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Abstract

Vector Padé approximants to power series with vector coefficients may be
calculated using the three-term recurrence relations of vector continued frac-
tions if formulated in the framework of Clifford algebras. We show that the
numerator and denominator polynomials of these fractions take particularly
simple forms which require just a few degrees of freedom in their represen-
tation. The new description also allows the calculation of ”hybrid” approxi-
mants.

1 Introduction

Given a power series with vector coefficients in IRd we may construct rational ap-
proximations to it using vector Padé approximants [5,15]. The theory of these ap-
proximants [6,13,16,19] parallels that of the scalar case [e.g. 2] if vectors are treated
as objects in an appropriate algebra — Clifford algebras allow multiplication as well
as addition of vectors. In particular, such approximants may be realised using vector
continued fractions, thus enabling advantage to be taken of three-term recurrence
relations in their computation. However, the polynomials obeying these relations
can be complicated elements in the Clifford algebra, with perhaps as many as 2d−1

components required to describe them. In this paper we use the fact that these
polynomials belong to a particular group — the Lipschitz group — and are then
able to represent them fully using far fewer degrees of freedom. For example, the
denominator requires a scalar polynomial together with an antisymmetric matrix of
order d with polynomial entries — i.e. 1 + d(d− 1)/2 Clifford coefficients. This
is important in numerical applications in particular where large dimensions may be
encountered [3].

1



In the next section we introduce Clifford algebras and the Lipschitz group, before
defining in the following section vector continued fractions which form approximants
to a given power series with vector coefficients. We also prove that the numerator
and denominator polynomials of corresponding vector continued fractions (with ap-
propriate normalisation) belong to the Lipschitz group. In section 4 we derive a new
representation for these polynomials using a result discovered by Lipschitz(1886).
Finally, we present some examples, including numerical, illustrating the use of the
representation to derive ”hybrid” approximants [4,7].

2 Clifford algebras

The real Clifford algebra of IRd , C`d ,is the associative algebra over IR generated by
the orthonormal basis of IRd , {e1, e2 · · · ed} , which satisfies the anti-commutation
relations

eiej + ejei = 2δi,j i, j = 1, 2 · · · , d (2.1)

where the algebra identity is 1 [11,12]. The universality property, e1e2 · · · ed 6= ±1 ,
ensures that C`d is a linear space of dimension 2d spanned by the basis elements

eI = ei1i2···ik = ei1ei2 · · · eik (2.2)

where I = {i1, i2, · · · , ik} and 1 ≤ i1 < i2 < · · · ik ≤ d for k = 1, 2 · · · , d . The
identity element corresponds to the empty set i.e. k = 0. A general element of C`d

is given by
a =

∑

I

aIeI aI ∈ IR (2.3)

where the summation is over the 2d different ordered multi-indices I .
For given k , the eI form the basis of a subspace,

∧k IRd , whose elements are
called k−vectors. C`d is the direct sum of the spaces

∧k IRd for k = 0, 1, · · · , d .
The k -vector part of the Clifford element a is denoted by < a >k . The coefficient
a0 :=< a >0 is called the real or scalar part of a , and is also denoted by Re(a) .

The spinor norm or absolute value of an element is given by the Euclidean norm
on C`d

|a| =
√∑

I

|aI |2. (2.4)

Following [1,10], we may define an inner and outer product in C`d . We first of all
consider two multivectors a ∈ ∧i IRd and b ∈ ∧j IRd and note that their product is
in the direct sum

i+j∧
IRd +

i+j−2∧
IRd + · · ·+

|i−j|∧
IRd.

The component in
∧i+j IRd is called the outer product a ∧ b while the component

in
∧|i−j| IRd is the inner product a · b . The two products may be extended to
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all of C`d by linearity. We note that the outer product is associative [1,10]i.e.
(a ∧ b) ∧ c = a ∧ (b ∧ c) . We shall only use the inner product in situations where at
least one of a, b belongs to IRd .

Each vector (v1, v2, · · · , vd) ∈ IRd is identified with an element,
∑d

i=1 viei , of C`d ,
using the common label v . We use the Euclidean norm in IRd which is consistent
with the spinor norm applied to vectors.

The anti-commutation relations (2.1) imply

uv + vu = 2(u · v) (2.5)

where u · v coincides with the usual scalar product,
∑d

i=1 uivi , and

uvu = 2(u · v)u− (u · u)v (2.6)

i.e. uvu ∈ IRd . We have the identity

uv = u · v + u ∧ v (2.7)

where u ∧ v denotes the bivector (2-vector)

1

2
[uv − vu] =

∑

i<j

(uivj − viuj)eij ∈
2∧

IRd. (2.8)

There are two involutions on C`d which we shall need. The first, called the main
involution, is the isomorphism : a 7→ â in which each ei is replaced by −ei ; hence
âb = âb̂ . The other one is the anti-isomorphism : a 7→ ã obtained by reversing the
order of factors in eI , and is called reversion; hence ãb = b̃ã .

The set of products of invertible vectors forms a group under multiplication —
the Lipschitz group, Γd [1,10,11]. If a ∈ Γd then aã = ãa = |a|2 . Hence,

a−1 =
ã

|a|2 . (2.9)

If a = v ∈ IRd then we obtain the Moore-Penrose generalised inverse of a real vector

v−1 =
v

v · v (2.10)

For elements in the Lipschitz group we have [1]

|ab| = |a||b| ∀ a, b ∈ Γd. (2.11)
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3 Vector Continued Fractions

We are interested in rational approximations, in the form of continued fractions, to
vector-valued functions f(x) whose Maclaurin series expansions are known

f(x) = c0 + xc1 + x2c2 + . . . , x ∈ IR, ci ∈ IRd, i = 0, 1, . . . (3.1)

and are valid in some neighbourhood of the origin. We consider continued fractions

b0 + xa1[b1 + xa2[b2 + · · ·]−1]−1 (3.2)

with elements in C`d which correspond to f(x) . That is

f(x)−Cn(x) = O(xn+1) n = 0, 1, 2 · · · (3.3)

where Cn(x) is the nth convergent of (3.2) . In particular we discuss two types:
(i) one in which the partial numerators are simply x — i.e. ai = 1, i = 1, 2, · · · ,
(ii) and the other with unit partial denominators — i.e. bi = 1, i = 1, 2, · · · .

For (i) we obtain

Cn(x) = π 0 + x[π 1 + x[π 2 + · · ·+ x[π n]−1 · · ·]−1]−1 = pn(x)[qn(x)]−1 (3.4)

with C0(x) = π 0 , where pn(x), qn(x) are polynomials in C`d[x] , of degrees [n + 1/2]
and [n/2] , respectively, for n ≥ 1 — the square brackets [ ] denoting the integer
part. These polynomials satisfy the three-term recurrence relations

pn(x) = pn−1(x)πn + xpn−2(x) p−1(x) := 1 p0(x) := π0 = c0

qn(x) = qn−1(x)πn + xqn−2(x) q−1(x) := 0 q0(x) := 1

}
(3.5)

for n = 1, 2 · · · . Hence, qn(0) = π 1 π 2 · · · π n ∈ Γd . In fact, Cn(x) is the [l/m]
vector Padé approximant where l = [n + 1/2] and m = [n/2] [6,13].

We shall restrict ourselves to the non-degenerate case, in which π i 6= 0, i =
1, 2 · · · . The more general case is considered in [6], where it is shown that the
elements of the continued fraction may be evaluated using vector versions of the
Viskovatov and modified Euclidean algorithms. However, the methods developed
here remain valid in the more general case.

It may be shown, using the methods of [13], that

Qn(x) := qn(x) ˜qn(x) ∈ IR[x] (3.6)

and
Pn(x) := pn(x) ˜qn(x) ∈ IRd[x] (3.7)

Hence, the denominator is invertible

[qn(x)]−1 =
˜qn(x)

Qn(x)
(3.8)
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allowing the nth convergent to be written as the vector-valued rational function

Cn(x) =
Pn(x)

Qn(x)
(3.9)

which is in the form of a generalised inverse Padé approximant, first defined and
studied by Graves-Morris e.g. [5]. Qn(x) is of degree 2[n/2] and each component
of Pn(x) is of maximum degree n .

In [14] it is shown that

pn(x), qn(x) ∈ Γd for each x ∈ IR. (3.10)

Here we present a proof using the definition of the Lipschitz group given above.
From (3.5) we obtain

vn(x) = π n + x[vn−1(x)]−1 n = 1, 2, · · · (3.11)

where
vn(x) := [qn−1(x)]−1qn(x) n = 1, 2, · · · . (3.12)

Since v1(x) := π 1 ∈ IRd , it follows that each vn(x) is a vector in IRd . Further-
more, since vn(0) = π n , our assumption of non-degeneracy ensures that none of
these vectors is identically zero. Hence,

qn(x) = v1(x)v2(x) · · ·vn(x) ∈ Γd. (3.13)

In a similar manner we may demonstrate that un(x) := [pn−1(x)]−1pn(x) is also
a vector in IRd for n = 0, 1, · · · . Therefore, assuming that π 0 6= 0 ,

pn(x) = u0(x)u1(x) · · ·un(x) ∈ Γd. (3.14)

The second type of continued fraction is of the form

b′0 + xa′1[1 + xa′2[1 + · · · xa′n−1[1 + xa′n]−1 · · ·]−1]−1 (3.15)

which is equivalent to (3.4) . This may be seen by employing the equivalence trans-
formation :

b0 = b′0 , a1 = a′1α1 , b1 = b′1α1 , a2 = a′2α2

bi = (αi−1)
−1b′iαi i ≥ 2 and ai = (αi−2)

−1a′iαi i ≥ 3

}
(3.16)

Here, each αi i = 1, 2, · · · is the invertible element

αi = π 1 π 2 · · · π i ∈ Γd i = 1, 2, · · · . (3.17)

and
b0 := c0 , ai := 1 , bi := π i i = 1, 2, · · · (3.18)
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with b′i = 1 for i = 1, 2, · · · .
The nth numerator An(x) , and denominator Bn(x) of (3.15) satisfy the recur-

rence relations
An(x) := An−1(x) + xAn−2(x)a′n
Bn(x) := Bn−1(x) + xBn−2(x)a′n

}
(3.19)

for n = 1, 2 · · · , with the initial conditions

A−1(x) := 1, A0(x) := c0

B−1(x) := 0, B0(x) := 1

}
(3.20)

It then follows that

An(x) = pn(x)[αn]−1 and Bn(x) = qn(x)[αn]−1 (3.21)

Therefore, from (3.13) and (3.14) we obtain

Bn(x) = v1(x)v2(x) · · ·vn(x)[π n]−1 · · · [π 2]
−1[π 1]

−1 ∈ Γ+
d (3.22)

and

An(x) = u0(x)u1(x) · · ·un(x)[π n]−1 · · · [π 2]
−1[π 1]

−1 ∈ Γ−d (3.23)

where Γ+
d (Γ−d ) denotes the set of products of even (odd) numbers of vectors. For

later use we note that Bn(0) = 1 and An(0) = π 0 = c0 .
It is a simple matter [18] to use the recurrence relations to show that the con-

tinued fraction elements a′n are ratios of vectors in IRd

a′n = −[sn−1]
−1sn (3.24)

which are linked to the leading coefficient in the Padé error

f(x)− An(x)[Bn(x)]−1 = sn+1x
n+1 + O(xn+2) n = 0, 1, 2 · · · (3.25)

In [18] it is shown how a vector version of the quotient-difference algorithm allows
the computation of the sn using only vector operations of scalar multiplication,
scalar product as well as of addition. Thus, the components of the elements a′n may
be calculated without using Clifford numbers.
Example 1: The [1/1] vector Padé approximant is given by the third convergent
C3 , which may be derived as follows :

f(x) = c0 + xc1 + x2c2 + . . . ,

= c0 + xc1[1− xc1
−1c2]

−1
+ O(x3)
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Hence,
B3(x) = 1− xc1

−1c2 (3.26)

and
A3(x) = c0[1− xc1

−1c2] + xc1 (3.27)

Or, using (2.7)
B3(x) = [1− xc1

−1 · c2]− xc1
−1 ∧ c2 (3.28)

i.e. a scalar together with a bivector; and

A3(x) = {c0+x[c1−(c0 ·c1
−1)c2+(c0 ·c2)c1

−1−(c2 ·c1
−1)c0]}−xc0∧c1

−1∧c2 (3.29)

i.e. a vector and a 3-vector. In the general case the polynomials might require
2d−1 Clifford terms in the expansion (2.3) . We shall employ the Lipschitz group
to develop representations of these polynomials which require far fewer degrees of
freedom.

4 The Lipschitz Group

From (2.6) and (2.10) we may deduce that the reflection of v in the hyperplane
orthogonal to u is given by uvû−1 . Since an isometry of IRd may be accomplished
by a sequence of reflections c.f. [11,12] a rotation of a vector v may be represented
by

avâ−1 for some a ∈ Γd. (4.1)

Alternatively, it is clear from repeated use of (2.6) and (2.10) that the Clifford
element of (4.1) is a vector u whose square uũ is equal to that of v , thus showing
that the transformation v → u is a Euclidean isometry. This rotation corresponds
to an orthogonal transformation of v denoted by Uv , where U ∈ O(d) . It is shown
in [1] that if a ∈ Γ+

d then it is determined up to a real factor by the orthogonal
map it induces. This association is made precise in the theorem below. In order to
present this result we introduce some definitions c.f. [1,9,10].
The Cayley Transform of an antisymmetric matrix M , of order d , is defined to be
the orthogonal matrix

U := [I −M ][I + M ]−1 ∈ SO(d) (4.2)

where I is the unit matrix of order d .
We may construct a bivector µ ∈ C`d corresponding to M by

µ :=
∑

i<j

Mi,jeiej (4.3)
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so that the d -tuple Mv corresponds to the Clifford element µ · v i.e.

µ · v =
d∑

i,j=1

Mi,jvjei. (4.4)

We introduce the notation

k∧
a := a ∧ a ∧ · · · ∧ a (k − factors) (4.5)

which vanishes if k is greater than the number of distinct ei in the expansion of
a in (2.3) . The outer exponential of µ , exp[µ] , is the exponential series with the
outer product as multiplication

exp[µ] :=
∞∑

k=0

∧k µ

k!
. (4.6)

Unless it is zero the kth term is a 2k -vector. Hence, (4.6) is a finite sum of at most
1 + [d/2] terms. The reader is referred to [1,9,10,11] for a discussion of links with
Pfaffians.

We are now in a position to state a theorem first given by Lipschitz (1886) [9,10].
We adapt the statement of the theorem given in section 3 of [1] for our purposes.
Theorem 4.1 Given a bivector µ in C`d , there is one and only one element a ∈ Γ+

d

with < a >0= 1 and < a >2= µ : this element is the outer exponential of µ i.e.
a = exp[µ] .

For a modern proof the reader is referred to [1,10]. Furthermore [9,10], the spinor
norm of a ∈ Γ+

d with real part 1 such that

Uv = avâ−1 (4.7)

is the square root of aã which is given by

det(I + M) = det
(

I + U

2

)−1

(4.8)

We now apply the Lipschitz theorem to the denominator polynomial Bn(x) of
a vector Padé approximant satisfying the condition Bn(0) = 1 . In the following,
where appropriate, vectors are represented by column matrices and the superscript
T denotes the matrix transpose; for simplicity we relabel the vectors involved in the
continued fraction element a′n by

un := [sn−1]
−1 , vn := sn (4.9)
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so that a′n = −unvn . We introduce the scalar polynomial of degree m := [n/2]

σn(x) :=< Bn(x) >0 ∈ IR[x] , (4.10)

and the bivector polynomial

xδn(x) =
∑

i<j

{x∆n(x)}i,jeiej := < Bn(x) >2 (4.11)

in which ∆n(x) is an antisymmetric matrix of order d with polynomial entries each
of maximum degree m − 1 . We have used the fact that Bn(0) = 1 ,thus implying
that the bivector in (4.11) vanishes at the origin. Note also that σn(0) = 1 . We
further define the bivector

βn(x) :=
δn(x)

σn(x)
(4.12)

and the square matrix of order d

Dn(x) := σn(x)I + x∆n(x). (4.13)

Corresponding to the bivector

u ∧ v =
∑

i<j

[uivj − ujvi]eiej

we introduce the wedge product of two column matrices u,v as the antisymmetric
matrix

[u ∧ v]i,j := [uivj − ujvi]. (4.14)

Theorem 4.2 The denominator polynomials Bn(x) may be represented by

Bn(x) = σn(x)exp[xβn(x)] = σn(x) + xδn(x) +
x2

2
δn(x) ∧ βn(x) + · · · (4.15)

where σn(x) and δn(x) are defined by (4.10) and (4.11) .
The scalar polynomial σn(x) and the antisymmetric matrix ∆n(x) , correspond-

ing to δn(x) , satisfy the recurrence relations

σn(x)− σn−1(x) = −xvT
nDn−2un (4.16)

∆n(x)−∆n−1(x) =
1

σn−2(x)
{[σn(x)−σn−1(x)]∆n−2(x)+[Dn−2(x)vn]∧ [Dn−2(x)un]}

(4.17)
for n = 2, 3, · · · .

The initialisations are

σ0(x) = 1 , σ1(x) = 1 (4.18)

9



∆0(x) = O , ∆1(x) = O (4.19)

where O is the null matrix of order d .
Proof It has been shown that Bn(x) ∈ Γ+

d . Hence, the Clifford element

a :=
Bn(x)

σn(x)
∈ Γ+

d

has real part 1, thus satisfying the conditions of Theorem 4.1 . Therefore, since
< a >2= xβn(x) , we have

Bn(x)

σn(x)
= exp[xβn(x)] (4.20)

which yields (4.15) on expansion of the outer exponential. That is, each denomina-
tor polynomial Bn(x) is characterised by a scalar polynomial σn(x) of maximum
degree [n/2] and an antisymmetric matrix of polynomials ∆n(x) each of maximum
degree one less. Recurrence relations for σn(x) and ∆n(x) are derived by taking the
scalar and bivector parts of the recurrence relation for Bn(x) . From (3.19), (3.24)
and (4.9)

Bn(x) = Bn−1(x)− xBn−2(x)unvn (4.21)

The second term on the right-hand side is

−x[σn−2(x) + xδn−2(x) +
x2

2
δn−2(x) ∧ βn−2(x) + · · ·]unvn (4.22)

The scalar part of this expression is

−x{σn−2(x)vn · un + x[δn−2(x) · un] · vn} (4.23)

which, in matrix form, equals

−x[σn−2(x)vT
nun + xvT

n ∆n−2(x)un] = −xvT
nDn−2(x)un (4.24)

thus establishing (4.16) . After extracting a factor of (−x) the bivector part of
(4.22) is given by

σn−2(x)un ∧ vn + x< δn−2(x)unvn >2 +
x2

2σn−2(x)
< δn−2(x) ∧ δn−2(x)unvn >2.

In order to compute this expression we use the following identities involving a bivec-
tor µ and vectors u,v :

< µuv >2= [µ · u] ∧ v + u ∧ [µ · v] + µ[u · v] (4.25)

1

2
< µ ∧ µuv >2= [µ · u] ∧ [µ · v]− [u · (µ · v)]µ (4.26)
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which may be proved using the anti-commutation relations (2.1) . Denoting the
matrix associated with the bivector µ by M , the corresponding antisymmetric
matrices of (4.25) and (4.26) are given by

[Mu] ∧ v + u ∧ [Mv] + M [uTv] (4.27)

and
[Mu] ∧ [Mv]− [uT Mv]M (4.28)

respectively. Then, after some manipulation, we may prove that ∆n(x) satisfies the
recurrence relation (4.17) .

The initialisations follow from B0(x) = 1 , B1(x) = 1 . 2

We note that since each term in the expansion (4.15) is a polynomial 2k -vector
we must have

σn(x)k |
k+1∧

δn(x) (4.29)

for k = 1, 2, · · · .
Corollary 4.3 The numerator polynomial An(x) corresponding to the denominator
Bn(x) of Theorem 4.2 may be represented by

An(x) = c0σ
′
n(x)exp[xβ′n(x)] (4.30)

where

β′n(x) :=
δ′n(x)

σ′n(x)

The scalar polynomial σ′n(x) , of maximum degree [n + 1/2] , and the antisymmetric
matrix of polynomials, each of max degree [n − 1/2] , ∆′

n(x) , corresponding to the
bivector δ′n(x) , satisfy the same recurrence relations as the denominator polynomials
(4.16,17), with the initialisations

σ′0(x) = 1 , σ′1(x) = 1 + xc0
−1c1 (4.31)

∆′
0(x) = O , ∆′

1(x) = c0
−1 ∧ c1 (4.32)

Proof We note that A′
n(x) := c0

−1An(x) belongs to Γ+
d and that A′

n(0) = 1 .
Theorem 4.2 implies that there is a scalar polynomial σ′n(x) and an antisymmetric
matrix of order d , ∆′

n(x) , corresponding to the bivector δ′n(x) , such that

A′
n(x) = σ′n(x)exp[xβ′n(x)]

with

β′n(x) :=
δ′n(x)

σ′n(x)

The primed polynomials satisfy the same recurrence relations (4.16, 17) as the un-
primed. The degrees stated follow from the fact that the maximum degree of An(x)
is [n + 1/2] . The initialisations follow from A′

0(x) = 1 , A′
1(x) = 1 + xc0

−1c1 . 2
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5 Examples

We first of all demonstrate the representation involving the outer exponential using
the illustrative example introduced earlier.
Example 2: From (3.28) we have

< B3(x) >0= 1− xc1
−1 · c2 = σ3(x) (5.1)

< B3(x) >2= −xc1
−1 ∧ c2 = xδ3(x) (5.2)

We note that
δ3(x) ∧ δ3(x) = 0 (5.3)

which follows from the associativity of the outer product and the fact that u ∧ u
vanishes for any vector u ∈ IRd . Hence,

σ3(x)exp[xβ3(x)] = σ3(x)[1 + xβ3(x)] = σ3(x) + xδ3(x) = B3(x) (5.4)

For the numerator (3.27) we find that

σ′3(x) = 1 + x{c0
−1 · c1 − c1

−1 · c2} (5.5)

and
δ′3(x) = c0

−1 ∧ c1 − c1
−1 ∧ c2 (5.6)

A argument similar to that above shows that

c0σ
′
3(x)exp[xβ′3(x)] = c0[σ

′
3(x) + xδ′3(x)] = A3(x). (5.7)

The other examples come from an implementation of the recurrence relations
(4.16, 17) for the denominator of approximants to vector-valued functions of the
form

f(z) =
g(z)

R(z)
z ∈ C (5.8)

where each gi(z), i = 1, · · · , d is analytic in Dρ := {z ∈ C : |z| < ρ} for some
ρ > 0 and R(z) ∈ IR[z] normalised by R(0) = 1 , with zeroes zk ∈ Dρ k =
1, 2 · · · ,m . This is the type of generating function encountered in the iterative
solution to systems of linear equations [4,15].

We wish to investigate the behaviour of the Clifford denominators of the [l/m]
vector Padé approximants to f(x) as l → ∞ . These denominators are obtained
by considering the 2mth convergents to the series starting at cl−m+1 rather than
c0 [2,13] — a superscript l denotes the corresponding quantities. From [17] these
polynomials over C`d tend to the scalar R(z) . To be more precise,

liml→∞Bl
2m(z) = R(z) (5.9)
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the convergence being uniform in compact subsets of the complex plane E . That
is, using the spinor norm (2.4) for aI ∈ C, there is an integer L such that, given
any ε > 0

|R(z)−Bl
2m(z)| < ε z ∈ E and l > L (5.10)

However, from (2.4,4.15) and the statement following (4.6) we may write

|R(z)−Bl
2m(z)|2 = |R(z)− σl

2m(z)|2 + |zδl
2m(z)|2 + 1

2
|zδl

2m(z) ∧ δl
2m(z)|2 + · · ·

≥ |R(z)− σl
2m(z)|2 + |zδl

2m(z)|2
(5.11)

From this it follows that
liml→∞σl

2m(z) = R(z) (5.12)

liml→∞∆l
2m(z) = O (5.13)

each convergence being uniform for z ∈ E . The denominator of the generalised
inverse version of the approximant (3.9) may be calculated using (4.8)

Ql
2m(z) = Bl

2m(x) ˜Bl
2m(x) = [σl

2m(z)]
2−d

det[Dl
2m(z)] (5.14)

using an obvious notation. From [17] equation (3.33) we may write

lim
l→∞

Ql
2m(z) = R(z)2 (5.15)

the convergence being uniform for z ∈ E . Note that the determinant is a polynomial
which must be divisible by the (d− 2)th power of σl

n(z) .
The particular functions we consider are of the form

f(x) =
4∑

i=1

ri

(1− λix)
=

g(x)

R(x)
(5.16)

where
[zi]

−1 := λi = 6− i, for i = 1, · · · 4, (5.17)

R(x) := (1− xλ1)(1− xλ2)(1− xλ3) (5.18)

and ri, i = 1, 2, 3, 4 are various vectors in IR6 defined below. The functions gk(z), k =
1, · · · 6 are analytic for |z| < 0.5 .

Using Theorem 4.2 we calculate the polynomial σl
6(x) and the matrix of poly-

nomials ∆l
6(x) . The zeroes of the cubic polynomial σl

6(x) are denoted by zl
i , i =

1, 2, 3 . To check (5.13) the Frobenius norm of ∆l
6(x) , denoted by || · || , is computed

at x = 0.1, 0.3, 1.0 . We note that
√

2|δl
6| = ||∆l

6|| .
The poles of the vector Padé approximant are calculated from (5.14), which is of

the 6th degree, thus yielding twice as many poles as required. They are denoted by
αl

i, α
l
i
∗

i = 1, 2, 3 , since they occur, for these examples, in complex conjugate pairs.
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To enable comparison these were also evaluated; the error for each pair is quoted in
the tables.

Two sets of vectors ri, i = 1, 2, 3, 4 are considered. The first group contains
vectors satisfying ri ·rj 6= 0 ∀i, j while the second consists of mutually orthogonal
vectors.

The calculations were performed using MAPLE and the some of the results
presented in tables 1 and 2.

Example 3 :

r1 := [1, 1, 1, 0, 0, 0]T r2 := [1, 1, 0, 1, 0, 0]T

r3 := [1, 1, 0, 1, 0, 2]T r4 := [1, 0, 0, 1, 1, 0]T

}
(5.19)

ri · rj 6= 0 ∀i, j.
Example 4 :

r1 := [1, 1, 0, 1, 1, 0]T r2 := [1,−1, 1, 0, 0, 0]T

r3 := [1, 0,−1,−1, 0, 1]T r4 := [1, 0,−1, 0,−1,−2]T

}
(5.20)

ri · rj = 0 for i 6= j.

It may be seen that the data demonstrate the validity of the statements (5.12, 13, 15) .
The differing accuracies of the two examples is an illustration of a generalisation of a
result first observed experimentally by Graves-Morris [4] and explained by Roberts
[15] for the [1/1] case. This result concerns the behaviour of the denominators of
the ”hybrid” approximant, which are given by the scalar part of the Clifford de-
nominator — the cubic polynomial σl

6(x) in our notation. In example 4, where the
vector residues are mutually orthogonal, the zeroes of this polynomial offer much
more accurate approximations to the poles of f(z) than do the poles of the vector
Padé approximant itself — given by the zeroes of Ql

6(z) . In fact, we discover that
for example 4 Re{αl

i} and zl
i have, asymptotically, twice as many significant figures

of accuracy as Im{αl
i} . Whereas, in example 3 Re{αl

i}, Im{αl
i} and zl

i all have
the same order of accuracy. A more detailed study of the convergence rates will be
given in a later paper.
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|z1 − zl
1| |z2 − zl

2| |z3 − zl
3|

l (|z1 − αl
1|) (|z2 − αl

2|) (|z3 − αl
3|) ||∆l

6(0.1)|| ||∆l
6(0.3)|| ||∆l

6(1.0)||
14 6.8 · 10−7 7.6 · 10−5 5.3 · 10−3 2.0 · 10−2 6.3 · 10−3 7.8 · 10−1

(1.8 · 10−6) (1.6 · 10−4) (7.5 · 10−3)
18 1.7 · 10−8 4.9 · 10−6 1.0 · 10−3 4.1 · 10−3 1.3 · 10−3 1.6 · 10−1

(5.1 · 10−8) (1.1 · 10−5) (1.5 · 10−3)
22 4.4 · 10−10 3.1 · 10−7 2.0 · 10−4 8.1 · 10−4 2.7 · 10−4 3.3 · 10−2

(1.3 · 10−9) (7.0 · 10−7) (3.0 · 10−4)

Table 1: Errors of the estimated zeroes for Example 3 and Frobenius norm of the
matrix ∆l

6

|z1 − zl
1| |z2 − zl

2| |z3 − zl
3|

l (|z1 − αl
1|) (|z2 − αl

2|) (|z3 − αl
3|) ||∆l

6(0.1)|| ||∆l
6(0.3)|| ||∆l

6(1.0)||
14 1.9 · 10−11 6.0 · 10−7 7.1 · 10−4 3.6 · 10−2 1.2 · 10−2 1.4 · 100

(1.5 · 10−6) (2.7 · 10−4) (8.9 · 10−3)
18 1.3 · 10−14 2.4 · 10−9 2.8 · 10−5 6.9 · 10−3 2.3 · 10−3 2.8 · 10−1

(3.9 · 10−8) (1.7 · 10−5) (1.8 · 10−3)
22 8.3 · 10−18 9.2 · 10−12 1.1 · 10−6 1.4 · 10−3 4.5 · 10−4 5.4 · 10−2

(1.0 · 10−9) (1.1 · 10−6) (3.4 · 10−4)

Table 2: Errors of the estimated zeroes for Example 4 and Frobenius norm of the
matrix ∆l

6
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