Il and VI): A) déévof
cooperation witho = 0.3; B) level of cooperation witho =
0.7; C) level of language complexity witti= 0.3; D) level of
language complexity witto = 0.7; where o is the level of
environmental risk.

social learning that we implemented. The resuksstrown in
Figures 5 and 6.

The results show that higher extent of copying dcia
learning implies an increase in the steady-staiellef
cooperation for all levels of environmental risk foth kinds
of social learning and this effect is stronger lire tcase of
social learning with full copying of some languagédes.
Similarly, higher extent of copying in social lesng increases
the effect of environmental risk on the steadyestatel of
language complexity (i.e. the distinction betwetrady-state
level of language complexity for high and mediunvele
environmental risk becomes clearer). Again, theatfis more
accentuated for the social learning with full copyiof some
language rules. We also note that the steady-s¢atd of
language complexity is lower for all levels of emwvimental
risk in the case of social learning with partiapgimg of all
language rules. The evolution of language compjestibws a
wavy nature in all cases considered here, whidikésy to be
due to a generational effect (each generation ehisglasts
for around 60 time units).

Further, we considered again two fixed levels of
environmental risk¢ = 0.3 and o = 0.7) and compared the
corresponding levels of cooperation and languagepbexity
for different extents of copying in the two kind$ social
learning. The results are presented in Figured78an

The results show that at lower level of environtaknisk
both kinds of social learning increase the levet@dperation
relative to the case with no social learning. Nbtaven at
higher levels of environmental risk, at the initigrt of the
evolution of the agent community the level of coapien
increases with the extent of copying in social néay. For
both kinds of social learning, higher extent of yiog leads to

Figure 8. The evolution of the level of cooperation and the
level of language complexity for agent communitiéth wide
dispersion of offspring and social learning by fodlpying of
some language rules (scenarios IV and VI): A) lewél
cooperation withg = 0.3; B) level of cooperation witho =
0.7; C) level of language complexity wiiti= 0.3; D) level of
language complexity witho = 0.7; where g is the level of
environmental risk. The olive-green line stops\earlA) and
C) due to the early growth of the simulated popoiet
beyond the population size lin
higher level of cooperation at both environmenigl tevels.
In terms of language complexity, again both kinfisarial
learning lead to a significant drop in comparisathwhe case
with no social learning. This effect is much largethe lower
level of environmental risk. Higher extent of capyiin social
learning leads to smaller steady-state languageplendity at
the lower level environmental risk, at the highavel
environmental risk the same effect is smaller. Asalready
noted, for both kinds of social learning higher dewof
environmental risk implies higher steady-state lmup
complexity. The level of language complexity is Ewfor the
social learning with partial copying of all langeagiles than
for the social learning with full copying of somanguage
rules for both considered values of extent of cogyand for
both considered levels of environmental risk.

Discussion and Conclusions

Our results show that in the simulated agent conitiesn
social learning has more effect on the level ofpmration and
the level of language complexity at low level epwimental
risk than at high level of environmental risk. THifference is
more accentuated in the case of simulations witldewi
dispersal of the offspring of agents.

We found that low extent social learning doesinotease
the level of cooperation and in the case of higlirenmental
risk this may even reduce the level of cooperatidre extent
of social learning influences the level of languagenplexity
in all cases. More social learning leads to lowamnguage
complexity quicker in the context of low environnerrisk.
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A very interesting result is that in the case iofitdations
with wide dispersal of the offspring adding sodedrning to
the simulations reversed the ordering of levelsadperation
and language complexity associated with levels of
environmental risk, compared to the case withoutiado
learning. There is no such effect if the offsprofghe agents
are not dispersed widely in the space where thetadige.

The results suggest that social learning is nmopactful in
terms of supporting cooperation and reducing laggua
complexity in the context of low environmental risk
situations. High environmental risk situations suppthe
emergence of relatively high level of cooperatiord dow
level of language complexity even in the absencesatfial
learning (Krams et al, 2010; Andras et al, 2007ndRat al,
2014; Potts and Faith, 2015). Thus it is possité animal or
human populations develop high level of cooperaiioharsh
and risky environments without relying much on sbci
learning, and these populations get to even hidgnezl of
cooperation and lower level of language complegitythey
move to less harsh and less risky environments.

The results also suggest that social learning gesuch
more significant role in communities where related
individuals get dispersed widely in the community.close
knit communities where kin are likely to stay claseeach
other the simulation results suggests that the atnphsocial
learning is mainly in terms of reducing the langeiag
complexity within the community.

The observations based on the simulation datastheial
learning may reduce the level of cooperation ordase the
level of language complexity in high risk enviromme and
that in general it may have little effect on thevele of
cooperation at small extent of social learning, gasg that
social learning has the potential to reduce codjperan some
settings (especially high environmental risk situat). This
fits well with some of the experimental observasioand
theoretical explorations about how social learningay
influence negatively the disposition towards coagien of
humans (Molleman et al, 2013; Burton et al, 2015).

In general the results presented here suggeststiwal
learning and environmental risk may take altermptioles in
driving animals and humans towards communities tkbt
increasingly on cooperation among individuals. High
environmental risk is the first driver to highervéé of
cooperation in the community of individuals. Foliog a
move to a low risk environment social learning takeer as
driver toward more cooperation and lower language
complexity. High level of cooperation in low riskneronment
combined with social learning may lead to the emecg of
novel social structures that add new risks to thé&renment
and also increase the language complexity (Boyed, €012).
This may lead to a new high risk environment whiichiurn
facilitates further cooperation in the evolving acomity.
Next, with the maturation of the previously new iabc
structures the environmental risk may get reduced the
community may experience a new bout of increase in
cooperation due to social learning. This way thehgrg
community may increase the level of cooperation &mel
extent of social institutions, in steps driven adggely by high
environmental risk and social learning. The ingsibn of
generation of novel social structures in agentthase
simulations of communities will be part of futurenk.
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