
GLASS: Towards Secure and Decentralized
eGovernance Services using IPFS

Christos Chrysoulas1[0000−0001−9817−003X], Amanda Thomson1, Nikolaos
Pitropakis1[0000−0002−3392−9970], Pavlos Papadopoulos1[0000−0001−5927−6026],

Owen Lo1, William J. Buchanan1[0000−0003−0809−3523], George Domalis2, Nikos
Karacapilidis2, Dimitris Tsakalidis2, and Dimitris Tsolis2

1 School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom
2 Computer Engineering and Informatics Department, University of Patras, Greece

Abstract. The continuously advancing digitization has provided an-
swers to the bureaucratic problems faced by eGovernance services. This
innovation led them to an era of automation, broadened the attack sur-
face and made them a popular target for cyber attacks. eGovernance ser-
vices utilize the internet, which is a location addressed system in which
whoever controls its location controls not only the content itself but also
the integrity and the access of that content. We propose GLASS, a de-
centralized solution that combines the InterPlanetary File System with
Distributed Ledger Technology and Smart Contracts to secure eGover-
nance services. We also created a testbed environment where we measure
the system’s performance.

Keywords: eGovernance · Security · DLT · IPFS · DHT · Kademlia

1 Introduction
The rapid evolution of digital technologies, including mobile communications,
cloud computing infrastructures, and distributed applications, has created an
extended impact on society while also enabling the establishment of novel eGov-
ernance models. The need for an inclusive eGovernance model with integrated
multi-actor governance services is apparent and a key element towards a Eu-
ropean Single Market. Digital Transformation of public services can remove
existing digital and physical barriers, reduce administrative burdens, enhance
governments’ productivity, minimize the extra cost of traditional means to in-
crease capacity, and eventually improve the overall quality of interactions with
(and within) public administrations.

eGovernance includes novel and digital by default public services aiming for
administrative efficiency and minimization of bureaucratic processes, enabling
open government capabilities, behavior and professionalism, improved trust and
confidence in governmental transactions. Towards the modernization of public
services, public administrations need to transform their manual business flows
and upgrade their existing internal processes and services.

However, the digitization of eGovernance services has also expanded the at-
tack surface, thus making them attractive to malicious third parties. In 2017
the National Health Service of the United Kingdom suffered from the Wan-
naCry ransomware, which resulted in missed appointments, deaths, and fiscal

ar
X

iv
:2

10
9.

08
56

6v
1

 [
cs

.C
R

]
 1

7
Se

p
20

21

2 Christos Chrysoulas et al.

costs [1]. Recently, in May 2021 the American oil pipeline system suffered a ran-
somware cyberattack that impacted all the computerized equipment managing
the pipeline. The company paid a ransom of 75 Bitcoins, approximately $5 mil-
lion, to the hackers in exchange for a decryption tool which eventually proved so
slow that Colonial’s own backups were used to bring the system back to service
[2].

As the need for privacy-preserving and secure solutions in eGovernance ser-
vices is imminent, our decentralized solution, namely GLASS, moves towards
that direction by examining the effectiveness and efficiency of distributed cutting
edge technologies, demonstrating the capacity of a public, distributed infrastruc-
ture, based on the InterPlanetary File System (IPFS). Our contributions can be
summarised as follows:
– We analyze the threat landscape in the context of an eGovernance use case.
– We create a distributed testbed environment based on IPFS and detail our

methodology.
– We analyze and critically evaluate the runtime performance of our imple-

mentation.
The structure of the rest of the paper is organized as follows: Section 2 builds

the background on distributed models and presents the related literature, while
Section 3 details the GLASS architecture while briefly explaining the threat
landscape in the context of an eGovernance services use case scenario. Section
4 consists of our methodology and implementation used to conduct the main
experimental activity of our work, while Section 5 presents and evaluates the
performance results of our experimental activity. Finally, Section 6 draws the
conclusions, giving some pointers for future work.

2 Background and Related Literature
2.1 Kademlia
In 2001 Maymounkov and Mazières published Kademlia, a Distributed Hash
Table (DHT) that offered multiple features that were currently not available
simultaneously in any other DHT [3]. The paper introduced a novel XOR metric
to calculate the distance between nodes in the key space and a node Id routing
algorithm that enabled nodes to locate other nodes close to a given target key
efficiently. The presented single routing algorithm was more optimal compared to
other algorithms such as Pastry[4], Tapestry[5] and Plaxton[6] that all required
secondary routing tables. Kademlia was outlined as easily optimised with a base
other than 2 with no need for secondary routing tables. The k-bucket table was
configured so as to approach the target b (initial implementation was b = 5)
bits per hop. With one bucket being used for nodes within distance range of
[j2160−(i+1)b), (j + 1)2160−(i+1)b] from the initial node for each 0 < j < 2b and
0 ≤ i < 160/b based on a SHA1 160 bit address space. At any point, it is
expected that there would be no more than (2b − 1)log2b buckets with entries.
The k-buckets were described as being resistant to certain DoS attacks [3] due
to the inability to flood the system with new nodes, as Kademlia only inserts
new nodes once old ones leave.

In 2008 Baumgart and Mies introduced S/Kademlia [7] which offered several
further security enhancements designed to improve on the original specification.

GLASS: Towards Secure and Decentralized eGovernance Services using IPFS 3

They examined various attacks that peer-to-peer networks were vulnerable to
and offered practical solutions to protect against them. The key attacks identified
by them were: a) Eclipse Attack, b) Sybil Attack, and c) Adversarial Routing.
In 2020 Prünster et al. [8] highlighted the need for further implementation of
S/Kademlia mitigations by demonstrating an effective eclipse attack. They were
able to generate a large number of ephemeral identities and poison multiple
nodes routing tables for very little expense, and CVE-2020-10937 was assigned
to the demonstrated attack.

2.2 IPFS

The InterPlanetary File System (IPFS) is a distributed system based on a peer-
to-peer protocol that provides public data storage services to transform the web
into a new decentralized and more efficient tool. Its primary purpose is to replace
the HTTP protocol for document transactions by solving HTTP’s most limiting
problems like availability, cost, and centralization of data in data centers.

IPFS is based on a Merkle Directed Acyclic Graph (DAG) [9], the data struc-
ture to keep track of the location its data chunks are stored and the correlation
between them. Each data block has a unique content identifier (CID) fabricated
by hashing its content in this peculiar data structure. In case the content of a
node’s child changes, the CID of the parent node changes as well. For someone
to access a file, knowing its unique Content Identifier, constructed by the hash of
the data contained within it, is essential. Each participating node (user) keeps a
list of the CIDs it hosts in a Distributed Hash Table (DHT) implemented using
the Kademlia protocol [10]. Each user “advertises” the CIDs they store in the
DHT, resulting in a distributed “dictionary” used for looking up content. When
a user tries to access a specific file, IPFS crawls the DHTs to locate the file by
matching the unique content identifier. Using content-based addressing instead
of location-based addressing serves in preventing saving duplicate files in the
network and tracking down a file by its content rather than by its address.

IPFS enables its users to store and distribute data globally in a secure, re-
silient and efficient way. Each file uploaded on IPFS is fragmented into chunks
of 256Kb and hashed before being scattered in participating nodes around the
globe. Following the aforementioned methodology, data integrity is ensured since
no one can tamper with a data block without affecting its unique hash. Further-
more, data resilience is ensured by placing the same data block in more than
one participating node.

Mukne et al. [11] are using IPFS and Hyperledger Fabric augmented to per-
form secure documentation of land record management. Andreev and Daskalov
[12] are using IPFS to keep students’ personal information off-chain in a so-
lution that manages students’ data through blockchain. Singh [13] created an
architecture for open government data where proof-of-concept uses Ethereum
for decentralized processing and BigchainDB and IPFS for storage of large vol-
umes of data and files, respectively.

2.3 Distributed ledger

A Distributed Ledger is a distributed database architecture that enables mul-
tiple members to maintain their own identical copy of information without the

4 Christos Chrysoulas et al.

need for validation from a central entity while ensuring data integrity. Transac-
tion data are scattered among multiple nodes using the P2P protocol principles
and are synchronized simultaneously in all nodes. By providing Identification
Management through DLTs, it is ensured that the user has control of their iden-
tity records since the information is stored publicly on the ledger instead of
the systems of a central authority. Furthermore, since editing information on
past transactions on a blockchain system is not supported, protection against
unauthorized alteration of the identity records is established. Finally, having a
single record of identity information that the user can utilize on multiple oc-
casions minimizes the data duplication on multiple databases [14]. The second
generation of blockchain technologies introduced the smart contracts that act as
mini-programs used to automate code deployment when some pre-defined terms
are met.

Our solution, GLASS, combines the advantages of IPFS with those offered by
the Distributed Ledgers and Smart Contracts, thus creating a distributed scal-
able and secure eGovernance infrastructure. Moving towards the first steps of our
implementation, we create an IPFS based testbed environment and empirically
evaluate its runtime performance.

3 Architecture
We propose a combination of IPFS with Distributed Ledger and Smart Con-
tracts which are proven to be beneficial for recording massive volumes of trans-
actions. Extracting helpful information efficiently has significant computational
challenges, such as analysing, aggregating, visualising, and storing data collected
in distributed ledgers. More specifically, the volume and velocity of the data make
it difficult for typical algorithms to scale while querying the ledger might come
at high computation costs. State-of-the-art efforts seek to introduce new models
that deal with such large-scale, distributed data queries to reduce data volume
transferred over the network via adaptive sampling that maintains certain ac-
curacy guarantees [15]. As the ledgers (and thus the data) keep getting bigger,
a challenge is to make sense of the collected data for the users and perform
analytics leveraging big data processing engines (i.e., Spark) that can deliver
results quickly and efficiently. In order to adequately protect data resources, it
is paramount to encrypt data in such a way that no one other than intended
parties should be able to get the original data. The current practice compared
to our approach can be seen in Figure 1.

A simple use case presenting a European Union’s citizen, Alice, getting a job
abroad from Greece to another member state, Portugal, using GLASS ecosystem,
is presented in Algorithm 1.

3.1 Threat Landscape
Distributed file systems, such as IPFS, need to solve several challenges related
to the security and privacy of the stored data, the infrastructure’s scalability,
the decentralized applications and big data complexities. However, there is a
number of promising solutions that aim to settle some of these hurdles.

Security and privacy challenges The key challenge of distributed file sys-
tems, including IPFS, is that when new peers participate in the system, they

GLASS: Towards Secure and Decentralized eGovernance Services using IPFS 5

Fig. 1: Current practice compared to our approach [16]
can access any stored file, including sensitive documents. Hence, the security
and privacy of the system remain an open question, especially due to General
Data Protection Regulation (GDPR) [17] in the European Union. A prominent
solution to that is the application of smart contract-based Access Control (AC)
policies [18,19,20,21], and further encryption mechanisms [22].

Another security and privacy challenge is related to file erasure. By their
nature, distributed file systems distribute all the stored files and documents
among their participating peers. Hence, when data owners transmit “erasure
commands” to the distributed network, it is not clear if all the peers would
obey this command and delete their version of the “deleted” file or document.
A solution to this data replication issue can be a common technique commonly
present in data centers [23,24].
Scalability Challenges Since GLASS aims to create an eGovernance frame-
work to be followed by all European Union’s member states, the infrastructure’s
scalability poses a real threat. According to [25,26], one of the scalability issues
on IPFS is the bandwidth limit in each IPFS instance due to the peer-to-peer
nature of the system. Each participant needs to connect to another IPFS node
to read or download the data objects. [27] proposed a combination of IPFS
and blockchain technology, namely BlockIPFS, to improve the traceability of all
the occurred access events on IPFS. The authors measured the latency of each
event, such as storing, reading, downloading, by varying the number of IPFS
nodes and presented that even incorporating large numbers of IPFS nodes does
not significantly improve the latency of all the IPFS actions. However, the au-
thors’ experiments were limited to a maximum of 27 nodes; hence, the latency
measurement on a vast scale remains an open question.

For the storage optimisation, two prominent solutions can be applied:
– Storing data off-chain [28,29,30]. The concept of utilising smart contracts

off-chain and use IPFS as a storage database has been presented by some
works. This solution is storage efficient since the IPFS nodes need to ex-
change only hash values of the data.

– Utilize erasure codes [31,32,33]. In erasure codes, a file is divided into
smaller batches and these batches are encoded. Following that, each batch

6 Christos Chrysoulas et al.

Algorithm 1 Alice getting a job to Portugal

1: Starting from Greece, Alice finds a vacant job position in Portugal. She

applies for the job, and thankfully she gets hired.

2: In Portugal, she has to deal with a series of bureaucratic processes (ID card,

social security number, open a bank account).

3: To obtain a Portuguese Residence title, rent an apartment and open a bank

account, Alice needs to present at least a validated ID documentation, birth

certificate, nationality certification validated by a Greek Authority and proof

that she works in Portugal.

4: Adopting the GLASS solution, Alice can request the proof of ID and the

validated data from the Ministry of Digital Governance (MoDG).

5: The MoDG can issue the document, and after Alice’s permission, the docu-

ment can be forwarded to the Ministry of Justice (MoJ).

6: After this transaction is completed, Alice can access and securely share her

Portuguese social security number through her Wallet.

7: Then Alice’s employer in Portugal can directly get the validated social se-

curity number from the MoJ, after her approval, to register her credentials

to their internal payroll system.

8: Using a decentralized application of the GLASS ecosystem, Alice can use

her validated digital identity to request remotely the required documenta-

tion from the respective Greek Authority (MoDG), the Portuguese authority

(MoJ) and her employer.

9: MoDG can digitally issue and validate the documentation and transmit the

encrypted data into the distributed network while the transaction among

the users is being recorded.

10: All the transactions, including requests, notifications, and permissions, can

be monitored and stored, protecting Alice’s (and each participant’s) privacy.

can be decoded and reconstruct the full file. [34] utilized erasure codes in a
scenario combining blockchain and IPFS.

Decentralized applications complexities Multiple novel decentralized ap-
plications have already been developed on top of IPFS, with luminous examples,
a music streaming platform, and an open-access research publication reposi-
tory [35,36]. Distributing seemingly centralized applications offer multiple advan-
tages, such as rewarding the creators of music or research publications directly
without involving any trusted intermediaries and is feasible with the assistance
of blockchain technologies [37].

Within the GLASS ecosystem, it is critical to clearly define where these
decentralized applications would be developed and executed to avoid obstacles
due to the complexities of the underlying technologies. A potential solution is to
carry out the execution of the decentralized applications off-chain [37], similarly

GLASS: Towards Secure and Decentralized eGovernance Services using IPFS 7

to other popular decentralized applications ecosystems, such as Blockstack [38].

4 Methodology and Implementation
IPFS uses Libp2p3 as it’s base. Originally Libp2p was part of the IPFS project
but has since become standalone. It provides all of the transport abstractions
and the Kad-DHT functionality. The main release is written in Go, with ports to
Rust and JavaScript. To look at the implementation of the DHT, JavaScript was
chosen as it natively would not rely on a multi-threading approach but instead
asynchronous I/O and an event-driven programming model.

For small scale local testing of the DHT, a simple Libp2p node was created 40
times4 to listen on the host, and the port will differentiate each node. The DHT
configuration 5 is the standard recommended Libp2p Kad-DHT configuration
with all standard defaults applied. The exception being the DHT random walk
– which is not enabled by default but does allow for random host discovery. The
connection encryption used is Noise protocol. 6

When a new node is initialized, it knows no peers. Typically in IPFS, this
issue is solved by bootstrapping the node – providing it with a set of long-serving
core nodes that have fully populated routing tables ready to share. In this case,
to provide some basic routing entries, the initial node is populated by the address
of the next created node, ensuring that each node knows of at least one other but
only the next node. Although enabled, the random walk would be an untenable
solution to peer discovery in such a small set of nodes given that the Libp2p
implementation of the random walk involves dialling a random peerId created
from a sha256 multi hash of 16 random bytes.

The last node initialized is then chosen to host the content. To transform the
content into a CID, it is first hashed with the standard sha256 algorithm, and
then a multi hash is created from this. As we are using CIDv0, the multi hash
is then base 58 encoded (CIDv1 is base 32 encoded)and provided to the js-cids
library to create the CID.

Once the CID is created, the final node starts providing it to the network.
The content routing class of the Kad-DHT will then distribute the pointer to
the nodes closest to the key itself. Each node DHT will then begin searching for
other nodes and populating its routing table entries. The peer discovery process
is best witnessed by examining the debug log for the Kad-DHT by starting the
program with the following: DEBUG="libp2p:dht:*" node index.js

Each instance of the Kad-DHT is initialized with an instance of the Providers
class that manages all known providers – a peer known to have the content for
a given CID. The providers class is initialized with an instance of the datastore,
which houses the records of providers in the format of a key-value pair, with the
key being created from the array of the CID and PeerID and the value being the
time the record was entered into the store.

3 Lib2p: https://github.com/libp2p/js-libp2p
4 Code can be found at: https://github.com/aaoi990/ipfs-kad-dht-evaluation
5 DHT configuration: https://github.com/libp2p/js-libp2p-kad-dht
6 Noise Protocol: https://noiseprotocol.org/

8 Christos Chrysoulas et al.

When the class is created, it spawns its own cleanup service. The service is
a set interval clean up that runs and keeps the list of providers healthy. It is
important to note at this point that although a list of providers are stored in the
datastore, to ensure access is fast, there is an LRU (least recently used) cache in
front of it which speeds up the process of not only cleaning up expired providers
but accessing active ones as well. The default constant for the LRU size is 256,
and the default cleanup interval is one hour. The cleanup service retrieves all
provider entries from the datastore, checks the time of entry against the current
time, and batch deletes any which have been in the store for longer than the
one-hour window.

The getClosestPeers query is a direct query of the peers taken from the DHT’s
RoutingTable class, which is responsible for managing the kBuckets. The query
looks through all nodes in the kBuckets and returns the closest 20 (as the default
bucket size in IPFS is 20). Libp2p uses the javascript implementation k-bucket
7 to handle the management of the buckets. The function does a raw calculation
of the XOR distances by comparing each PeerId in the bucket as a unit8aray to
the CID as a uint8array and then orders them from nearest to furthest.

With a populated routing table, it is now possible to query the network to
find any provider of the created CID. In this instance, the very first initialised
node – who only had contact details for the second initialised node – can query
the DHT using the built-in findProviders function. The result of the promise
is an array containing the details of any node providing the requested content.
More details on the system’s configuration can be found in Appendix A.

5 Evaluation

Fig. 2: All processes - With Kad-DHT processes shown in green
To evaluate the runtime performance of the JavaScript implementation of

the Kad-DHT, we can examine the flame graph of the running processes. Figure
2 shows the performance of the entire program from start to finish. Each rect-
angle represents a stack frame, with the y-axis showing the number of frames
on the stack – the stack depth. The bottom of each icicle shows the function
on-CPU, with everything above it being the function ancestry. The x-axis spans
the entirety of the sample population grouped alphabetically. The total width of

7 K-bucket: https://github.com/tristanls/k-bucket

GLASS: Towards Secure and Decentralized eGovernance Services using IPFS 9

each rectangle is the total time it was on-CPU or part of the ancestry that was
on-CPU; the wider the rectangle, the more CPU consumed per execution. It is
worth noting that time is not represented in flame graphs. The Graphs and the
logs used to generate them can be found in the corresponding git repo8.

Table 1: CPU time by package based on Fig. 2.

Package Function Percentage

libp2p-noise performXXhandshake 28.9

libp2p-noise exchange 18.87

libp2p-noise finish 10.07

peer-id createFromPubKey 4.86

libp2p encryptOutbound 2.43

libp2p encryptInbound 2.005

Figure 2 illustrates that unsurprisingly the vast majority of CPU usage was
spent in the crypto functions, either performing handshakes between nodes or
in the functions that support the key generation process.

Fig. 3: Some of the Kad-DHT specific processes

The key generation for a basic Libp2p2 node is a base64 encoded string
of a protobuf containing a DER-encoded buffer. A node buffer is then used
to pass the base64 protobuf to the multi hash function for the final PeerId
generation. By default, the public key is 2048 bit RSA. As suggested in the
security improvements in [7], peerId generation should be an expensive process
in order to mitigate the ease of performing Sybil attacks, and although it was
expensive compared to the overall effort of the program, this was primarily
because of the default usage of RSA. If EC had been used as per CVE-2020-10937

8 Code can be found at: https://github.com/aaoi990/ipfs-kad-dht-
evaluation/tree/main/perf

10 Christos Chrysoulas et al.

[8], the CPU overhead would have been significantly lower. Figure 3 illustrates
one of the full stack depths with Kad-DHT ancestry.

Table 2: CPU time by DHT component based on Fig. 3.

Package Function Percentage

network writeReadMessage 1.08

worker-queue processNext 0.87

peer-routing closerPeersSingle 0.4

routing add 0.1

index nearestPeersToQuery 0.1

Fig. 4: Kad-DHT processes over an one-hour window

Overall the Kad-DHT functions occupied a very low percentage of the CPU
time, consistently presenting at less than 3.00%, with the highest usage coming
from network functions. The test code being run is a simple start – provide –
find – stop sequence, meaning the bulk of the work is being done to configure,
connect and route the nodes. It is expected that the longer the program runs,
the greater percentage of time the Kad-DHT functions would occupy due to the
routing table maintenance functions. During normal operations, the Kad-DHT
will force a refresh every 10 minutes by default. During this, each bucket is
gone through - from bucket 0 up until the highest bucket that contains a peer
(currently capped at 15). A random address from the address space that could
fit in the chosen bucket is then selected, and a lookup is done to find the k closest
peers to that random address. This constantly ensures that each bucket is filled
with as many peers that will fit. Figure 4 results from timing the original code
to run for an one-hour window, enabling multiple routing table refreshes. In the
timed run, Kad-DHT functions accounted for 11.58% of CPU usage up from the
initial program run of 2.55%, which is a 354% increase in the amount of time
spent in functions with Kad-DHT ancestry.
6 Conclusions
eGovernance presents unique challenges in terms of privacy-preserving and pro-
viding secure solutions in eGovernance services. Precisely when the utilized data

GLASS: Towards Secure and Decentralized eGovernance Services using IPFS 11

is derived from industrial control systems and sensors. In this paper, we present
GLASS, our decentralized solution, that moves towards that direction by exam-
ining the effectiveness and efficiency of distributed cutting-edge technologies and
demonstrates the capacity of a public, distributed infrastructure based on the
InterPlanetary File System (IPFS).

One practical implementation of the GLASS concept is being done within
the aims of the GLASS project, highlighting how the GLASS concept can po-
tentially be integrated into a broad field of use cases. Our proposed GLASS-
oriented approach is a decentralized solution that combines the InterPlanetary
File System (IPFS) with Distributed Ledger Technology and Smart Contracts
to secure eGovernance services. We show in this paper how our approach can be
used to fulfil the needs of the GLASS concept. Finally, and on top of the above,
we created a testbed environment to measure the IPFS performance.

Acknowledgments

The research leading to these results has been partially funded by the European
Union’s Horizon 2020 research and innovation programme, through funding of
the GLASS project (under grant agreement No 959879).

References

1. Ghafur, S., Kristensen, S., Honeyford, K., Martin, G., Darzi, A., Aylin, P.: A
retrospective impact analysis of the wannacry cyberattack on the nhs. NPJ digital
medicine 2(1) (2019) 1–7

2. Analytica, O.: Efforts to curb ransomware crimes face limits. Emerald Expert
Briefings (oxan-db) (2021)

3. Maymounkov, P., Eres, D.: Kademlia: A peer-to-peer information system based
on the xor metric. Volume 2429. (04 2002)

4. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Guerraoui, R., ed.: Middleware
2001, Berlin, Heidelberg, Springer Berlin Heidelberg (2001) 329–350

5. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Computer 74 (05 2001)

6. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated
objects in a distributed environment

7. Baumgart, I., Mies, S.: S/kademlia: A practicable approach towards secure key-
based routing. Volume 2. (01 2008) 1–8

8. Prünster, B., Marsalek, A., Zefferer, T.: Total eclipse of the heart – disrupting the
interplanetary file system (2020)

9. Kothari, R., Jakheliya, B., Sawant, V.: A distributed peer-to-peer storage network.
International Conference on Smart Systems and Inventive Technology (ICSSIT) (11
2019) 576–582

10. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system
based on the xor metric. In Druschel, P., Kaashoek, F., Rowstron, A., eds.: Peer-
to-Peer Systems, Berlin, Heidelberg, Springer Berlin Heidelberg (2002) 53–65

11. Mukne, H., Pai, P., Raut, S., Ambawade, D.: Land record management using
hyperledger fabric and ipfs. In: 2019 10th International Conference on Computing,
Communication and Networking Technologies (ICCCNT). (2019) 1–8

12 Christos Chrysoulas et al.

12. Andreev, O., Daskalov, H.: A framework for managing student data through
blockchain, sofia, bulgaria: Academic press. In Proceedings of Xth Anniversary
International Scientific Conference (2018) 59–66

13. Singh, S.: A blockchain-based decentralized application for user-driven contribution
to Open Government Data. PhD thesis (06 2018)

14. Dunphy, P., Petitcolas, F.: A first look at identity management schemes on the
blockchain. IEEE Security & Privacy 16 (2018) 20–29

15. Trihinas, D., Pallis, G., Dikaiakos, M.D.: Admin: Adaptive monitoring dissemi-
nation for the internet of things. In: IEEE INFOCOM 2017-IEEE conference on
computer communications, IEEE (2017) 1–9

16. Domalis, G., Karacapilidis, N., Tsakalidis, D., Giannaros, A.: A trustable and in-
teroperable decentralized solution for citizen-centric and cross-border egovernance:
A conceptual approach. arXiv preprint arXiv:2103.15458 (2021)

17. Voigt, P., Von dem Bussche, A.: The eu general data protection regulation (gdpr).
A Practical Guide, 1st Ed., Cham: Springer International Publishing 10 (2017)
3152676

18. Barati, M., Rana, O.: Design and verification of privacy patterns for business
process models. In: Blockchain Technology and Innovations in Business Processes.
Springer (2021) 125–139

19. Huang, H., Zhou, S., Lin, J., Zhang, K., Guo, S.: Bridge the trustworthiness gap
amongst multiple domains: a practical blockchain-based approach. In: ICC 2020-
2020 IEEE International Conference on Communications (ICC), IEEE (2020) 1–6

20. Papadopoulos, P., Pitropakis, N., Buchanan, W.J., Lo, O., Katsikas, S.: Privacy-
preserving passive dns. Computers 9(3) (2020) 64

21. Stamatellis, C., Papadopoulos, P., Pitropakis, N., Katsikas, S., Buchanan, W.J.: A
privacy-preserving healthcare framework using hyperledger fabric. Sensors 20(22)
(2020) 6587

22. Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing
with fine-grained access control in decentralized storage systems. Ieee Access 6
(2018) 38437–38450

23. Plank, J.S.: A tutorial on reed–solomon coding for fault-tolerance in raid-like
systems. Software: Practice and Experience 27(9) (1997) 995–1012

24. Huang, H., Lin, J., Zheng, B., Zheng, Z., Bian, J.: When blockchain meets dis-
tributed file systems: An overview, challenges, and open issues. IEEE Access 8
(2020) 50574–50586

25. Wennergren, O., Vidhall, M., Sörensen, J.: Transparency analysis of distributed
file systems: With a focus on interplanetary file system (2018)

26. Shen, J., Li, Y., Zhou, Y., Wang, X.: Understanding i/o performance of ipfs storage:
a client’s perspective. In: 2019 IEEE/ACM 27th International Symposium on
Quality of Service (IWQoS), IEEE (2019) 1–10

27. Nyaletey, E., Parizi, R.M., Zhang, Q., Choo, K.K.R.: Blockipfs-blockchain-enabled
interplanetary file system for forensic and trusted data traceability. In: 2019 IEEE
International Conference on Blockchain (Blockchain), IEEE (2019) 18–25

28. Norvill, R., Pontiveros, B.B.F., State, R., Cullen, A.: Ipfs for reduction of chain
size in ethereum. In: 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), IEEE (2018) 1121–1128

29. Poon, J., Buterin, V.: Plasma: Scalable autonomous smart contracts. White paper
(2017) 1–47

GLASS: Towards Secure and Decentralized eGovernance Services using IPFS 13

30. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant
payments (2016)

31. Rizzo, L.: Effective erasure codes for reliable computer communication protocols.
ACM SIGCOMM computer communication review 27(2) (1997) 24–36

32. Wilkinson, S., Boshevski, T., Brandoff, J., Buterin, V.: Storj a peer-to-peer cloud
storage network (2014)

33. Vorick, D., Champine, L.: Sia: Simple decentralized storage. Retrieved May 8
(2014) 2018

34. Chen, Y., Li, H., Li, K., Zhang, J.: An improved p2p file system scheme based
on ipfs and blockchain. In: 2017 IEEE International Conference on Big Data (Big
Data), IEEE (2017) 2652–2657

35. Jia, B., Xu, C., Gotla, R., Peeters, S., Abouelnasr, R., Mach, M.: Opus-
decentralized music distribution using interplanetary file systems (ipfs) on the
ethereum blockchain v0. 8.3. Opus Foundation 2017 (2016)

36. Tenorio-Fornés, A., Jacynycz, V., Llop-Vila, D., Sánchez-Ruiz, A., Hassan, S.:
Towards a decentralized process for scientific publication and peer review using
blockchain and ipfs. In: Proceedings of the 52nd Hawaii International Conference
on System Sciences. (2019)

37. Truong, N., Lee, G.M., Sun, K., Guitton, F., Guo, Y.: A blockchain-based trust
system for decentralised applications: When trustless needs trust. Future Genera-
tion Computer Systems (2021)

38. Ali, M.: Stacks 2.0 apps and smart contracts for bitcoin (2020)

A Appendices
A.1 Libp2p node initialisation

const node = await Libp2p.create({
addresses: {

listen: [’/ip4/0.0.0.0/tcp/0’]
},
modules: {

transport: [TCP],
streamMuxer: [Mplex],
connEncryption: [NOISE],
dht: KadDHT,
},
config: {

dht: {
kBucketSize: 20,
enabled: true,
randomWalk: {

enabled: true,
interval: 300e3,
timeout: 10e3
}
}
}
})

Listing 1.1: Libp2p node initialisation.

14 Christos Chrysoulas et al.

A.2 Random walk PeerId creation

const digest = await multihashing(
crypto.randomBytes(16), ’sha2−256’)

const id = new PeerId(digest)

Listing 1.2: Random walk PeerId creation.

A.3 Transforming content to a CID

const hash = crypto.createHash(’sha256’)
.update(’hello world!’).digest()

const encoded = multihash.encode(hash, ’sha2−256’)
const cid = new CID(multihash.toB58String(encoded))

Listing 1.3: Transforming content to a CID.

A.4 A node providing content

await node.contentRouting.provide(cid)

Listing 1.4: A node providing content.

A.5 Distributing content to the closest peers

async provide (key) {
dht. log(‘provide: ${key}‘)

/∗∗ @type {Error[]} ∗/
const errors = []

// Add peer as provider
console.log(’starting to provide’)
await dht.providers.addProvider(key, dht.peerId)

const multiaddrs = dht.libp2p ? dht.libp2p.multiaddrs : []
const msg = new Message(Message.TYPES.ADD PROVIDER, key.bytes, 0)
msg.providerPeers = [{

id: dht.peerId,
multiaddrs
}]

async function mapPeer (peer) {
dht. log(‘putProvider ${key} to ${peer.toB58String()}‘)
try {

await dht.network.sendMessage(peer, msg)
} catch (err) {

errors.push(err)

GLASS: Towards Secure and Decentralized eGovernance Services using IPFS 15

}
}

// Notify closest peers
await utils.mapParallel(dht.getClosestPeers(key.bytes), mapPeer)

if (errors.length) {
throw errcode(new Error(‘Failed to provide to ${errors.length} of ${dht.←↩

kBucketSize} peers‘), ’ERR SOME PROVIDES FAILED’, { errors })
}
},

Listing 1.5: Distributing content to the closest peers.

A.6 Creation of the datastore

const dsKey = [
makeProviderKey(cid),’/’,
utils.encodeBase32(peer.id)].join(’’)

const key = new Key(dsKey)
const buffer = Uint8Array.from(

varint.encode(time.getTime()))
store.put(key, buffer)

Listing 1.6: Creation of the datastore.

A.7 Calculating the closest Peers using the XOR metric

closest (id, n = Infinity) {
ensureInt8(’id’, id)

if ((!Number.isInteger(n) && n !== Infinity) || n <= 0) {
throw new TypeError(’n is not positive number’)
}
let contacts = []

for (let nodes = [this.root],
bitIndex = 0; nodes.length > 0 && contacts.length < n;) {

const node = nodes.pop()
if (node.contacts === null) {

const detNode = this. determineNode(
node, id, bitIndex++)

nodes.push(
node.left === detNode ? node.right : node.left)

nodes.push(detNode)
} else {

contacts = contacts.concat(node.contacts)

16 Christos Chrysoulas et al.

}
}

return contacts
.map(a => [this.distance(a.id, id), a])
.sort((a, b) => a[0] − b[0])
.slice(0, n)
.map(a => a[1])

}

Listing 1.7: Calculating the closest Peers using the XOR metric.

A.8 Finding providers

await all(nodes[0].contentRouting
.findProviders(cid))

Listing 1.8: Finding providers.

A.9 Result of the “Finding Providers” query

{
id: PeerId {

id: <Buffer 12 20 83 42 f7 0e 33 90 d1 c4 41 d0 80 d7 16 63 be 43 95 20 3c ←↩
b1 79 5e 23 d7 28 12 3e 4a 0f aa d9 d3>,
idB58String: ’QmXB3LoMkXQh3HzQo1fy−
9UEJZZQw2MmJKWRhG4nfbTR7Qe’,

privKey: undefined,
pubKey: undefined

},
multiaddrs: []
}

Listing 1.9: Result of the findProviders query.

	GLASS: Towards Secure and Decentralized eGovernance Services using IPFS

