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Abstract
This article proposes the exploitation of the Kullback–Leibler divergence to characterise the uncertainty of the tracking

error for general stochastic systems without constraints of certain distributions. The general solution to the fully

probabilistic design of the tracking error control problem is first stated. Further development then focuses on the

derivation of a randomised controller for a class of linear stochastic Gaussian systems that are affected by multiplicative

noise. The derived control solution takes the multiplicative noise of the controlled system into consideration in the

derivation of the randomised controller. The proposed fully probabilistic design of the tracking error of the system

dynamics is a more legitimate approach than the conventional fully probabilistic design method. It directly characterises the

main objective of system control. The efficiency of the proposed method is then demonstrated on a flexible beam example

where the vibration quenching in flexible beams is shown to be effectively suppressed.

1. Introduction

In control systems, the tracking error between the system
output and a predefined desired output is the most com-
monly used optimisation signal for the tuning of the pa-
rameters of the system controller (Gaudio et al., 2019;
Gerasimov et al., 2019; Humaidi and Hameed, 2019; Wu
and Du, 2019; Zhou et al., 2020; Zhou et al., 2017). When
accompanied with adaptive control (Chen and Jiao, 2010;
Narendra and Annaswamy, 2005; Tao, 2003), the approach
has been particularly proven useful to control systems that
are affected by model uncertainty, random noises, and that
are operating under changing environments and have un-
foreseen variations in their overall structure. Despite being
adaptive and therefore are expected to deal with the un-
derlying system uncertainty, many of the aforementioned
methods are based on the minimisation of the mean square
tracking error to optimise the controller parameters. The
minimisation of the mean square tracking error, also known
as tracking error variance, on the other hand, is based on the
assumption of certainty equivalence; therefore, it does not
generally yield a good performance. Thus, for more general
stochastic systems and for systems with functional and
model uncertainty, the variance of the tracking error cannot
be used alone to represent the performance of the closed-
loop system (Herzallah, 2007; Herzallah and Lowe, 2003;
Herzallah and Lowe, 2004; Herzallah and Lowe, 2006; Yue
and Wang, 2003; Zhang et al., 2016). As a result, the
Kullback–Leibler divergence (Cliff et al., 2018; Kulback,
1959; Yu and Mehta, 2009) measure has been proposed

recently in several control literatures to characterise the
uncertainty of the stochastic systems dynamics. This is
because the Kullback–Leibler divergence measures the
discrepancies between the stochastic system distributions
to their desired distributions rather than characterising them
by their means or variances.

An efficient control approach, known as fully probabilistic
design (FPD), that uses the Kullback–Leibler divergence as
a performance measure for designing randomised controllers
has been proposed in Karny (1996) and Herzallah and Karny
(2011). In this approach, the Kullback–Leibler divergence is
used to measure the discrepancy between the joint pdf of the
closed-loop description of the system dynamics and an ideal
joint pdf. The main advantage of the FPD control approach is
that it provides a closed-form solution for general description
of stochastic systems without constraints of certain distri-
bution. However, although a closed-form solution can be
obtained, the solution cannot be evaluated analytically be-
cause of the multivariate integration involved in the opti-
misation process. Besides, in its original form the FPD control

Aston Institute for Urban Technology and the Environment (ASTUTE),

Aston University, UK

Received: 5 November 2019; accepted: 8 March 2020

Corresponding author:
Randa Herzallah, Aston University, Aston Triangle, Birmingham B4 7ET,

West Midlands, UK.

Email: r.herzallah@aston.ac.uk

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/1077546320921608
http://journals.sagepub.com/home/jvc
https://orcid.org/0000-0001-9128-6814
mailto:r.herzallah@aston.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1077546320921608&domain=pdf&date_stamp=2020-04-17


method considers the design of a randomised controller that
shapes the pdf of the system dynamics. Nonetheless, the
characterisation of the pdf of the system dynamics can be
difficult for many real-world systems that work under high
levels of uncertainty and stochasticity. Furthermore, in many
real engineering systems the controller objective is to make
the output of the system dynamics follow a predefined desired
output value, thus emphasising the importance of the tracking
error rather than the actual system output.

As such, this study follows an alternative approach
where the Kullback–Leibler divergence is defined to be the
distance between the pdf of the joint distribution of the
tracking error and the randomised controller of the controlled
system to an ideal joint distribution function. Therefore, the
randomised controller is designed here to reshape the pdf of
the tracking error of the controlled system rather than the pdf
of its dynamics. Compared with the existing results on the
topic and the conventional approach of FPD, this alternative
approach has several advantages that have not been reported
in the literature. First, the characterisation of the pdf of
tracking error of the controlled system is normally easier than
that of the pdf of its dynamics. This is because when the
stochastic dynamics of the controlled system are estimated
accurately, the resulting tracking error of the system will be
small and most likely can be characterised by a Gaussian pdf.
The aforementioned in turn simplifies the optimisation of
the sought randomised controller. Second, the ideal distri-
bution of the tracking error can be naturally specified by
a zero mean distribution. In particular, a Gaussian distri-
bution with zero mean and a prespecified covariance matrix
that determines the allowed fluctuations of the tracking error
around its zero mean value would be ideal. Furthermore, the
FPDmethod in its original form considers additive noise only
to the system dynamics. Our alternative solution considers
stochastic systems with multiplicative noises which represent
conditions under which most real-world systems operate.
Therefore, an additional contribution of the study is the
consideration of the multiplicative noise of the stochastic
system in the derivation of the randomised optimal control
law. Moreover, the proposed probabilistic minimisation of
the tracking error will be shown to be particularly useful for
solving the vibration control problem associated with me-
chanical systems. The vibration control problem is particu-
larly challenging and is relevant to many real-world control
problems, including robotic manipulators, aerospace struc-
tures, and biomechanical systems (Flores and Barbieri, 2006;
Pappalardo et al., 2016; Simone et al., 2018; Sohn et al.,
2009; Song and Gu, 2007).

To reemphasise, this alternative solution of the tracking
error and the extension of the FPD to stochastic systems
with multiplicative noises have not been discussed pre-
viously in the literature. Its theoretical development and
numerical demonstration will be presented for the first time
in this article.

2. Problem statement

In the original formulation of the FPD, the aim is to derive
a randomised controller that shapes the joint probability
density function of the stochastic system dynamics and the
controller. This joint probability density function of the
controller and the dynamics of the stochastic system rep-
resents the complete description of the closed-loop be-
haviour of the controlled system. However, in some control
applications, the system is required to track a predefined
desired trajectory. Thus, for these control applications, it
would be more convenient to design the controller such that
it reshapes the pdf of the tracking error as opposed to the
original formulation of reshaping the pdf of the system
dynamics. For the system to be able to track the desired
signal, the controller should be designed such that the pdf of
the tracking error is centred around zero with small var-
iations. This objective of achieving a narrow distribution of
the tracking error centred around zero error state implies
that the system has tracked the desired trajectory and at the
same time indicates that the uncertainty in the tracked
trajectory is small. To be more specific, assume that the
stochastic system can be described at each time instant k by
the following conditional pdf

sðxk jxk�1; uk�1Þ (1)

where xk 2ℜn is the system state and uk 2ℜm is the system
input. Defining the reference state that the system will be
required to track as xr 2ℜn, then the system tracking error is
given by

ek ¼ xk � xr (2)

Because the considered system in this study is stochastic
and subject to random forces and functional uncertainties,
only the probability density function of the state values de-
fined in equation (1) can be specified. On the other hand,
because the objective of this study is to design a randomised
controller that shapes the pdf of the tracking error as a result of
the requirements that the system state tracks a desired set
point, the pdf of the tracking error needs to be assumed to be
knownwhichmay be an unrealistic assumption formany real-
world control problems. However, the density function of the
tracking error can be obtained from the density function of
the system dynamics using the probability theory as follows

seðxk ; xrÞ ¼ sðek þ xrjek�1 þ xr; uk�1Þ (3)

In general, s(xk|.) is not known in reality, thus needs to be
estimated online using the observed data of the controlled
system. The estimation process of this pdf is explained in
Section 3.2.

Once the pdf of the tracking error is estimated, the
randomised controller can be derived by redefining the
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Kullback–Leibler divergence such that the discrepancy
between the joint pdf of the tracking error and the controller
and a predefined ideal joint pdf is minimised

D
�
f kf I� ¼ Z

f ðDÞln
�
f ðDÞ
f IðDÞ

�
dðDÞ (4)

where f ðDÞ ¼ ∏H
k¼1sðek jek�1; uk�1Þcðuk�1jek�1Þ, f I ðDÞ ¼

∏H
k¼1s

I ðek jek�1; uk�1ÞcI ðuk�1jek�1Þ, D¼ðe0;…;eH ;u0;…;
uH�1Þ, and H is the control horizon. Following the same
approach of the original FPD, the minimisation of the
Kullback–Leibler divergence defined in equation (4) can be
achieved by recursively solving the backward recurrence
equation that is given in the following proposition.

Proposition 1. The optimal randomised controller c(uk�1|
ek�1) can be obtained by recursively solving the following
recurrence equation (Herzallah and Karny, 2011)

�lnðγðek�1ÞÞ ¼ min
cðuk�1jek�1Þ

Z
sðek juk�1; ek�1Þcðuk�1jek�1Þ

×

�
ln

�
sðek juk�1; ek�1Þcðuk�1jek�1Þ
I sðek juk�1; ek�1ÞI cðuk�1jek�1Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡ partial cost0Uðek ; uk�1Þ

� lnðγðekÞÞ|fflfflfflfflffl{zfflfflfflfflffl}
optimal cost-to-go

#
dðek ; uk�1Þ

(5)

Proof. The derivation of the above result can be found in
Herzallah and Karny (2011).

The optimal randomised controller that minimises the
recurrence equation specified in equation (5) can then be
shown to be given as specified in the following proposition.

Proposition 2. The pdf of the optimal randomised con-
troller that minimises cost-to-go function (5) is given by

cðuk�1jek�1Þ

¼ cIðuk�1jek�1Þexp½ �β1ðuk�1; ek�1Þ � β2ðuk�1; ek�1Þ�
γðek�1Þ

(6)

where

γðek�1Þ ¼
Z

cIðuk�1jek�1Þexp½�β1ðuk�1; ek�1Þ
� β2ðuk�1; ek�1Þ�duk�1

β1ðuk�1; ek�1Þ ¼
Z

sðek juk�1; ek�1Þ
�
ln

sðek juk�1; ek�1Þ
sIðek juk�1; ek�1Þ

�
dek

β2ðuk�1; ek�1Þ ¼ �
Z

sðek juk�1; ek�1ÞlnðγðekÞÞdek
(7)

Proof. This proposition can be proven by adapting the proof
of Proposition 2 in Karny and Guy (2006).

Note that the solution of the optimal randomised con-
troller as specified in this proposition is not restricted by the
pdf that characterises the error or the controller. It provides
the general solution for the randomised controller without
constraints on the required pdfs. However, the evaluation of
the analytic solution for this randomised controller is not
possible except for the special case of linear and Gaussian
pdfs. Therefore, to facilitate the understanding and the
analytical solution of the proposed tracking error–based
FPD, the next section will demonstrate the solution to the
probabilistic tracking control for a class of linear stochastic
systems with multiplicative noise.

3. Solution of the probabilistic tracking
control for linear stochastic systems

The theory developed in the previous section will be applied
here to derive the analytic solution of the probabilistic
tracking control for linear stochastic systems with multi-
plicative noise. Stochastic systems with multiplicative
noises arise naturally in networked control systems where
multiplicative noises are used to model packet loss. Pre-
vious works have considered this class of stochastic systems
where the multiplicative noise is used to model packet loss
(Wei et al., 2013) and time delay (Zhang et al., 2015) that
happens during packet transmission in communication
networks. This is different to parameters uncertainty (Lee
et al., 2001; Liu et al., 2010; Xie et al., 1992) where the
uncertainty of the parameters is usually grouped with the
parameters of the state and can be considered stochastic or
deterministic. The development of a robust control solution
for these systems has been a long standing and still unsolved
problem.

3.1. Model description

Consider a stochastic linear discrete-time system with
multiplicative Gaussian noise described by

xk ¼ ~Axk�1 þ ~Buk�1 þ ~Dxk�1vk�1 (8)

where xk 2ℜn is the system state, and uk 2ℜm is the system
input as defined before, A, B, and D are system matrices
with appropriate dimensions, and vk 2ℜ is an independent
Gaussian noise with zero mean and covariance Q.

It should be noted that in real-world situations the pa-
rameters of stochastic model (8) are not known in general,
thus need to be estimated. However, because the current
value of the system state is affected by noise, its value
cannot be completely specified by the previous control and
previous state values. Therefore, the probabilistic de-
scription of stochastic model (8) needs be estimated online
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using observed data from the stochastic system dynamics to
describe the probabilistic evolution of the system state. The
online estimation process of the stochastic system param-
eters and consequently the system state distribution will be
discussed next.

3.2. Estimation of the probabilistic description of
the system tracking error

As discussed in the previous section, because of the sto-
chastic nature of the system dynamics, only the probabilistic
description of the system state can be specified. This can be
obtained by estimating the system parameters of the sto-
chastic equation of the system state given in equation (8).
Therefore, given our prior knowledge of the linear dy-
namics of the system and the fact that it is driven by
multiplicative noise, the required model of system (8) can
be assumed to have the following form

xk ¼ Axk�1 þ Buk�1 þ Dxk�1vk�1 (9)

where A, B, and D are the estimates of the matrices ~A; ~B,
and ~D, respectively. Then these parameters can be estimated
online by updating their values at each time instant, k, when
a new measurement of the state value becomes available. In
particular, rewrite equation (9) as follows

xk ¼ ½A B D �

2
64 xk�1

uk�1

xk�1vk�1

3
75

¼ qχk�1

(10)

where q¼ ½A B D � and χk�1 ¼ ½xk�1 uk�1 xk�1vk�1 �T .
Here, χk�1 has dimension (2n +m) × 1 and q has dimension
n × (2n + m), where n and m are the dimensionality of the
state vector and control input, respectively, as stated earlier.
Then given a new observation of the system state xk, the
parameter vectorq can be estimated. Because thematrix χk�1

is not a square matrix, the estimation of the parameter vector
can be achieved by first multiplying both sides of equation
(10) by χTk�1 and then solving for the parameter vector q

xkχ
†

k�1 ¼ q (11)

where χ†k�1 is a 1 × (2n + m) matrix known as the pseudo
inverse of χk�1 and is given by

χ†k�1 ¼ χTk�1

�
χk�1χ

T
k�1

��1
(12)

Remark 1. As can be seen from equation (12), the pseudo-
inverse matrix does have the property that χk�1χ

†
k�1 ¼ I ,

where I is the identity matrix. However, note that
χk�1χ

†
k�1 ≠ I in general. If the matrix χk�1χ

T
k�1 is singular,

then equation (11) does not have a unique solution. In this
case, if the pseudo inverse is defined as

χ†k�1 ¼ lim
ι→ 0

χTk�1

�
χk�1χ

T
k�1 þ ιI

��1
(13)

then the limit can be shown to always exist and that the
limiting value guarantees the optimal solution of equation
(11).

Following the estimation of these parameters, the con-
ditional distribution of the system state is shown to be
Gaussian described by

sðxk jxk�1; uk�1Þ∼N
�
Axk�1 þ Buk�1;Dxk�1Qx

T
k�1D

T
�

(14)

where Axk�1 + Buk�1 is the mean of the state calculated
using the estimated parameters A and B, andDxk�1QxTk�1D

T

is the covariance of the state calculated using the estimated
parameter D.

For the objective of deriving a randomised controller that
will achieve a narrow tracking error distribution centred
around zero, thus guaranteeing an accurate tracking of the
system state to the desired value, the tracking error dis-
tribution needs to be specified. This can be obtained from
the definition of the tracking error given in equation (2).

The dynamical description of the tracking error can then
be obtained by substituting equation (9) into (2), which
yields

ek ¼ Axk�1 þ Buk�1 þ Dxk�1vk�1 � xr
¼ Aek�1 þ Buk�1 þ Dxk�1vk�1 þ Fxr

(15)

where we have introduced the definition F = A � I. From
equations (3), (14), and (15), the distribution of the tracking
error is Gaussian with mean μk and covariance Σk specified
as follows

sðek juk�1; ek�1Þ∼Nðμk ;ΣkÞ (16)

where

μk ¼ Aek�1 þ Buk�1 þ Fxr (17)

Σk ¼ covðek juk�1; ek�1Þ
¼ E

	ðek � μkÞðek � μkÞT



¼ Dxk�1Qx
T
k�1D

T

(18)

3.3. Randomised control solution

In this section, the generalised fully probabilistic control
solution of the tracking problem for the stochastic linear
system with multiplicative noise defined in equation (8) is
derived. As discussed in earlier sections, the pdf of the
system tracking error is assumed to be unknown, thus es-
timated online as explained in Section 3.2. The purpose of
the designed controller here is to make the pdf of the
tracking error sðek juk�1; ek�1Þ follow a predefined ideal pdf
sI(ek|uk�1,ek�1) and bring the tracking error to zero. Thus,
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the ideal distribution of the system tracking error described
by equation (16) is specified as

sIðek juk�1; ek�1Þ∼Nð0;Σ2Þ (19)

where Σ2 specifies the allowed fluctuations of the tracking
error around its zero mean value. In addition, the ideal dis-
tribution of the sought randomised controller, cðuk�1jek�1Þ, is
taken to be Gaussian with the following form

cIðuk�1jek�1Þ∼Nðμu;ΓÞ (20)

where Γ is the covariance matrix of the ideal distribution of
the control input and μu is the mean of the ideal distribution
of the control input. To achieve the objective that the op-
timised randomised controller brings the tracking error
between the system state and its desired value to zero, the
mean value of the ideal distribution of the controller, μu, is
calculated from equation (15) to be

lim
k→∞

½Efekg�¼ lim
k→∞

½EfAek�1gþEfBuk�1g
þEfDxk�1vk�1gþFxr�

0¼ 0þ lim
k→∞

½EfBuk�1gþFxr�
lim
k→∞

½Efuk�1g�¼ μu ¼��
BTB

��1
BTFxr

(21)

Given the pdf of the tracking error defined in equation
(16) and the ideal pdfs of the tracking error and controller
defined in equations (19) and (20), respectively, the per-
formance index for the class of linear stochastic systems
defined in equation (9) can then be shown to be given by the
following theorem.

Theorem 1. Using the pdf description of the tracking error
dynamics specified by equation (16), the ideal distribution
of the tracking error dynamics given by equation (19) and
the ideal distribution of the controller given by equation
(20) in equations (6) and (7) give the following performance
index

�lnðγðekÞÞ ¼ 0:5
�
eTk Skek þ Pkek þ wk

�
(22)

where

Sk�1 ¼ �ATMkB
�
Γ�1 þ BTMkB

��1
BTMT

k AþM2 þ ATMkA

(23)

Pk�1 ¼ 2xTr
�
M2 þ FTMkA

�þ PkA

þ 2μTuΓ
�1
�
Γ�1 þ BTMkB

��1
BTMT

k A

� 2xTr F
TMkB

�
Γ�1 þ BTMkB

��1
BTMT

k A

� PkB
�
Γ�1 þ BTMkB

��1
BTMT

k A

(24)

wk�1

¼ xTr

�
M2 þ FTMkF � FTMkB

�
Γ�1 þ BTMkB

��1
BTMT

k F
�

× xr þwk þ PkFxr þ μTu

�
Γ�1 � Γ�1

�
Γ�1 þ BTMkB

��1
Γ�T

�
×μu � 0:25PkB

�
Γ�1 þ BTMkB

��1
BTPT

k

þ 2μTuΓ
�1
�
Γ�1 þ BTMkB

��1
BTMT

k Fxr

� PkB
�
Γ�1 þ BTMkB

��1
BTMT

k Fxr

þ μTuΓ
�1
�
Γ�1 þ BTMkB

��1
BTPT

k � lnðπÞ
þ ln

��
Γ�1 þ BTMkB

��1
�

(25)

and where

Mk ¼ Σ�1
2 þ Sk

M2 ¼ DTSkQD
(26)

Proof. The claimed quadratic form of the optimal perfor-
mance function specified in equation (22) can be verified
subsequently by backward induction. The proof starts by
evaluating γ in equation (7), repeated here

γðek�1Þ ¼
Z

cIðuk�1jek�1Þexp½�β1ðuk�1; ek�1Þ
� β2ðuk�1; ek�1Þ�duk�1

(27)

This evaluation requires the evaluation of β1 and β2.
Starting with β1

β1ðuk�1; ek�1Þ ¼
Z

sðek juk�1; ek�1Þln sðek juk�1; ek�1Þ
sIðek juk�1; ek�1Þ dek

¼
Z

Nðμk ;ΣkÞ
��0:5 ln

�jΣk jjΣ2j�1�
� 0:5ðek � μkÞT ðΣkÞ�1

× ðek � μkÞ þ 0:5eTk ðΣ2Þ�1ek
�
dek

(28)

To solve (28), the following rule from Golub and
Meurant (2009) is required

lnðdetðA1ÞÞ ¼ trðlnðA1ÞÞ (29)

where A1 is a positive definite matrix. Because ðjΣk jjΣ2j�1Þ
is positive definite, the lnðjΣk jjΣ2j�1Þ term in equation (28)
can be rewritten as

ln
�jΣk jjΣ2j�1� ¼ ln

�

ΣkΣ
�1
2



� ¼ tr
�
ln
�
ΣkΣ

�1
2

��
(30)

Assumption 1. Because the objective of the sought rand-
omised optimal controller is to make the distribution of the
tracking error of the system dynamics as close as possible to
the specified ideal distribution, it is expected that at steady
state the covariance of the tracking error dynamics will
become close to the covariance of the specified ideal dis-
tribution. This means that
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��ΣkΣ
�1
2 � I

��< 1 (31)

Remark 2. Please note that the covariance of the noise, Q,
affecting the system will not be too large in real-world
systems. This in turn means that Σk ¼ Dxk�1QxTk�1D

T will
not be too large as well. Therefore, the above assumption is
a valid assumption. This will be proven numerically in the
numerical results section, Section 4.

Based on Assumption 1 and Lemma 2.6 from Hall
(2015), equation (30) can be approximated as follows

tr
�
ln
�
ΣkΣ

�1
2

��
≈ tr

�
ΣkΣ

�1
2 � I

�
≈ tr

�
ΣkΣ

�1
2

�� n (32)

where n is the dimension of ek.
Using equation (32) in (28) and expanding the terms of

equation (28), we get

β1ðuk�1; ek�1Þ ¼
Z

Nðμk ;ΣkÞ
��0:5tr

�
ΣkΣ

�1
2

�þ 0:5n

þ 0:5eTk
�
Σ�1
2 � Σ�1

k

�
ek � 0:5μTk Σ

�1
k μk

þ eTk Σ
�1
k μk

�
dek ;

¼ 0:5μTk Σ
�1
k μk � 0:5tr

�
ΣkΣ

�1
2

�þ 0:5n

þ 0:5

Z
Nðμk ;ΣkÞeTk ×

�
Σ�1
2 � Σ�1

k

�
ekdek

(33)

The last part in equation (33), 0:5
R
Nðμk ;ΣkÞeTk ðΣ�1

2 �
Σ�1
k Þekdek , can be evaluated as follows

0:5

Z
Nðμk ;ΣkÞeTk

�
Σ�1
2 � Σ�1

k

�
ekdek

¼ 0:5
�
tr
�
Σ�1
2 Σk

�� n
�þ 0:5μTk

�
Σ�1
2 � Σ�1

k

�
μk

(34)

Substituting equation (34) back into (33), we obtain

β1ðuk�1; ek�1Þ ¼ 0:5μTk Σ
�1
2 μk (35)

Similarly, β2ðuk�1; ek�1Þ can be evaluated as follows

β2ðuk�1;ek�1Þ ¼�
Z

sðek juk�1;ek�1ÞlnðγðekÞÞdek

¼
Z

Nðμk ;ΣkÞ
�
0:5

�
eTk Skek þPkek þwk

��
dek

¼ 0:5μTk Skμk þ 0:5wk þ 0:5xTr M2xr
þ 0:5eTk�1M2ek�1 þ xTr M2ek�1þ 0:5Pkμk

(36)

where we have used

trðSkΣkÞ ¼ xTk�1M2xk�1

¼ eTk�1M2ek�1 þ xTr M2xr þ 2xTr M2ek�1

(37)

withM2 = DTSkQD. Thereupon, substituting equations (35)
and (36) in (27) and collecting the terms that multiply the
control input, uk�1, together yields

γðek�1Þ ¼
Z

cIðuk�1jek�1Þexp½ � β1ðuk�1; ek�1Þ
� β2ðuk�1; ek�1Þ�duk�1

¼ ð2πjΓjÞ�ð1=2Þ exp
��0:5

	
eTk�1

�
ATMkAþM2

�
ek�1

þ wk þ 2xTr
�
FTMkAþM2

�
ek�1 þ μTuΓ

�1μu
þ PkAek�1 þ PkFxr þ xTr

�
FTMkF þM2

�
xr

�

×

Z
exp½�0:5fuTk�1

�
BTMkBþ Γ�1

�
uk�1

þ 2uTk�1

��Γ�1μu þ BTMkAek�1 þ BTMkFxr

þ 0:5BTPT
k

�
�
duk�1

(38)

The integral in equation (38) can be calculated by
completing the square with respect to uk�1. Consequently,
γðek�1Þ can be shown to be given by

γðxk�1Þ¼ exp
h
�0:5

n
� lnð2πÞ�0:5ln




�Γ�1þBTMkB
��1





þ eTk�1

�
�ATMkB

�
Γ�1þBTMkB

��1
BTMkAþM2

þATMkA
�
ek�1þ

	
2xTr

�
M2þFTMkA

�þPkA

þ2μTuΓ
�1
�
Γ�1þBTMkB

��1
BTMkA

�2xTr F
TMkB

�
Γ�1þBTMkB

��1
BTMkA

�PkB
�
Γ�1þBTMkB

��1
BTMkA

�o
ek�1þwk

þPkFxrþ xTr
�
M2þFTMkF

�FTMkB
�
Γ�1þBTMkB

��1
BTMkF

�
xr

þμTu

�
Γ�1�Γ�1

�
Γ�1þBTMkB

��1
Γ�1

�
μu

�0:25PkB
�
Γ�1þBTMkB

��1
BTPT

k

þ2μTuΓ
�1
�
Γ�1þBTMkB

��1
BTMkFxr

�PkB
�
Γ�1þBTMkB

��1
BTMkFxr

þμTuΓ
�1
�
Γ�1þBTMkB

��1
BTPT

k

oi
(39)

Note that according to Theorem 1, �lnðγðek�1ÞÞ ¼
0:5ðeTk�1Sk�1ek�1 þ Pk�1ek�1 þ wk�1Þ. Thus, equating
quadratic terms, linear terms, and constant terms in equation
(39) with Sk�1, Pk�1, and wk�1, respectively, yields the
definitions stated in equations (23)–(25). This completes the
proof. □

Following the above verification of the quadratic per-
formance index, the next step is to evaluate the parameters
of the optimal controller distribution that will make the pdf
of the tracking error follow the given ideal pdf. Based on
equations (6) and (39), the randomised optimal controller
that minimises the Kullback–Leibler divergence objective
function is given by the following theorem.
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Theorem 2. The optimal randomised controller that min-
imises the Kullback–Leibler divergence objective function
subject to the probability density function of the tracking
error defined in equation (16) and the ideal pdfs of the
tracking error and controller defined in equations (19) and
(20), respectively, is given by

cðuk�1jek�1Þ∼Nðνk�1;Γk�1Þ (40)

where

νk�1 ¼ �Kk�1ek�1 � Lk�1 (41)

Kk�1 ¼ Γk�1B
TMkA (42)

Lk�1 ¼ Γk�1

�
BTMkFxr þ 0:5BTPT

k � Γ�1μu
�

(43)

Γk�1 ¼
�
Γ�1 þ BTMkB

��1
(44)

where νk�1 and Γk�1 are the mean and covariance of the
optimal randomised controller, respectively, Kk�1 is the
controller feedback gain, and Lk�1 is a linear shift which
manifests from the considered tracking control problem.

Proof. Substituting equations (20), (35), (36), and (39) in
(6) yields

c∗ðuk�1jek�1Þ ¼ ð2πΓÞ�0:5 exp
	�0:5μTk Mkμk

� 0:5eTk�1M2ek�1 � 0:5xTr M2xr

� xTr M2ek�1 � 0:5wk � 0:5Pkμk

� 0:5ðuk�1 � μuÞTΓ�1ðuk�1 � μuÞ
þ 0:5eTk�1Sk�1ek�1 þ 0:5Pk�1ek�1

þ 0:5wk�1



(45)

Evaluating the terms independent of uk�1 in equation
(45), and completing the square with respect to the control
input, uk�1, equation (45) can be further expressed as

c∗ðuk�1jek�1Þ
¼ ð2πΓÞ�0:5 exp½�0:5fuTk�1

�
BTMkBþ Γ�1

�
uk�1

þ 2uk�1½BTMkFek�1 þ BTMkFxr þ 0:5BTPk � Γ�1μu
�

þ �
Γ�1μu þ BTMkFxr þ BTMkAek�1 þ 0:5BTpTk

�T
×
�
BTMkBþ Γ�1

��1�
Γ�1μu þ BTMkFxr

þ BTMkAek�1 þ 0:5BTpTk
�
�

¼ ð2πΓÞ�0:5 exp
n
�0:5

h
uk�1

� ��BTMkAek�1 � BTMkFxr�0:5BTPT
k

þ Γ�1μu
��
Γ�1 þ BTMkB

��1
i
T

� �
Γ�1 þ BTMkB

�
×
h
uk�1 �

��BTMkAek�1

� BTMkFxr � 0:5BTPT
k þ Γ�1μu

�
×
�
Γ�1 þ BTMkB

��1
io�

Γ�1 þ BTMkB
��1

(46)

It can be seen that the mean and covariance of the dis-
tribution given in equation (46) are the mean and covariance
of the optimised randomised controller as stated in equations
(41) and (44), respectively. This completes the proof. □

4. Numerical results

This section will demonstrate the effectiveness of the
proposed probabilistic minimisation of the tracking error
specified by Theorems 1 and 2 in driving the output of the
system dynamics to a predefined desired output value. In
particular, the theory developed in Section 3 is applied here
to a flexible beam system (Flores and Barbieri, 2006) de-
scribed by the following equation

_x ¼ Axþ Bu (47)

where

A¼

2
6666664

0 1 0 0 0 0
0 0 38:1425 0 239:0350 0
0 0 0 1 0 0
0 0 � 47:0569 0�271:9385 0
0 0 0 0 0 1
0 0 � 6:9241 0 � 187:2933 0

3
7777775

B ¼ ½ 0 9:4393 0 �10:7386 0 �1:7135 �T

Also, x ¼ �
θ _θ q1 _q1 q2 _q2

�T
is the beam

system state vector, θ is the angle between the hubs frame
and a global (stationary) reference frame, and qi, i = 1, 2
represent the ith flexible mode.

Because the proposed framework is developed for
discrete-time systems, equation (47) is discretised using the
forward difference method, where the sampling time, h, is
taken to be equal to 0.06. In addition, to demonstrate all
aspects of the proposed method, a multiplicative noise is
added to the original deterministic system equation after it has
been discretised. Following the discretisation of equation (47)
and the addition of the multiplicative noise, the following
equivalent discrete-time description which is also modified by
the addition of the multiplicative noise is obtained

xk ¼ ðAhþ In×nÞxk�1 þ Bhuk�1 þ Dxk�1vk�1 (48)

where vk is the Gaussian noise with zero mean and variance
0.001, vk ∼Nð0; 0:001Þ, I is the identity matrix, and where

D¼ 10�3

2
6666664

9:0 6:3 �0:2 �5:4 �21:2 �5:7
�4:3 �0:2 8:7 3:5 �1:5 13:1
9:0 19:1 �13:7 �4:4 5:2 2:5

�22:6 21:7 �10:7 �6:4 3:9 �8:1
�5:9 �0:7 11:3 �2:0 1:9 �3:4
1:7 8:4 10:3 �6:4 �3:8 7:0

3
7777775

is randomly generated.
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Figure 1. State of the simulated flexible beam: (a) state x1 (dotted line) and reference state xr1 (solid line), (b) state x2 (dotted line) and
reference state xr2 (solid line), (c) state x3 (dotted line) and reference state xr3 (solid line), (d) state x4 (dotted line) and reference state xr4
(solid line), (e) state x5 (dotted line) and reference state xr5 (solid line), and (f) state x6 (dotted line) and reference state xr6 (solid line). Small

magnified figures show the steady state values of the beam states.
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The objective of the sought randomised controller is then
specified to be of suppressing the quenching vibration in the
beam and stabilising the angle between the hubs frame and
a global (stationary) reference frame, θ at the value of 1.
Therefore, the reference value that the system state is re-
quired to track is taken to be xr = [1,0,0,0,0,0]T. In addition,
the system state is assumed to start from the following initial
state values x0 = [22,0.3,1,0.4,0.5,2]T.

As discussed in Section 3, the parameters of the flexible
beam system equation as specified in equation (48) are
assumed to be unknown, therefore are estimated online at
each time step. The mean and covariance of the conditional
distribution of the beam system dynamics are then specified
using the estimated parameters as discussed in Section 3.
These estimates of the mean and covariance of the beam
system dynamics are then used in equations (23) and (24) to
evaluate the Riccati equation, Sk, as well as Pk which are
then both used in equation (41) to calculate the mean of the
control input to be forwarded to the beam. Also, in the
simulation experiment, the covariance, Σ2, of the ideal
distribution of the tracking error is taken to be 0.01 × In×n.
The covariance, Γ, of the ideal distribution of control inputs
is taken to be 1. The simulation results are shown in Figures
1 and 2. Figure 1 shows the various states of the flexible
beam with their corresponding reference signals. As can be
seen from this figure, all the flexible beam system states are
accurately tracking their corresponding reference states.
This can be confirmed from the magnified figures in
Figure 1 which show the steady state values of the beam
states. The tracking errors are presented in Figure 2(a), from
which it can also be seen that all the state tracking errors go
to zero. These figures, on the other hand, show large de-
viation of the beam state values from their corresponding
reference values and large tracking errors in the transient

period. This is expected as the parameters of the beam
equation which are estimated online will not have con-
verged to their true values in this transient period. Once the
parameters converge to their true values, the beam states
show good tracking to their corresponding reference values.
Also, the control input as calculated from equation (41) is
shown in Figure 2(b). The control input as can be seen from
this figure is stable, thus yielding the required results. Fi-
nally, the feedback gain as calculated from equation (42) is
shown in Figure 3. This figure shows that all the feedback
gains have converged and reached steady state values. To
reemphasise, the numerical results prove the efficacy of the
proposed probabilistic tracking control method and show
that the mean of tracking error can be minimised to reach
zero value.

Figure 2. Tracking error of the states and system input of the simulated flexible beam: (a) tracking error of the flexible beam states and

(b) the control input to the flexible beam as calculated from equation (41).

Figure 3. Feedback gain of the controller as calculated from

equation (42).
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5. Conclusion

This article presented a new framework for the design of
randomised controllers for complex stochastic and un-
certain systems that is based on the minimisation of the
Kullback–Leibler divergence of the tracking error of the
controlled system. The new proposed framework considers
the design of randomised controllers that take the multi-
plicative noises that affect the dynamics of the controlled
stochastic system into consideration in the optimisation
process. The theoretical development of this framework is
demonstrated on linear Gaussian stochastic systems that are
affected by multiplicative noises. The theoretical findings
were then validated on controlling the vibration quenching
of flexible beams.
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