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1. Introduction
Given the abundance of intelligent lifeforms existing on Earth arising as a product of evolution,
it is unsurprising that the basic concepts of evolution have proved appealing to scientists for as
long as they have had access to digital technologies. The fundamental ideas of evolution — that
of population, variation, selection — have been “borrowed" to solve problems in diverse fields
dating as far back as the 1950. For example, Turing described an evolutionary inspired method
to solve control problems [1]; in the 1960s, a group of engineers in Germany invented the first
‘Evolution Strategy’1 in order to optimise the design parameters of a physical hinged plate and
later of a dual-phase gas nozzle [2], while Holland’s seminal book on genetic algorithms [3] was
first published in 1975.

The 1990s onward saw a huge explosion in both the development of improved evolutionary
algorithms (EAs), in the domains to which they were applied, and in theoretical understanding of
their processes. EAs found success in solving many hard combinatorial optimisation problems in
domains such as logistics and scheduling, as well as in continuous optimisation domains such as
function or parameter optimisation. A natural follow-on from this was to apply artificial evolution
to the field of robotics and Artificial Life (Alife) in order to evolve new designs and controllers,
giving rise to the now vibrant field of Evolutionary Robotics. The field encompasses the use
of artificial evolutionary algorithms to design morphology [4], control [5] or a combination of
the two for both simulated and physical robots [6–9]. Furthermore, it has progressed to cover
evolution with a wide range of materials, ranging from soft, flexible materials that can be easily
deformed under pressure to provide adaptation [10], through modular approaches that evolve
configurations of pre-existing components [11] to approaches that exploit the ability to rapidly
print hard-plastic components in a diverse array of forms [12].

Embodied Artificial Evolution The move to applying EAs in robotics introduces an important
conceptual shift with respect to previous work that applied EAs in the domains of combinatorial
optimisation or function optimisation. There is a fundamental difference between evaluating a
genome that encodes a string of numbers that (say) represent a solution to a function optimisation
problem and evaluating a genome where the string of numbers represents the control parameters
of a robot: in the latter case, the controller exists in a physical body that interacts with the
environment2. This notion is captured by the now popular term “embodied intelligence", which
describes the design and behaviours of physical objects situated in the real-world and was first
introduced by Brooks in 1991 [13]. Pfiefer and Bongard’s seminal text ‘How the body shapes the
way we think’ [14] expanded on the idea that intelligent control is not only dependent on brain,
but at the same time both constrained and enabled by the body. The text shows in great detail how
intelligence might arise as a result of the interplay of morphology, materials, interaction with the
environment, and control.

For the field of artificial evolution and robotics, Pfiefer and Bongard’s work strongly suggests
that it is insufficient for the computer-scientist to focus on only using evolution as tool to
evolve neural control mechanisms for robots with fixed morphology — they must also consider
morphological computation and study how artificial evolution might be used to realise this.
Morphological computation refers to the fact that judicious use of material and/or design of body
parts can enable certain processes to be performed by the body that otherwise would have to
be performed by the brain [14]. Pfiefer and Bongard provide numerous examples from nature.
For example consider a human leg: as muscles and tendons are elastic, the system is able
to undertake small adaptive movements due to forces arising from impact with the ground,
without any need for neural control. Another example can be found in leg coordination in
insect walking: angle sensors in the joints provide global communication between the legs
1the modern version of this methods CMA-ES (Co-matrix adaption Evolution Strategy is to date one of the most commonly
used optimisation methods in the domain of continuous optimisation
2the same is true whether in simulation or physical robots given that most modern simulations use sophisticated and realistic
physics-engines to model environmental interactions
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providing coordinated movement as a direct result of forces generated through interaction with
the environment. Communication is mediated only by the environment, and not through any
neural connections. Even if neural control is required, judicious placement of sensors on the body
can provide correlated information that considerably simplifies neural control (the touch-sensors
on the finger-tips that generate information when a hand closes on an object are an excellent
example of this, described in detail in [14]

Co-evolution of morphology and control For the Evolutionary roboticist, this clearly points to
the fact that to properly exploit the power of evolution to discover appropriate robots for a given
task, one must consider the co-evolution of body and control, rather than simply use EAs to
search for controllers for fixed (hand-designed) body-plans [15]. This has the obvious advantage
of allowing evolution to discover for itself the appropriate balance between morphological and
neural complexity in response to the particular environment and task under consideration.

In order to develop a system that can achieve this in practice, evolution should act on a
population whose individuals have a genome that encodes the information required to generate
both morphology and control. However, this notion raises a challenge for artificial evolutionary
methods in the design of the genome encoding. Assuming no prior knowledge of what type of
robot is required for a task, then a single population should contain a diverse set of genotypes
that encode for morphologically diverse body-plans. Here, an artificial evolutionary system
significantly diverges from its biological counterpart: in the latter, evolution takes places within
distinct populations consisting of a single species. In contrast, in the artificial case, we essentially
have multiple species inter-breeding within a single population: that is, if a species is defined by a
particular set of morphological features, then we can have (for example) a single population that
contains wheeled land-based robots, swimming robots and flying robots. A result of this is that
offspring might bear little similarity to either parent. In such cases, an inherited neural controller
— with inputs corresponding to sensory apparatus and outputs to actuator control — is likely
to be incompatible with the new body [16,17]. The problem is exacerbated if the morphological
space to which evolution is applied is rich.

One way of addressing the mis-match issue is to use an encoding for the controller that is
morphology-independent, i.e. one in which the genome specifies a mechanism for generating the
controller, rather than directly specifying it. These designs are referred to as generative encodings.
However, even the controllers inherited via a morphology-independent mechanism are likely to
require fine-tuning to specialise the controller to the nuances of the new body. This motivates the
requirement for individual-learning.

If it evolves it needs to learn Eiben et al proposed an evolutionary framework for robotic
evolution called the Triangle of Life [18]. The three sides of the triangle represent three phases:
(1) morphogenesis in which are robot is created from a genome; (2) learning in which the new
robot undergoes training to improve its inherited controller, perhaps following a syllabus of
increasingly complex skills in a restricted or simplified environment; (3) life, i.e the robot is
released into the intended real environment and its fitness is measured as its ability to accomplish
a task.

Eiben and Hart [19] further expand on the role of the learning phase, arguing that it is in
fact essential, particularly if evolving directly in hardware. In the extreme case where there is
a complete mis-match between body and control between parents and offspring, the individual
learning mechanism might be applied tabula rasa, i.e. learned from scratch [9]. On the other hand,
using any representation that permits inheritance of either a suitable3 controller or mechanism for
generating a controller, the learning process can act as a form of adaptation over the course of an
individual’s lifetime. Having expended computational effort on applying a learning mechanism,
one can then consider whether a Lamarkian [20] system might be used, in which the learned

3in a neural network controller for example, the term suitable would imply that the network has inputs and outputs that
match the sensors and actuators on the offspring’s new body-plan
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controller (or controller generation mechanism) is written back to the genome. On the other hand,
one can also study whether individual learning gives rise to a Baldwin effect [9], i.e. in analysing
whether there is implicit selection for morphologies that are able to learn quickly.

Cultural Learning An alternative form of learning that might be considered in the context of
Evolutionary Robotics is that of cultural learning [21]. First introduced in artificial evolution
to improve problem-solving in the function optimisation domain [22], a cultural algorithm
introduces a belief-space that captures useful knowledge learned across generations. An evolving
population can interact with belief-space, influencing population based evolution. In turn, the
belief space is continually updated as new knowledge is generated by the evolutionary process
acting on the population [22]. This can ‘bootstrap’ individual learning processes by exploiting
previously discovered controllers for example [17]. It should also be noted that an additional
form of learning — that of social learning can also be applied in the context of ER but typically
requires the use of a swarm in which one robot can learn from direct interaction with another
robot in the swarm [23,24]. Here we restrict our discussion to the subset of evolutionary robotics
which does not rely on a swarm, i.e. is focused towards emergence of a single robot appropriate
for a specified task.

Overview of remainder of article The remainder of the paper provides a survey of the field
of Evolutionary Robotics with respect to three axes identified above (i.e., evolution, individual
learning and cultural learning). The review is restricted to evolutionary joint optimisation of body
and controllers in the context of a particular task with a defined objective function that should
be maximised. That is, we do no consider open-ended evolutionary systems in which there is no
specific objective other than to survive and reproduce in an environment.

It first considers methods which can be used for the joint-optimisation of body and control,
assessing their pros and cons. It then considers the role of individual learning mechanisms in.
improving newly generated offspring, and the influence of the learning process on the main
evolutionary process. Finally we evaluate the role of an additional form of learning that can
loosely be described as cultural learning, that enables the learning process to exploit a structured
knowledge-store that captures historical knowledge from multiple generations.

2. Frameworks for Joint Evolution of Body and Control
Figure 1 presents a general framework for evolution and learning that guides our discussion. It
depicts four possible architectures in which robot bodies and controllers can be jointly optimised
via processes which use either only evolutionary mechanisms (i.e.at the population level, fig. 1
A), those that augment evolution at the population level with individual learning (fig. 1 B,C),
and finally those that also add cultural learning (fig. 1 D). The general framework encapsulates
a dual-loop, in which evolution and learning processes can interact in various ways, with the
relative balance in terms of computational effort between the two loops introducing an additional
variable into the process. The four mechanisms are considered in turn below, followed by a
general discussion.

(a) Joint optimisation via evolution only
We first discuss the process denoted A in figure 1 in which robots are designed only via an
evolutionary process that acts on a population of genomes that define both body-plans and
controllers, i.e there is a single evolutionary loop with no learning mechanism. This obviously
necessitates that both morphology and controller of offspring must both be inherited from the
parent robots. As we noted above, this introduces a constraint on the representation of the
controller on the genome in that it must be capable of producing a controller that matches the new
body, in terms of capturing input from sensors and outputs to the actuators. As mentioned, this
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Figure 1. Four different processes for joint optimisation of body and control are shown.A: Robots are designed via an

evolutionary process that acts on a population of genomes that define body-plans and controllers. B: Each new robot

generated via evolution also refines its controller via individual learning over a lifetime: learning is either tabula-rasa or

starts from the inherited controller. The evaluated fitness on a task/environment is returned to the evolutionary process

C: as in B, however the learned controller is written back to the genome, i.e. follows a Lamarkian process. D: the learning

algorithm is initialised from a knowledge repository that contains good controllers learned in previous generations, i.e

represents a form of cultural evolution. The repository is filled with from information encoded in the population

.

often requires the use of generative representations that construct a controller from instructions
encoded on the genome, rather than directly specify the control parameters.

Working in the field of modular robotics, Veenstra et al [25] evolve a blue-print that specifies
both the body and controller of a modular robot, i.e. one that is built from a library of ‘modules’
that can connect together at multiple sites on each module. Their blue-print takes the form of a
single directed tree that defines both body and control, therefore encapsulating its tightly-coupled
nature. Each module contains its own controller in the form of a parameterised sine-wave function
that controls its motors. Starting from a root node, each subsequent node of the tree specifies the
type of module to be attached to the parent module, and the location it should be attached. As
the control system is directly encapsulated within each module, the representation guarantees an
appropriate control system.

They investigate multiple ways in which the tree can be encoded on the genome: (1) a direct
encoding of the tree itself in which mutations can add/delete nodes or change the parameters
of a node controller; (2) a parameterised L-system [26] which evolves a set of production rules
specifying how a tree can be built; a neuro-evolution approach which evolves a neural network
(a Compositional pattern producing network referred to as a CPPN [27], see below) that outputs
values determining which (if any) module should be connected to each potential site on existing
modules; (4) a cellular-encoding [28] which also produces a CPPN that is used to generate trees.
In all cases, the controller parameters encapsulated with an module can be altered via mutation
operators. Note that a CPPN is a special class of neural networks that makes use of a set of
activation functions that output regular patterns. They were originally proposed as an abstraction
of gene expression and embryonic development and have found particular favour with the
evolutionary robotics community in terms of evolving morphology for their ability to produce
repeated patterns within a body plan, for example, multiple limbs with identical form. Veenstra
et al find that the direct encoding of the tree and the L-system produce the highest performing
robots given a fixed evaluation budget, while the CPPN approach maintains the highest diversity
within a population.

The approach of using a single encoding to represent both body and control is common in
modular robot designs that use wave-like controllers to control servo-motors embedded in the
components that are used to build the robot. For example, Brodbeck et al evolve robots that are
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constructed entirely in hardware with no simulation, using a ‘mother robot’ to automatically
assemble offspring from a set of cubic active and passive modules. The genome contains n genes,
one per module required. Each gene contains information about the module type to be used
(active or passive), construction parameters and finally two parameters that specify the motor
control of the module (the phase and amplitude of a sinusoidal controller). It is important to
note however that the modular designs just discussed do not have sensing capabilities. Control
is simplified in this situation as it is reduced to actuation of each module, without having to
coordinate sensed observations from the environment with actuation.

While the above approaches uses the same encoding to specify both morphology and control,
other authors separate the specification of each component into two separate encodings, which
are represented on the same genome. Although this separation in some sense undermines the
prevailing view that body and control are tightly coupled, the explicit separation isolates each
component and therefore allows enables tailored changes to be made to either component. For
example, Stensby et al [29] study a restricted morphological space in which the length of the joints
of a bi-pedal walker can be adapted by evolution. In this case, some aspects of the morphology
remain constant: each walker has the same number of limbs, connected in an identical manner.
However, evolution can vary the length of each individual limb, thus introducing morphological
change. One section of the genome encodes a vector specifying the width and height of each joint.
A second vector encodes the weights of a fixed-size neural network that outputs the force to apply
to the leg joints, thus forming a type of closed-loop control architecture. Specifically designed
mutation-operators operate on each vector. Restricting the morphological adaptation to changing
limb length considerably simplifies the task of representing controllers. The same fixed topology
neural network controller can be applied to every new body-plan created: the task of evolution is
therefore only to evolve the weights of the controller and inheritance is therefore straightforward.

Cheney et al consider joint optimisation in the context of evolving soft-robots composed of
regular cubic-voxels that can be realised with either active material (i.e. analogous to muscles) or
passive materials (analogous to tissue) in a line of work described in [30,31]. They opt for a dual-
representation of body and controller, using two CPPNs encoded on the same genome. One CPPN
provides the outputs required to define the morphology of a robot, while the second describes the
controller, producing outputs that determine the actuation of each voxel.

In [30] the authors first demonstrated a now well-known problem that joint optimisation
approaches can tend to lead to premature convergence of the morphology, and therefore restrict
performance: this occurs as changes to morphology arising through evolution tend to lead to
robots with controllers that are in the worst case unable to be applied to the new morphology,
or at best, provide poor performance. In order to address this issue, they introduce the notion of
‘morphological innovation protection’ — the goal is to allow time for a controller to adapt to a
new body via evolutionary mutations by temporarily reducing selection pressure on individuals
that have new morphological features introduced via mutation. Their method removes robots
from the population if they are ‘dominated’ by another robot with respect to two variables: their
age and their fitness. This has the effect of protecting robots with poorly adapted controllers from
being removed, allowing their controllers time to adapt to the new morphology. Their preliminary
results show the method both prevents premature convergence of body-plans and results in more
efficient robots with respect to the tasks that they are evolved for.

While all of the methods above are shown to be capable of evolving robots that exhibit high
performance with respect to the tasks they are evolved for, it is clear that applying a learning
mechanism over the lifetime of an individual has the potential to improve an inherited controller.
Methods to implement individual learning are described in the next section.

(b) Joint Optimisation with Individual Learning
In these schemes, each time a new robot is generated via evolution it is given an opportunity to
refine its controller by running an individual learning algorithm: this enables it to either improve
its inherited controller over some fixed period of time, or in some cases, to learn a controller from
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scratch. In both cases, the learned fitness is associated with the robot at the end of learning process
and used by the evolutionary process to drive selection (figure 1 B). Furthermore, depending on
the representation used to encode the controller, the learned controller can be written back to
the genome before further evolution takes place, i.e. a Larmarkian process can be followed (1 C).
Examples of these approaches are now discussed.

(i) Individual Learning applied to inherited controllers

Jelasavic et al [20] tackle the problem of co-optimisation using a modular robotic framework in
which the body-plan consists of an arrangement of pre-designed modules, and control is realised
via a central pattern generator (CPG): first introduced by Ijspeert [32], a CPG is a form of neural
circuitry that outputs cyclic patterns typically found in vertebrates. From the robotics perspective,
such controllers are attractive in that they have few parameters and provide smooth control
transitions. As in Cheney et al, the genome contains two separate components for encoding
morphology and control. A tree representation (as in [25]) is used to encode morphology. The
controller is encoded by a function that generates the weights of a CPG. The function that generates
the CPG weights is a Compositional Pattern Producing Network (CPPN, as described above) that
is itself evolved: the network is queried with the position of a source and target module, and
outputs the weight of the connection from source to target and the bias and gain values required
by the CPG. As the network can be queried with as many input/outputs pairs as required, it is
completely morphology-agnostic.

To realise this system, the ‘controller’ part of the genome in fact contains a population of CPPNs:
when an offspring is created, it inherits 50% of the CPPNs encoded on each parent. The learning
algorithm (in this case an evolutionary algorithm) is then applied for a fixed number of iterations
to improve this population. At the end of this process, the learned fitness assigned to the robot is
that achieved by the best performing CPPN. Note that although the learning mechanism used in
this case is evolutionary, in fact any suitable learner could be applied. This approach allows for
both Darwinian and Lamarkian evolution. In the former case, the CPPNs inherited by offspring
from their parents are those that the parents were born with. In the latter case, the inherited
population is overwritten at the end of the learning process with the improved population of
CPPNs. Their results show perhaps unsurprisingly that the Lamarkian approach considerably
reduces the time required to learn, and that is particularly important when the available learning
budget is small. More interestingly, they observe that most benefit is observed when there is high
similarity between the morphological properties of the two parents: in this case, the CPPNs of each
parents are already well-adapted to the specific morphology of the parents and therefore provide
a suitable springboard for further adaptation.

A similar study is conducted by Miras et al [33]. Using a similar set up to that described
above, they studied whether applying a learning mechanism to tune an inherited controller
(without Larmarkianism) influenced the resulting performance and morphological properties of
the evolved robots. Here they find that using the individual learning mechanism not only results
in robots that perform better on the chosen task, but that it also produces significantly larger robots
than those evolved without applying learning. Although the number of limbs in robots produced
with/without learning was similar in each case, the number of modules was higher in the former
case. Furthermore, they observe that the learning delta — the difference between the fitness of the
inherited controller and that of the learned controller — increases over time. Thus, the system
illustrates a Baldwin effect, i.e. that evolution selects for robots that are more capable of learning
over time.

(ii) Individual Learning tabula rasa

The methods just described make use of indirect encodings of the controller (usually CPPNs) in
order to address the problem of the mis-match between the structure of an inherited controller and
the potentially modified morphology of a child robot. This elegantly solves the mis-match issue
as the the CPPN can generate however many weights are required for an appropriate controller.
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The method has been shown to have multiple advantages: as it generates the pattern of weights
as a function of the geometry of the inputs and outputs of the domain it is tightly coupled
to placement of actuators and sensors in the morphology; it can produce regular connectivity
patterns which facilitate the emergence of movement such as walking gaits or swimming; it
enables very large neural networks to be evolved through very compact encodings (analagous
to DNA) [27]. However, on the downside, due to the indirect encoding, the fitness landscape can
be discontinuous — small changes in the genotype can lead to major changes in the phenotype
(and in fact the opposite, i.e. a major genotypic change can lead to a small phenotypic change).
Several authors have also noted that the evolution progress using an indirect encoding is slower
than that of a direct one, something that is of particularly concern if one is hoping to conduct
fitness evaluations in hardware (see [34] for a detailed discussion on this).

To address these concerns, an alternative approach to individual learning is simply to create
a neural controller with a suitable structure (i.e. appropriate inputs and outputs) once the new
morphology of a child has been decoded from the genome, and then learn its weights from
scratch using an individual learning algorithm that operates directly on a vector that explicitly
represents the controller weights. This (a) removes the need to design a morphology-agnostic
controller representation and (b) has the advantage that many types of learning algorithm can be
applied to learn the controller (for example, reinforcement learning, evolution, stochastic gradient
descent).

For example, Gupta et al [9] use a reinforcement learning algorithm to optimise the controllers
of robots whose morphologies are evolved using an evolutionary algorithm. Robots are composed
from articulated 3D rigid parts connected via motor actuated hinge joints. Each time a new
morphology is produced via evolution, the RL algorithm is applied from scratch to optimise a
policy to control the robot. Interestingly, they show that the coupled dynamics of evolution over
generations and learning over a individual lifetime leads to evidence of a morphological Baldwin
effect, demonstrated experimentally by a rapid reduction in the learning time required to achieve
a pre-defined level of fitness over multiple generation. Hence, evolution selects for morphologies
that learn faster, enabling behaviours learned by early ancestors to be expressed early in the
lifetime of their descendants. They go on to suggest a mechanistic basis for both the Baldwin effect
and the emergence of morphological intelligence, based on evidence that the coupled process
tends to produce morphologies that are more physically stable and energy efficient, and can
therefore facilitate learning and control.

Le Goff et al are motivated by the goal of applying artificial evolution and learning to physical
populations of robots. Their model [4,8,17] envisages hybrid systems in which two populations
of robots can exist simultaneously, one in simulation and another in hardware. Evolution can take
place both within each population or across the two populations, that is, allowing mating between
a physical mother and virtual father. Their goal is to find a learning algorithm that is as efficient
as possible given that conducting experiments in hardware can be time-consuming. Furthermore,
physical robots are subject to the effects of wear and tear that can degrade the robot performance
and add noise to learning trials.

They propose an algorithm dubbed NIPES [35] for learning a controller from scratch once a
morphology is known. The algorithm is a modification of the state-of-the-art optimiser CMA-
ES proposed originally as an optimiser for continuous valued search-spaces. The algorithm is
augmented with a novelty mechanism [36] that maintains diversity and is known to be effective
particularly on deceptive navigation tasks such as maze-navigation where it is difficult to provide
a suitable reward to drive learning. The algorithm also includes an adaptive restart mechanism
that gradually increases population size, starting from a small population. Learning terminates
if a behaviour that passes a fixed performance threshold is found. This aspect considerably
improves efficiency by only increasing population size (and therefore trials required) if strictly
necessary. A population of controllers are randomly initialised for each new morphology: NIPES
is shown to be both high-performing and efficient, appropriately balancing exploration and
exploitation when learning controllers in a morphological space that includes multiple sensors,
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wheeled actuators and joints. A comparison to another type of learner - a Bayesian Optimiser (BO)
- shows that although both methods can achieve similar performance, the computational running
time of the NIPES method is significantly shorter than BO. As noted above, this is therefore
preferable in the context of physical robotics.

(c) Joint Optimisation with Individual and Cultural Learning
While the previous section has focused on individual learning mechanisms in which an
individual robot improves its controller based only on information gathered during its own
lifetime, we now turn our attention to mechanisms which enable the individual learning
phase depicted in the Triangle of Life to be influenced by knowledge gathered over previous
generations, stored in continually updated repository.

Cultural algorithms were first introduced into the field of artificial evolution in 1990s [21,37].
They are based on the notion that in advanced societies, culture accumulates in the form of
knowledge-repositories that capture information acquired by multiple individuals over years of
experience. If a new individual has access to this repository of information, it is able to learn things
even when it has not experienced them directly. Cultural algorithms are prevalent in the field of
swarm-robotics [23,24] in which robots learn to adapt to complex environments by learning from
each other. However, here we restrict the discussion to methods in which the individual learning
process of a single robot as depicted on the TOL can be influenced by external repositories of
information built up over multiple generations. The repository effectively stores the results of
previous individual learning trials that can be drawn upon by future generations.

Le Goff et al. [16,17] describe a method for bootstrapping the individual learning phase
by drawing on such a repository, which can be used when learning by default is tabula rasa
due to the difficulty of inheriting an appropriate controller (e.g. as in [9]). They consider that
robots can be categorised by ‘type’ according to a coarse-grained definition of their morphology.
Specifically, type is defined by a tuple (sensors, wheels, joints) which denotes the number of
each component present in newly produced robots. An external repository stores the single best
controller found through individual learning for each potential type. When a new robot is created
via the evolutionary cycle, the learning phase is initiated by first selecting a controller from a
robot with matching type from the repository (assuming one exists). A learning algorithm then
attempts to improve this controller in the context of the new body. Note that the definition of
type is deliberately high-level in order to make the process of finding a matching type more
straightforward and therefore increase the chance of being able to bootstrap from the repository.
It should be clear that robots of the same type may in fact have very different skeletons (and
therefore sizes) and different layouts of sensors/actuators, and hence even an inherited controller
may not perform well. Although finer-grained definitions of type that accounted for these
differences could be introduced, they would reduce the probability of a match (a way to mitigate
this would be to store several controllers per type in conjunction with an informed heuristic for
selecting among them). The repository is updated whenever an improved controller is found for
the type.

Le Goff et al demonstrate that the use of the repository results in a significant increase in
performance over robots that learn from scratch [16,17]. However, they also observe a similar
premature convergence of morphology as reported by Cheney et al [31]. Their finding further
show that morphologies converge to only 13 different types (from a potential 1024 according to
the definition). We return to this aspect in the discussion section.

Finally, although not strictly speaking an evolutionary approach, the work of Liao et al ([38])
is also worth mentioning due to the fact that they also employ a dual optimisation process to
find the best morphology and controller for a walker micro-robot, optimising morphology and
then control in separate loops making use of information learned across generations. Here a
Bayesian Optimiser (BO) is used to learn a controller for each new morphology, taking advantage
of previous information to initialise the optimiser, hence aligning with scheme D in figure 1. They
use a form of BO known as contextual Bayesian optimization (cBO) [39] to optimise a Gaussian
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Process (GP) model to define the controller policy. By encoding the morphologies as contexts,
cBO takes advantage of the similarities between different morphologies and is therefore able
to generalise to good polices for unseen designs faster. In essence, rather than learn a new GP
model for each new robot evaluated, the models are shared such that learning for a robot b can
start from a previously learned model for robot a if they have similar morphology. Conceptually
therefore, this is very similar to the approach from Le Goff just described. However in this case,
the repository consists of GP models rather than controller weights.

3. Discussion and future directions
We have described a number of ways in which artificial evolution can be used to jointly evolve
the morphology and controller of robots. These processes are described in the context of a general
framework that permits evolution and learning (both individual and cultural). A key aspect of
the framework is the nature of the dual-loops of evolution and learning, and the manner in which
they interact with each other. The pros and cons of this approach are discussed below.

Firstly, we note that the framework design enables the computational budget allocated
to an experiment to be divided between evolution/learning in different ways depending on
the situation. For example, if one wants to design physical robots in which a robot must be
manufactured from the blueprint specified on its genome, then it should be clear that there is
significant cost (in terms of time and material) associated with the production of the robot itself:
for example, Hale et al [8,12] use 3D printing to produce robot skeletons followed by an automated
process to attach wheels and sensors, a process which can take up to 6 hours per robot. An
evolutionary trial of a new robot is therefore costly. On the other hand, once a robot is built, a
learning trial is cheap. It might therefore be desirable to limit the number of cycles of evolution to
reduce the number of robots that need to built in favour of increasing learning trials.

Secondly, we have presented work from several authors [9,33] that shows that adding an
individual learning loop to the evolutionary cycle demonstrates the Baldwin effect, in that
evolution rapidly selects for morphologies that learn quickly. A mechanistic basis is provided
in some detail by Gupta [9]. However, we have also highlighted that the joint optimisation can
lead to morphological stagnation, in that the population quickly converges to a fixed morphology
[17,40,41]. As suggested by Cheney [41], an approach to tackling this is to ensure that new
offspring that have accumulated significant morphological mutations are given time to re-adapt
their controllers. This can be achieved by via the method of morphological innovation protection
as proposed by Cheney; alternatively, in the context of the framework described in figure 1
this can be achieved by focusing effort on the learning loop and enabling sufficient time to
adapt. Maintaining diversity within a population is of course generically challenging for most
evolutionary dynamics. Gupta [9] proposes an alternative suggestion to address this by using
an asynchronous steady-state evolution: rather than using the generational approach typical in
most evolutionary robotics literature (in which the offspring population entirely replaces the
parent population), in the asynchronous approach, small tournament based competitions are held
within a population, where offspring only compete within the tournament, with winner directly
replacing an older member of the existing population. Their results show that this method is able
to deliver a highly diverse array of robots with respect to their morphological characteristics.
The mini-tournaments referred to above play a part in delivering this diversity, helped also by
the survival operator which is based on the age of the robot. This survival operator can be
compared to the morphological innovation protection operator proposed by Cheney described
earlier. Clearly there is further work to be done to address this issue.

This article has focused on methods for joint optimisation, covering examples in a variety
of morphological spaces (e.g. modular robotics, soft robotics, 3d-printed skeletons with varied
sensors and actuators) and types of controller (e.g. neural networks, central pattern generators
or wave-forms). However we have largely ignored the role that the environment can play in
influencing the evolution-learning cycle. This clearly adds an additional dimension in that is well
recognised that environmental complexity fosters the evolution of morphological intelligence
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[14]. Hence although we have described a general framework that elucidates the mechanisms by
which evolution and learning can interact, the environment in which this occurs is crucial. Gupta
[9] has shown that exposing robots to a variety of physical environments (e.g. varying the friction
or angle of the surface over which the robots move) and the task (the objective to be optimised)
during evolution with learning leads to robots that learn faster. This is also a fruitful avenue for
future work to gain further insights in this direction.

An additional avenue for future work concerns the representation used to define the blueprint
the specifies morphology and control. This can be considered along two dimensions: (1) whether
a single encoding can specify both aspects or whether it is separated into two distinct parts, one
for morphology and one for control and (2) whether a direct or generative encoding is used.
With respect to the former, while a single encoding explicitly captures the notion of embodied
intelligence results from the tight interconnection between morphology and control, separating
the two provides a means for more fine-grained control in an artificial setting. In terms of
representation, as described above, generative representations that construct either body and/or
controller are inherently flexible and bypass issues associated with ensuring controllers have the
appropriate form. On the other hand, when mapping from genotype to phenotype, small changes
in genotype can lead to large changes in phenotype (and vice versa), resulting in a complex
landscape for evolution to navigate.

Finally, we have restricted the discussion to the joint optimisation of morphology and control
to realise the design of a robot optimised with respect to a specific goal. It should be noted that
within the field of evolutionary robotics, there are other strands of study that are closely related.
In the field of swarm-robotics, Thenius et al [23] propose a form of learning that they call ‘local
cultural adaptation’ in which an individual robot exchanges information with those in a local
sub-group in order to improve its control settings. Cully et al [42] have considered the role of
learning in the context of adapting controllers in response to morphological change that occurs
during a lifetime, while Walker et al [43] study a form of learning in which the morphology of a soft-
robot can deliberately adapt during an individual lifetime (for example, growing an additional
‘body-part’), mediated by environmental signals. The take-away message is that knowledge in a
variety of forms obtained by multiple forms of learning mechanisms clearly plays a key role in
augmenting evolution in the context of evolutionary robotics where robots have both form and
behaviour, with many fruitful lines of research remaining open.
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