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Abstract: This paper offers a novel decentralised control strategy for a class of linear stochastic large-
scale complex systems. The proposed control strategy is developed to address the main challenges
in controlling complex systems such as high dimensionality, stochasticity, uncertainties, and unknown
system parameters. To overcome a wide range of domain of complex systems, the proposed strategy
decomposes the complex system into several subsystems and controls the system in a decentralised
manner. The global control objective is achieved by individually controlling all the local subsystems
and then exchanging information between subsystems about their state values.
This paper mainly focuses on the probabilistic communication between subsystems, therefore the
detailed process of message-passing probabilistic framework is provided. For each subsystem, the
regulation problem is considered, and fully probabilistic design (FPD) is applied to take the stochastic
nature of complex systems into consideration. Also, since the governing equations of the system
dynamics are assumed to be unknown, linear optimisation methods are employed to estimate the
parameters of the subsystems. To demonstrate the effectiveness of the proposed control framework,
a numerical example is given.

Keywords: stochastic system control; decentralised control; fully probabilistic design; message
passing; complex network control

1. Introduction

Complex dynamical systems, which contain large ensembles of elements interacting with each other
and are affected by noises and uncertainties, are ubiquitous in nature, industry, and human societies.
The characterstics of complex dynamical systems, for instance, the high dimensionality of the systems,
their complex structure, and high uncertainty bring difficulties in the systems analysis, estimation, and
especially control. A considerable amount of literature about complex systems has been published
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to try to address the above issues. Examples include pinning control [1], multi-agent control [2],
mean field optimal control [3], distributed control [4], exponential stabilization problem for stochastic
complex networks [5, 6], and probabilistic control [7–13]. However, for such a complicated system,
its too challenging to control it in a centralised manner. The decentralised control is more suitable,
considering that the network has no need to be controllable with a technically feasible amount of
centrally controlled nodes. The basic idea of the decentralised control is to decompose the large-
scale systems into several subsystems, and the local controllers only need to focus on individual nodes
and achieve the local objectives. Decentralised control is proven as an efficient way to cope with
complex systems, but most of the existing techniques lack communication between subsystems and
all the decisions are based only on disconnected knowledge, which leads to unfulfilment of the global
objective.

To address the above mentioned issues, this paper will introduce a computational and
communication approach called message passing that allows the individual subsystems to harmonize
their acting by sharing information between subsystems. The information in this approach is retrieved
and disseminated in a consistent probabilistic manner, which can offer a precise expression of how
information is shared between subsystems for stochastic systems. As one of the new techniques for
decentralised methods [14], this approach has combined many subjects such as artificial
intelligence [15], communications theory [16] and statistical physics [17]. However, the potential
generalisations of the message passing approach have not been widely known by the control
community field, which can be considered as one of the contributions of this paper.

Under the proposed control framework, this paper also considers the regulation problem for a class
of complex stochastic systems with noises. For the propose of better coping with the stochastic nature
and inherent randomness associated with the control of complex practical networks [13, 18–23], the
FPD [24–28] is implemented to each subsystem to accomplish the control goal. The main feature of
the FPD is that it provides a specific form of the randomised optimal controller, which is the minimizer
of the Kullback-Leibler divergence (KLD) [29] of the probability density describing the closed-loop
dynamics to its ideal one. Furthermore, with the fact that the system parameters are usually unknown
in real complex systems, linear optimization is applied in this paper to estimate the system parameters,
implying that the whole system control strategy is implemented adaptively.

The contribution of this paper can be summarized as follows,

(1) This paper offers a clear and novel decentralised control framework for a class of large scale
network complex systems, which can overcomes the difficulties in analysing and controlling
such systems by controlling the subsystems in a decentralised manner;

(2) Since decisions in this framework are based only on disconnected knowledge, message passing is
developed to allow coordination between the local subsystems. With message passing, not only
all the individual local control objectives can be guaranteed, but also the global objective;

(3) Both the message passing approach and the FPD use its unified probabilistic language, which does
not force the knowledge sharing subsystems to increase their complexity;

(4) Unlike the other existing distributed method, the concept of external state is introduced in this
work, which can do the estimation job and guarantee the subsystem work normally once the
connection with other subsystems is lost.
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(5) This paper provides a basic understanding of the message-passing between the subsystems in the
decentralised control process. For that purpose, the proposed strategy, including the information
transmission and reception and how the local controller harmonizes the subsystems states based
on the neighbours new received information, is demonstrated on a simple linear quadratic example
for better understanding.

The remainder of this paper is organised as follows. Section II introduces the structure of the
subsystems and the estimation of the parameters. In Section III, the FPD is presented and the stages of
the proposed strategy are provided. Section IV gives details about the message passing approach. In
Section V, the proposed algorithm is applied to a numerical example to show its effectiveness. Finally,
the conclusion is summarised in Section VI.

2. System statement

In this section, the basic decentralised probabilistic framework of message passing will be
introduced. Within the proposed decentralised probabilistic framework, the considered complex
system is decomposed into K subsystems based on the systems’ conditions such as 1) Some states can
be physically controlled together; 2) the global system is composed of many independent agents, like
a drone, ext. Each subsystem is estimated as a probabilistic model and controlled independently by a
probabilistic controller.

Unlike other decentralised frameworks, in this paper, the neighbouring subsystems states will also
be treated as the considered subsystems states. More specifically, the full state of a subsystem is formed
by two parts, internal states, and external states. The subsystem’s own states are defined as internal
states, which are controlled by their own local controllers. The states received from the neighbour
subsystems are defined as external states, therefore the local controller has no control power over it.
Note that the external state in each subsystem is also estimated as a linear probabilistic model, which
is only related to itself. Furthermore, the local control decision will be made based on both internal
and external states.

To better explain the proposed framework, we will demonstrate the subsystem structure and the
message passing process using two subsystems: subsystem α and subsystem β as an example.

2.1. The subsystem α

The considered subsystem α (which is also called node α) can be shown as follows,

xk;α = Ā1xk−1;α + Ā2yk−1;α + B̄αuk−1;α + vk−1;α, (2.1)
yk;α = A3yk−1;α + wk−1;α, (2.2)

where the xk;α ∈ <
n1 is the internal state of subsystem α and yk;α ∈ <

n2 is the external state of the
subsystem α which is related to the neighbour subsystem β. Note that the full state of subsystem α is
formed as zk;α = [xT

k;α, y
T
k;α]T . uk−1;α ∈ <

n3 stands for the control input of subsystem α which need to
be designed, Ā1, Ā2, A3, and B̄α are the system parameters with appropriate dimensions. In addition,
vk−1;α and wk−1;α are Gaussian noises with zero means and covariance Qα and Rα , respectively.

vk;α ∼ N (0, Qα) ,
wk;α ∼ N (0, Rα) . (2.3)
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2.2. The subsystems β

Similar to Eq (2.1) and Eq (2.2), the state equation of subsystem β is given by,

xk;β = C̄1xk−1;β + C̄2yk−1;β + B̄βuk−1;β + vk−1;β, (2.4)
yk;β = C3yk−1;β + wk−1;β. (2.5)

where the xk;β ∈ <
n2 represents the internal state of subsystem β and yk;β ∈ <

n1 is the external state of
the subsystem βwhich is passed from the neighbour subsystem α. Similarly, the full state of subsystem
β is defined as zk;β = [xT

k;β, y
T
k;β]

T , uk−1;β ∈ <
n4 stands for the control input of subsystem β which need

to be designed, C̄1, C̄2, C3, and B̄β are the system parameters with appropriate dimensions. In addition,
vk−1;β and wk−1;β are Gaussian noises with zero means and covariance Qβ and Rβ , respectively.

vk;β ∼ N
(
0, Qβ

)
, (2.6)

wk;β ∼ N
(
0, Rβ

)
. (2.7)

In each subsystem, Eq (2.1) and Eq (2.4) represent the internal state equation while Eq (2.2) and
Eq (2.5) are the external state equations. Based on Eq (2.1) and Eq (2.4), we can see that the internal
state xk depends on the previous internal state xk−1 and the previous external state yk−1 which is passed
by the neighbour subsystem and the designed controller. This means that the internal states of each
subsystem will be controlled by their own controller and will be affected by the external states received
from neighbour subsystems. In addition, from Eq (2.2) and Eq (2.5), it can be seen that the external
state yk is only affected by the previous external state yk−1. Besides, the designed local controller of
each subsystem can only control their internal states. Another thing need to be noted is that the local
subsystem control decision is made based on both their own states (internal states) and the neighbour
systems states (external states). In this way, the global system can cooperatively achieve its goal.
Without message passing between subsystems, each subsystem is controlled by its own control strategy
independently and not affected by the neighbours’ information, which leads to the consequence that
the global system goal will never be reached.

2.3. Parameter estimation

In industrial processes, the precise system models are normally unavailable. Therefore, in this
paper, all the system parameters will be estimated first. To achieve this, linear optimisation method is
applied and details will be introduced in the following text using subsystem α as an example.

The system Eq (2.1) can be rewritten in the following form,

xk;α = θαϕ
T
k−1;α, (2.8)

where ϕk−1;α stands for the input matrix which is constructed as,

ϕk−1;α = [xT
k−1;α, y

T
k−1;α, u

T
k−1;α]T , (2.9)

and θα is the weight matrix which is formed as follows,

θα = [Ā1, Ā2, B̄α]. (2.10)
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Denote the estimated weight matrix θ̂α as,

θ̂α = [A1, A2, Bα], (2.11)

where A1, A2 and B are the estimated parameters for Ā1,Ā2 and B̄α. Note that at each step, all the
observed data up to time k will be applied to estimate the system parameters to ensure accurate
estimation. Thus using observed data up to time k, Ψ = [ϕ0;α, ..., ϕk−1;α] and X = [xT

1;α, ..., x
T
k;α]T , one

can get the following equation,
X = θαΨ. (2.12)

Based on Eq (2.12), the estimated weight matrix θ̂α can then be obtained as follows,

θ̂α = XΨ†, (2.13)

where Ψ† represents the pseudo inverse of Ψ which is given by,

Ψ† = ΨT (ΨΨT )−1. (2.14)

Similarly, using the same approach, the parameter A3 in Eq (2.2) can be estimated via the following
equation,

A3 = YΦ†, (2.15)

where Y is the output up to time k, Y = [yT
1;α, ..., y

T
k;α]T , Φ is the input up to time k, Φ = [yT

0;α, ..., y
T
k−1;α]T

and Φ† represents the pseudo inverse of Φ.
Therefore, the conditional distribution of the system dynamic can be estimated as follows

s1
(
xk;α|uk−1;α, zk−1;α

)
∼ N

(
µk;α, Qα

)
, (2.16)

s2
(
yk;α|yk−1;α

)
∼ N

(
δk;α, Rα

)
, (2.17)

where

µk;α = A1xk−1;α + A2yk−1;α + Bαuk−1;α,

δk;α = A3yk−1;α. (2.18)

Following the same estimation approach for subsystem α, the system parameters of subsystem β can
be estimated and the system distribution is given as follows using the estimated parameters,

s1

(
xk;β|uk−1;β, zk−1;β

)
∼ N

(
µk;β, Qβ

)
,

s2

(
yk;β|yk−1;β

)
∼ N

(
δk;β, Rβ

)
, (2.19)

where,

µk;β = C1xk−1;β + C2yk−1;β + Bβuk−1;β, (2.20)
δk;β = C3yk−1;β. (2.21)

where C1, C2, and Bβ are the estimated parameters for C̄1, C̄2, and B̄β , respectively.
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Therefore, using the estimated parameters, the full state system equation of subsystem α can be
specified in the following form,

zk;α = Ãzk−1;α + B̃αuk−1;α + ṽk−1;α, (2.22)

where Ã =

[
A1 A2

0 A3

]
,B̃α =

[
Bα

0

]
, ṽk−1;α =

[
vk−1;α

wk−1;α

]
. Thus, the conditional distribution of the

system dynamic of the full state of subsystem α can be expressed as

s
(
zk;α|uk−1;α, zk−1;α

)
∼ N

(
µ̃k;α, Q̃α

)
, (2.23)

where

µ̃k;α = Ãzk−1;α + B̃αuk−1;α,

Q̃α =

[
Qα 0
0 Rα

]
. (2.24)

Similarly, for subsystem β, the state equation of subsystem β is given by,

zk;β = C̃zk−1;β + B̃βuk−1;β + ṽk−1;β, (2.25)

where C̃ =

[
C1 C2

0 C3

]
,B̃β =

[
Bβ

0

]
, ṽk−1;β =

[
vk−1;β

wk−1;β

]
. The conditional distribution of the system

dynamic of the full state of subsystem β can be expressed as

s
(
zk;β|uk−1;β, zk−1;β

)
∼ N

(
µ̃k;β, Q̃β

)
, (2.26)

where

µ̃k;β = C̃zk−1;β + B̃βuk−1;β,

Q̃β =

[
Qβ 0
0 Rβ

]
. (2.27)

3. Fully probabilistic design

The control strategy presented in this paper is to design the subsystem controller for each subsystem
and achieve the objective of each subsystem and then consequently achieve the objectives of the overall
complex system. The objective of each subsystem considered in this paper is to design a randomised
control input c(uk−1|zk−1) to solve the regulation problem and bring all the internal states back to zero.
Considering the stochastic nature of the complex systems, the FPD will be employed to each subsystem
to achieve that.

3.1. General form of FPD

The performance index is formed by the Kullback-Leibler divergence (KLD) which is applied to
describe the distance between the pdf of the joint distribution of the closed loop control system and the
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desired joint pdf. The KLD between the actual joint pdf f (F) of the observed data F = (x(H), u(H))
and the ideal joint pdf f I(F) on a set of possible F is defined as follows,

F( f
∥∥∥ f I ) =

∫
f (F) ln(

f (F)
f I(F)

)dF, (3.1)

where H is the control horizon. According to the chain rule for pdfs [30], the joint distribution of the
probabilistic closed-loop description of the system dynamics can be evaluated as follows:

f (F) =

H∏
k=1

s(zk |uk−1, zk−1 )c(uk−1 |zk−1 ), (3.2)

where c(uk−1 |zk−1 ) is the actual conditional pdf of system controller uk−1. Similarly, the ideal closed-
loop pdf can be expressed in the same form as Eq (3.2) with ideal system model pdf sI(zk |uk−1, zk−1 )
and ideal controller pdf cI(uk−1 |zk−1 ),

f I(F) =

H∏
k=1

sI(zk |uk−1, zk−1 )cI(uk−1 |zk−1 ). (3.3)

With the KL-distance (3.1), the closed loop joint pdf (3.2) and the desired closed loop joint pdf (3.3),
the performance index can be formalised to be given by the following expression:

− ln(γ(zk−1)) = min
c(uk−1 |zk−1 )

∫
s(zk |uk−1, zk−1 )c(uk−1 |zk−1 )

[
ln

( s(zk |uk−1, zk−1 )c(uk−1 |zk−1 )
sI(zk |uk−1, zk−1 )cI(uk−1 |zk−1 )

)
− ln(γ(zk))

]
d(zk, uk−1), (3.4)

where the first term in parenthesis in Eq (3.4) stands for the partial cost while the second term is
the expected minimum cost-to-go function. The recursive formulation of performance index (3.4) is
similar to Dynamic programming. Full derivation of Eq (3.4) can be found in [27].

Based on the Fully Probabilistic Design (FPD) [23, 27, 31], the control law c∗(uk−1 |zk−1 ) for the
subsystem which minimises the performance index (3.4) is given by,

c∗(uk−1 |zk−1 ) =
cI(uk−1 |zk−1 ) exp[−β1(uk−1, zk−1) − β2(uk−1, zk−1)]

γ(zk−1)
, (3.5)

where,

γ(zk−1) =

∫
cI(uk−1 |zk−1 ) exp[−β1(uk−1, zk−1) − β2(uk−1, zk−1)]duk−1,

β1(uk−1, zk−1) =

∫
s(zk |uk−1, zk−1 )[ln

s(zk |uk−1, zk−1 )
sI(zk |uk−1, zk−1 )

],

β2(uk−1, zk−1) = −

∫
s(zk |uk−1, zk−1 ) ln(γ(zk))dzk. (3.6)

Full derivation of Eqs (3.4)–(3.6) can be found in [7].
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3.2. Linear Gaussian quadratic design

Following the FPD algorithm described by Eq (3.6), the generalised fully probabilistic control
solution of the regulation problem using subsystem α as an example will be derived in this section. As
mentioned in the last section, the objective of the controller is to return the system states back to zero
from their initial values. Therefore, the ideal distribution of the system is specified as,

sI(zk;α|uk−1;α, zk−1;α) ∼ N (0, Σ2) , (3.7)

where Σ2 means the ideal covariance of the state.
The ideal distribution of the controller can also be defined as follows,

cI (uk−1;α|zk−1;α
)
∼ N (0, Γ) , (3.8)

where Γ is the ideal covariance of the subsystem control input. Note that the covariance Γ indicates the
allowed range of optimal control input.

Based on Eq (3.5), Eq (3.6), Eq (3.7) and Eq (3.8), the optimal controller form can be given by the
following theorem.

Theorem 1. By submitting the ideal distribution of the system dynamics (3.7), the ideal distribution of
the controller (3.8), and the real distribution of the system dynamics (2.23) and (2.24) into Eq (3.6),
the optimal controller for system (2.1) that minimizes the performance index (3.4) is given by

uk;α = −Lk;αzk;α, (3.9)

where,

Lk;α = (Γ−1 + B̃T
αMk;αB̃α)−1B̃T

αMT
k;αÃ,

Mk;α = Σ−1
2 + S k;α,

S k−1;α = −ÃT (Σ−1
2 + S k;α)B̃α[B̃T

α(Σ−1
2 + S k;α)B̃α + Γ−1]−1B̃T

α(Σ−1
2 + S k;α)T Ã + ÃT (Σ−1

2 + S k;α)Ã. (3.10)

Note that this part is not the main contribution of this paper, therefore, FPD is taken as a ready
methodology here. The detailed proof can be found in [7, 24]. In addition, same method will be
applied to the subsystem β, which will be omitted here.

4. Message passing

We have stated the FPD control methodology for each subsystem in Section 3. As we mentioned
earlier, without communication between neighbouring subsystems, each subsystem is controlled by its
own control strategy individually, therefore might fail in achieving the global system goal. Besides, in
this work the subsystem dynamics are described by probabilistic state space models considering the
stochastic nature of the complex systems, which implies that the communication between subsystems
should also be formed in a probabilistic fashion. Thus, in this section, a novel probabilistic framework
for message passing between two subsystems in a decentralised and synchronous manner will be
introduced using the progress of message passing from subsystem α to subsystem β as an example.

In general, the message passing approach can be divided into two stages: Passing and Receiving.
More specific, once the internal states of subsystem α are updated, it will be passed in a probabilistic
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way to the neighbour subsystem β. After the subsystem β receive the probabilistic information that
subsystem α passed, the next step is for the neighbour subsystem β to fuse the received information
with its own prior external states distribution (2.19) to obtain the posterior external state distribution.
The process can be shown as xk−1;α → yk−1;β. The detailed processes will be presented in two steps as
follows.

4.1. Message passing from subsystem α to subsystem β

The first step is for the subsystem α to pass its updated internal state distribution to subsystem β,
which is given by the following theorem.

Theorem 2. Denote the distribution of the controller uk−1;α as follows,

c
(
uk−1;α|zk−1;α

)
∼ N

(
mk−1;α,Σk−1;α

)
, (4.1)

where mk−1;α is the mean of the input uk−1;α and Σk−1;α is the variance. The probabilistic model that
subsystem α passes to subsystem β can be described as follows

Mβ←α ∝ Nxk;α(µk;β←α,Σk;β←α), (4.2)

where

µk;β←α = A1xk−1;α + A2yk−1;α + Bαmk−1;α,

Σk;β←α = Qα + BαΣk−1;αBT
α . (4.3)

Proof. Based on the chain rule, the conditional joint distribution of the behaviour of the closed loop
system is given by

Lα(xk;α, yk;α, uk−1;α

∣∣∣zk−1;α ) = s1
(
xk;α|uk−1;α, zk−1;α

)
s2

(
yk;α|yk−1;α

)
c
(
uk−1;α|zk−1;α

)
. (4.4)

By substituting Eq (2.18) and Eq (4.1) into Eq (4.4), the conditional joint distribution of the behaviour
of the closed loop system can be further expressed as follows,

Lα(xk;α, yk;α, uk−1;α

∣∣∣zk−1;α ) ∝ exp
{
− 0.5[xk;α − (A1xk−1;α + A2yk−1;α + Bαuk−1;α)]T Q−1

α [xk;α

− (A1xk−1;α + A2yk−1;α + Bαuk−1;α)] − 0.5[yk;α − A3yk−1;α]T R−1
α [yk;α − A3yk−1;α]

− 0.5[uk−1;α − mk−1;α]T Σ−1
k−1;α[uk−1;α − mk−1;α]

}
. (4.5)

To update the knowledge that the subsystem β maintains about its external variables, all state variables
of the closed loop probability density description of subsystem α need to be integrated except the
internal states.

Mβ←α(xk;α

∣∣∣zk−1;α ) =

∫ ∫
Lα(xk;α, yk;α, uk−1;α

∣∣∣zk−1;α )dyk;αduk−1;α. (4.6)

Substituting Eq (4.5) into Eq (4.6), we have

Mβ←α(xk;α

∣∣∣zk−1;α ) =

∫ ∫
exp

{
− 0.5[xk;α − (A1xk−1;α + A2yk−1;α + Bαuk−1;α)]T Q−1

α [xk;α − (A1xk−1;α
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+ A2yk−1;α + Bαuk−1;α)] − 0.5[yk;α − A3yk−1;α]T R−1
α [yk;α − A3yk−1;α] − 0.5[uk−1;α

− mk−1;α]T Σ−1
k−1;α[uk−1;α − mk−1;α]

}
dyk;αduk−1;α

∝ exp
{
− 0.5[xT

k;αQ−1
α xk;α + (A1xk−1;α + A2yk−1;α)T Q−1

α (A1xk−1;α + A2yk−1;α)

− 2xT
k;αQ−1

α (A1xk−1;α + A2yk−1;α) + mT
k−1;αΣ

−1
k−1;αmk−1;α − (Σ−1

k−1;αmk−1;α + BT
αQ−1

α xk;α

− BT
αQ−1

α (A1xk−1;α + A2yk−1;α))T (BT
αQ−1

α Bα + Σ−1
k−1;α)−1(Σ−1

k−1;αmk−1;α + BT
αQ−1

α xk;α

− BT
αQ−1

α (A1xk−1;α + A2yk−1;α))]
}
. (4.7)

The above Eq (4.7) can then be presented as,

Mβ←α(xk;α

∣∣∣zk−1;α ) ∝ exp{−0.5[xT
k;α(Q−1

α − Q−T
α Bα(BT

αQ−1
α Bα + Σ−1

k−1;α)−1BαQ−1
α )xk;α] + 2xT

k;αbk−1 + ck−1]},
(4.8)

where,

bk−1 = −Q−1
α (A1xk−1;α + A2yk−1;α) + Q−T

α Bα(BT
αQ−1

α Bα + Σ−1
k−1;α)−1(BT

αQ−1
α (A1xk−1;α + A2yk−1;α)

− Σ−1
k−1;αmk−1;α), (4.9)

ck−1 = (A1xk−1;α + A2yk−1;α)T Q−1
α (A1xk−1;α + A2yk−1;α) + mT

k−1;αΣ
−1
k−1;αmk−1;α − (Σ−1

k−1;αmk−1;α

− BT
αQ−1

α (A1xk−1;α + A2yk−1;α))T (BT
αQ−1

α Bα + Σ−1
k−1;α)−1(Σ−1

k−1;αmk−1;α − BT
αQ−1

α (A1xk−1;α + A2yk−1;α)).
(4.10)

Based on the Woodbury Identity, the term Q−1
α − Q−T

α Bα(BT
αQ−1

α Bα + Σ−1
k−1;α)−1BαQ−1

α in Eq (4.8) can be
rewritten as following form,

Q−1
α − Q−T

α Bα(BT
αQ−1

α Bα + Σ−1
k−1;α)−1BαQ−1

α = (Qα + BαΣk−1;αBT
α)−1. (4.11)

Then, Eq (4.8) can be shown as follows,

Mβ←α(xk;α

∣∣∣zk−1;α ) ∝ exp{−0.5[(xk;α + (Qα + BαΣk−1;αBT
α)bT

k−1)T (Qα + BαΣk−1;αBT
α)−1(xk;α

+ (Qα + BαΣk−1;αBT
α)bT

k−1) − bT
k−1(Qα + BαΣk−1;αBT

α)bk−1 + ck−1]}. (4.12)

Using the push-through identity as,

Q−T
α Bα(BT

αQ−1
α Bα + Σ−1

k−1;α)−1 = (Qα + BαΣk−1;αBT
α)−1BαΣk−1;α, (4.13)

bk−1 can be simplified as,

bk−1 = −(Qα + BαΣk−1;αBT
α)−1(A1xk−1;α + A2yk−1;α + Bαmk−1;α). (4.14)

Similarly, ck−1 can be solved following the push-through identity and the Woodbury Identity as follows

ck−1 = (A1xk−1;α + A2yk−1;α)T (Q−1
α − Q−1

α Bα(BT
αQ−1

α Bα + Σ−1
k−1;α)−1BT

αQ−1
α )(A1xk−1;α + A2yk−1;α) + mT

k−1;α

× (Σ−1
k−1;α − Σ−1

k−1;α(BT
αQ−1

α Bα + Σ−1
k−1;α)−1Σ−1

k−1;α)mk−1;α + 2mT
k−1;αΣ

−1
k−1;α(BT

αQ−1
α Bα + Σ−1

k−1;α)−1

× BT
αQ−1

α (A1xk−1;α + A2yk−1;α). (4.15)
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As

Σ−1
k−1;α − Σ−1

k−1;α(BT
αQ−1

α Bα + Σ−1
k−1;α)−1Σ−1

k−1;α = Σ−1
k−1;α − Σ−1

k−1;α(Σk−1;α − Σk−1;αBT
α

× (Qα + BαΣk−1;αBT
α)−1BαΣk−1;α)Σ−1

k−1;α

= BT
α(Qα + BαΣk−1;αBT

α)−1Bα, (4.16)

then Eq (4.15) is given by

ck−1 = (A1xk−1;α + A2yk−1;α + Bαmk−1;α)T (Qα + BαΣk−1;αBT
α)−1(A1xk−1;α + A2yk−1;α + Bαmk−1;α). (4.17)

Substituting bk−1 and ck−1 into Eq (4.12), we can get

Mβ←α(xk;α

∣∣∣zk−1;α ) ∝ exp{−0.5[(xk;α − (A1xk−1;α + A2yk−1;α + Bαmk−1;α))T (Qα + BαΣk−1;αBT
α)−1

× (xk;α − (A1xk−1;α + A2yk−1;α + Bαmk−1;α)) − (A1xk−1;α + A2yk−1;α + Bαmk−1;α)T (Qα

+ BαΣk−1;αBT
α)−1(A1xk−1;α + A2yk−1;α + Bαmk−1;α) + (A1xk−1;α + A2yk−1;α + Bαmk−1;α)T

× (Qα + BαΣk−1;αBT
α)−1(A1xk−1;α + A2yk−1;α + Bαmk−1;α)]}

= exp{−0.5[(xk;α − (A1xk−1;α + A2yk−1;α + Bαmk−1;α))T (Qα + BαΣk−1;αBT
α)−1(xk;α

− (A1xk−1;α + A2yk−1;α + Bαmk−1;α))]}. (4.18)

The proof is completed. �

4.2. Message receiving at subsystem β

Once the subsystem β received the distribution (4.2) passed by the subsystem α, the subsystem β

will update the prior external state distribution by merging with the newly obtained distribution. The
theorem is given as follows.

Theorem 3. The posterior external state probability distribution y f used,β;k after fusing with newly
obtained Mβ←α(xk;α

∣∣∣zk−1;α ) is given as follows,

y f used,β;k ∝ N(µk; f ;β,Σk; f ;β), (4.19)

where,

µk; f ;β = δk;β + Kk;β(µk;β←α − δk;β). (4.20)
Σk; f ;β = Rβ − Kk;βRβ, (4.21)
Kk;β = Rβ(Rβ + Σk;β←α)−1. (4.22)

Proof. Recall the prior external distribution of subsystem β as follows

s2

(
yk;β|yk−1;β

)
∼ N

(
δk;β, Rβ

)
. (4.23)

The probabilistic model (4.2) that subsystem α passed to subsystem β and the distribution (4.23)
that subsystem β has priori about its external state can be fused using Bayes’ rule by multiplying the
two together. Thus, the new probability description of the fusion of the information is given by

y f used,β;k ∝ exp
{
− (yk;β − µk;β←α)T Σ−1

k;β←α(yk;β − µk;β←α) − (yk;β − δk;β)T R−1
β (yk;β − δk;β)

}
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= exp{−yT
k;β(Σ

−1
k;β←α + R−1

β )yk;β + 2yT
k;β(Σ

−1
k;β←αµk;β←α + R−1

β δk;β) − µT
k;β←αΣ

−1
k;β←αµk;β←α − δ

T
k;βR

−1
β δk;β}

= exp
{
− (yk;β − µk; f ;β)T Σ−1

k; f ;β(yk;β − µk; f ;β) + (Σ−1
k;β←αµk;β←α + R−1

β δk;β)T (Σ−1
k;β←α + R−1

β )−1

× (Σ−1
k;β←αµk;β←α + R−1

β δk;β) − µT
k;β←αΣ

−1
k;β←αµk;β←α − δ

T
k;βR

−1
β δk;β

}
,

(4.24)

where

µk; f ;β = δk;β + Rβ(Rβ + Σk;β←α)−1(µk;β←α − δk;β), (4.25)
Σk; f ;β = (Σ−1

k;β←α + R−1
β )−1. (4.26)

By defining

Kk;β = Rβ(Rβ + Σk;β←α)−1, (4.27)

Equations (4.25) and (4.26) can be expressed as follows,

µk; f ;β = δk;β + Kk;β(µk;β←α − δk;β), (4.28)
Σk; f ;β = Rβ − Kk;βRβ, (4.29)

which competes the proof. �

Similarly, based on Theorem 2 and 3, the probabilistic distribution passed from subsystem β to
subsystem α is taking the same form, which is given by,

Mα←β ∝ Nxk;β(µk;α←β,Σk;α←β), (4.30)

where

µk;α←β = C1xk−1;β + C2yk−1;β + Bβmk−1;β,

Σk;α←β = Qβ + BβΣk−1;βBT
β . (4.31)

And the mean and covariance of the distribution that subsystem α merges the information passed by
subsystem β are given by,

µk; f ;α = δk;α + Kk;α(µk;α←β − δk;α), (4.32)
Σk; f ;α = Rα − Kk;αRα, (4.33)

where,

Kk;α = Rα(Rα + Σk;α←β)−1. (4.34)

Remark 1. The message receiving form (4.28) and (4.32) take the same form as the updating equation
from Kalman Filter as well as the gain (4.27) and (4.34).
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Remark 2. Compared with the other existing distributed approaches, we have brought up the concept
of the external state in this work. On the one hand, the external state equation can be treated as
part of the full state, which makes the controller design part easier. On the other hand, the external
state equation can briefly estimate the next time steps of external values, which can make sure each
subsystem works normally if the connection with the neighbour subsystem is lost, or when the future
external value is required for some systems. Connection lost and requirement of the prediction of the
future state values will be demonstrated in our future work. Besides, our proposed framework follows
a fully probabilistic approach, which is more efficient than most existing decentralised methods that
usually do not take the stochastic property into the consideration.

4.3. Procedure of message passing

The procedure of the proposed probabilistic message passing framework can then be summarized
as follows:

1) Initialize all the subsystem states and parameters, including the system parameters A3 and C3 and
the FPD Raccatti matrix S 0;

2) Form the matrices Ã and B̃α as specified in Eq (2.22). Apply the same for C̃, and B̃β as specified in
Eq (2.25);

3) For each subsystem, calculate the control input of each subsystem, uk following Eqs (3.9)-(3.10)
and update the system as give in Eqs (2.1)-(2.2) and Eqs (2.4)-(2.5). Then obtain the internal state
xk;α, xk;β and the prior external state yk;α, yk;β ;

4) Pack the new calculated internal state distributions and pass the states to neighbour subsystem as
specified by Eqs (4.2)-(4.3) and Eqs (4.30)-(4.31);

5) At the same time as step 4, for each system, receive the external state probabilistic model passed by
the neighbour subsystem and then update the external states following Eq (4.20) to Eq (4.22) and
Eq (4.32) to Eq (4.34);

6) For the subsystem α and β, use new updated states to estimate the parameters A1, A2, A3, Bα, C1,
C2, C3 and Bβ following Eqs (2.8)-(2.15);

7) Move to the next sampling instant k = k + 1 and update the system using step 2.

5. Simulation results

To demonstrate the effectiveness of the proposed control strategy, the numerical example used
in [32] will be employed in this paper to test the proposed framework.

The system is given by the following discrete time dynamical equation [32],

xk+1 =


0.9429 −0.02798 −0.2611

0.02224 0.9798 −0.02135
0.2616 0.01452 0.943

 xk +


0.009384 0.005471 −0.00072
−0.001563 0.00931 −0.00055
−0.002088 −0.00147 0.005401

 uk + vk. (5.1)
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where xk is the global system state, uk represents the system controller and vk is Gaussian noise with
zero mean and variance 0.1.

vk ∼ N (0, 0.1)

Unlike [32] splitting the original system into three decoupled subsystems, in this paper the original
system is divided into two subsystems for showing the presented control strategy clearer. The first
subsystem is taking the first two states as the internal states while the second subsystem is taking the
last state as the internal state. To control the whole system, there are two control inputs that will be
formed for each subsystem, respectively. Thus, the first subsystem is given by:

xk;1 = A(1)xk−1;1 + B(1)uk−1;1 + vk−1. (5.2)

where A(1) =


0.9429 −0.02798 −0.2611
0.02224 0.9798 −0.02135

0 0 a33

, B(1) =


0.009384 0.005471 −0.00072
−0.001563 0.00931 −0.00055

0 0 0


Similarly, the second subsystem is presented as,

xk;2 = A(2)xk−1;1 + B(2)uk−1;2 + vk−1. (5.3)

where A(2) =


a11 a12 0
a21 a22 0

0.2616 0.01452 0.943

, B(2) =


0 0 0
0 0 0

−0.002088 −0.00147 0.005401


Among these equation, the parameters a11, a12, a21, a22, and a33 are related to the external

observable states which are updated and communicated between the two subsystems. They are
initialised randomly and will be updated each instant.

The initial values of the states are x0 = [2.5,−2.3, 0.4]T . The objective for each subsystem is to use
the FPD algorithm to design local controllers so that all the internal states of the individual subsystems
are returned to the origin. Then the subsystems exchange their internal states information with each
other via message passing method. In the end, all the system states should be all back to zero.

The simulation results are given in Figures 1–5. The system states in both subsystems are shown in
Figures 1–3, which can be seen that all the states in both subsystems are back to the origin within 20
steps. That means the whole system is successfully decentrally controlled by individually controlling
the two subsystems. In addition, from Figures 1–3, we can see that all the states in both subsystems
match with each other’s trajectories, which means that the message passing approach is successfully
implemented. Figure 4 and Figure 5 show the FPD gain for subsystem 1 and subsystem 2, respectively.
From Figure 4 and Figure 5, we can see that the gain converged to the optimal values within 20 steps,
meaning that the FPD algorithm works in both subsystems. In conclusion, the control objective is
successfully reached using our proposed control strategy.
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Figure 1. State x1.
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Figure 3. States x3.
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Figure 4. Optimal gain K of subsystem 1.
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Figure 5. Optimal gain K of subsystem 2.

6. Conclusion

This paper concentrated on the communication problems between the subsystems of complex
dynamical stochastic systems. A detailed discussion about how the two subsystems exchange their
new updated internal states has been offered. Also, the process detailing how the external states affect
the subsystems and then reach the global control goal has been explained. In the meantime, a
regulation problem has been considered for a complex system with a large number of subsystems and
a decentralised control strategy using the proposed message passing approach has been developed
adaptively. The conventional FPD has been applied to the subsystems as a randomised controller to
reach the local control goals. Finally, the associated simulation results have been produced to verify
the proposed control algorithm and the desired results have been obtained.
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