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Abstract: This paper proposes a novel approach for semi-supervised domain adaptation for holistic
regression tasks, where a DNN predicts a continuous value y ∈ R given an input image x. The
current literature generally lacks specific domain adaptation approaches for this task, as most of
them mostly focus on classification. In the context of holistic regression, most of the real-world
datasets not only exhibit a covariate (or domain) shift, but also a label gap—the target dataset may
contain labels not included in the source dataset (and vice versa). We propose an approach tackling
both covariate and label gap in a unified training framework. Specifically, a Generative Adversarial
Network (GAN) is used to reduce covariate shift, and label gap is mitigated via label normalisation.
To avoid overfitting, we propose a stopping criterion that simultaneously takes advantage of the
Maximum Mean Discrepancy and the GAN Global Optimality condition. To restore the original label
range—that was previously normalised—a handful of annotated images from the target domain are
used. Our experimental results, run on 3 different datasets, demonstrate that our approach drastically
outperforms the state-of-the-art across the board. Specifically, for the cell counting problem, the mean
squared error (MSE) is reduced from 759 to 5.62; in the case of the pedestrian dataset, our approach
lowered the MSE from 131 to 1.47. For the last experimental setup, we borrowed a task from plant
biology, i.e., counting the number of leaves in a plant, and we ran two series of experiments, showing
the MSE is reduced from 2.36 to 0.88 (intra-species), and from 1.48 to 0.6 (inter-species).

Keywords: domain adaptation; holistic counting; regression; label gap

1. Introduction

According to [1], domain adaptation methods can be classified based on the relation
between the label sets of the source and target domains. Let YS and YT be the label sets for
the source and target domains, domain adaptation algorithms can be classified as: closed
set (YS = YT), open set (YS ∩ YT 6= ∅), partial (YT ⊂ YS), and universal (no prior knowledge
of the label sets is available). Domain Adaptation (DA) is a machine learning task that
transfers a trained model f (x) to a new (and unseen) dataset. In particular, when a model
f (xs) is trained on a (source) dataset XS to perform a task T , we want the same model to
also generalise on a different (target) dataset XT . Generally speaking, domain adaptation
is challenged by covariate (or domain) shift: the marginal distributions of source DS and
target DT datasets are different, i.e., DS 6= DT [2].

To minimise the covariate shift, several approaches have been proposed, such as
Maximum Mean Discrepancy (MMD) [3], adversarial training [4–7], as well as style-
transfer [8]. DA has recently been mostly investigated for classification tasks, showing
outstanding results on closed set [5,7,9–11], open set [12,13], partial [14,15], and even
universal cases [16]. However, regression tasks have attracted less attention in the computer
vision community. In particular, in this paper we investigate DA for holistic regression.
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Specifically, we want to have a model f (x) 7→ y, with y ∈ Y ⊆ R, i.e., given an image x ∈ X
as an input to f (x), the model predicts a continuous value. Examples of holistic regression
applications are counting [17,18], age estimation [19], and time series forecasting [20].
Domain adaptation for holistic regression is more prone to label gap, i.e., the target dataset
may contain values that are not contained in the source dataset (in [16], this is referred to as
category gap; we use the term label gap to be more generic to accommodate our application).
This phenomenon is depicted in Figure 1.

Figure 1. Source and Target datasets have two different label ranges ([a, b] and [a′, b′] respectively),
causing a label gap. Although overlaps may occur (as shown), the label gap challenges most of
the state-of-the-art solutions for regression problems. Our proposed solution is to perform label
normalisation, i.e., scaling source (and target) labels into [0, 1].

This paper answers the question: can we perform DA when the predicted variable is
continuous, under label gap? Inspired by [7,18], we propose a novel semi-supervised DA
technique that transfers the model’s knowledge (from a source to a target dataset) in the
holistic regression context. Specifically, we minimise covariate shift using adversarial
training to align source and target image representations. We tackle the label gap by
normalising the range of the source labels YS = [a, b] into the range [0, 1], as shown in
Figure 1. As the network learns to predict numbers in the normalised range [0, 1], we fine-
tune the final layers of the network (i.e., the ones responsible for learning the regression
task) with a handful of random annotated images sampled from XT (this is the only semi-
supervised step of our method), to make predictions in the target dataset in the set of labels
YT = [a′, b′]. To avoid overfitting, we propose a stopping criterion that takes advantage of
both MMD [21] and GAN Global Optimality Condition [22]. Instead of setting a maximum
number of iterations, we jointly monitor the discrepancy between source and target, and
the expected output of the discriminator.

We evaluate our method in 3 different scenarios (one synthetic, two real-world ap-
plications): cell, pedestrian, and leaf counting. The experimental results show that our
method outperforms DANN [5] and the approach in [18] across the board. In particular,
leaf counting experiments show the robustness of our method in the case of limited training
data (both source and target domains have less than 1000 samples).

Contribution

• We propose a semi-supervised domain adaptation method for holistic regression tasks
that jointly tackles covariate shift and label gap.

• Label gap is mitigated via label normalisation, i.e., [a, b] 7→ [0, 1]. As a consequence,
our method works under closed set, open set, and partial DA [1].

• We demonstrate that as few as 10 annotated images taken from the target dataset are
enough to restore the target label range, i.e., remapping [0, 1] 7→ [a′, b′].
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• We propose a stopping criterion that jointly monitors the MMD and the GAN Global
Optimality Condition to prevent overfitting and, thus, to better align source and target
features. We show the effectiveness of this stopping criterion with an ablation study.

2. Related Works

In this section, we firstly discuss the related works on (unsupervised) domain adap-
tation. Then, we illustrate domain adaptation approaches on regression tasks. Lastly, we
discuss the label gap problem. All the utilised mathematical notation is detailed in the
Supplementary Materials.

2.1. Domain Adaptation

Several DA approaches have been proposed for different visual tasks, such as object
recognition [23], face recognition [24], and image segmentation [25]. Formally, given a
source domain XS and a trained model f (xs) on the dataset xs ∈ XS to solve a specific task
T , we aim to generalise f (·) on a new unseen target dataset XT . The case when the target
labels YT are not provided is called unsupervised DA (UDA).

The typical approach to (unsupervised) DA is to minimise the distance between the
source and target feature space (covariate shift). Let φS(·) be a feature extractor for the
source domain, ΦS be the source representation space, ΦS = {φS(x) | x ∈ XS}, and let ΦT
be the target representation space, the goal is to minimise the function:

min
ΦS ,ΦT

d(ΦS, ΦT),

where d(·; ·) is any (differentiable) distance function. Different choices of d(·; ·) lead
to different methodologies. In [3], the authors proposed a Deep Adaptation Network
(DAN) that minimises Maximum Mean Discrepancy (MMD) as distance function. In [26],
the authors proposed the Correlation Alignment (CORAL) loss to minimise the domain
discrepancy. Then, ref. [7] proposed the Adversarial Discriminative Domain Adaptation
(ADDA), using adversarial learning to reduce the covariate shift. In [5], the authors
proposed the Domain-Adversarial Neural Network (DANN) that integrates a gradient
reversal layer into the network to promote the extraction of features that are discriminative
for the main learning tasks, whilst are indiscriminative for domain classification. The key
idea of both ADDA and DANN is that, if the model is unable to recognise the domain from
a set of features, then the domain shift has been minimised. Other adversarial learning
approaches have been proposed in [6,15]. For example, in [27] the authors proposed to
reduce the covariate shift with a per-batch feature whitening approach, mapping source
and target features in a common (spherical) representation space. This approach inspired
us to tackle the label gap instead, by label normalisation. Differently than others, our
solution also does not require any assumption about the labels from both source and target
datasets. In fact, several proposed DA approaches make some assumptions about the
label sets (e.g., closed set, open set or partial domain adaptation) [3,5,7,10,12–15,26]. On
the contrary, new universal approaches have been recently proposed [16,28], where such
assumptions are not required. Although our method does not make such assumptions, we
do not use the term universal, as we require a small labelled portion (semi-supervised) of
the target dataset to map the predictions to the range of values YT .

2.2. Domain Adaptation for Regression Tasks

All the aforementioned approaches are typically focused on classification tasks, with
less emphasis on (holistic) regression. In [29], the authors proposed an unsupervised DA
method to estimate the Cardiothoracic Ratio, by predicting the segmentation masks of chest
organs from X-rays images. In [30], the authors proposed a DA method to estimate crowd
counting using density map predictions. Most of the recent counting approaches predict
density maps and, although they also provide spatial information about the location of the
counted objects, they are typically challenged by the scale variation [31].
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However, some related works cast the counting problem as a holistic regression task,
where the interest is to estimate the total number of objects regardless of their position.
As such, a recent UDA for regression tasks has been proposed. Specifically, in [18], the
authors built upon ADDA [7] to perform DA on a plant biology application (leaf counting).
Although promising, this approach is challenged by the label gap, as demonstrated in our
results. This is because the ranges of YS and YT are hardly the same in real applications.

2.3. Label Gap

Most of the DA approaches assume identical label sets (closed set) between domains.
However, this assumption does not hold in many realistic scenarios, such as counting. In
the last years, some works have been proposed to work on situation of open set [12,13],
partial DA [14,15] or universal DA [16] for classification tasks, but they are not devised
to work on continuous label space. For instance, the approaches in [12,13,16] add a new
unknown class in order to face the label gap problem. Therefore, images in the target
domain that belong to classes that are not in common across source and target domains
are identified and, then, assigned to the unknown class. Obviously in the holistic counting
task, this strategy cannot be used and the network has to be able to predict values even on
target images that have labels not included in the source label set YS. At the same time, the
approaches in [32,33] have been devised to work on regression tasks but they only work in
situation of, respectively, partial DA and target shift.

To the best of our knowledge there is no state-of-the-art algorithm for holistic regres-
sion that does not require any assumption about the relationship between the label sets of
source and target domains.

3. Proposed Method

We build our method upon [7,18] and the training pipeline can be divided into
three steps (cf. Figure 2): (i) pre-training; (ii) adversarial adaptation; (iii) semi-supervised
fine-tuning of the regressor network. Our architecture includes the following blocks:

Features Extractor φ: We used ResNet-50 [34] as feature extractor that outputs a vector of
size 2048.
Regressor Network R: It stacks 3 fully-connected (cf. Table 1) to learn the holistic regres-
sion task.
Generator: As in [7,18], the Feature Extractor acts as (feature) generator during the adver-
sarial training to minimise the covariate shift.
Discriminator D: The architecture of the discriminator is also detailed in Table 1. D is
trained such that it cannot differentiate between source and target features.

Figure 2. Overview of our training approach: φS is the feature extractor for the source dataset
(φT for the target dataset); R is the regressor network; D is the discriminator; LMSE indicates the
mean square error loss function (LCE is the cross-entropy loss); σ2 is the variance-based regulariser
preventing posterior collapse; locks indicate networks with fixed weights. The model obtained from
the fine-tuning step is used for inference. (Best viewed in colour.)
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Table 1. Architectures details of the Regressor and Discriminator. We set α = 0.01 for the LeakyReLU.

Layer Input Size Output Size Activation

Regressor

Dense 2048 1024 ReLU
Dense 1024 512 ReLU
Dense 512 1 Linear

Discriminator

Dense 2048 1024 LeakyReLU
Dense 1024 512 LeakyReLU
Dense 512 1 Sigmoid

3.1. Pretraining on the Source Dataset

As shown in Figure 2A, this step pretrains both the φS and the regressor network
R on the source dataset XS in a supervised manner with a mean square error (MSE) loss.
To tackle the label gap, we normalise the labels YS from [a, b] to [0, 1] by replacing each
label ys ← ys−a

b−a . This operation also helps to tackle the label gap between source and
target datasets.

3.2. Feature Alignment with Adversarial Adaptation

For this step, we add the feature extractor for the target dataset φT (initialised with the
weights obtained in the previous step), and the discriminator D for the adversarial training,
as in [18]. An overview of this network is displayed in Figure 2B. In this step, the weights
of φS and R are fixed. During training, φT acts as a generator of fake image representations,
while φS outputs real features. In this way, φT is trained to generate features as similar as
the ones produced by φS, i.e., DS ≈ DT .

To train an adversarial network, any f -divergence loss function can be used [35]. For
instance, in [18], the authors used two different loss functions, i.e., cross-entropy [22] and
least square [36], as one worked better in a different setup than the other. Here, we use
the cross entropy as loss function for two reasons: (i) as demonstrated in Section 4, our
approach works well across different scenarios (e.g., we do not need different losses for
each scenario); (ii) we exploit the GAN Global Optimality condition as part of the proposed
stopping criterion.

Hence, the generator φT and the discriminator are alternately optimised with the
following objective functions:

min
Ψ

Es∼XS [LCE(D(φS(s; ΘS); Ψ), 1)]+

Et∼XT [LCE(D(φT(t; ΘT); Ψ), 0)],
(1)

min
ΘT

Et∼XT [LCE(D(φT(t; ΘT); Ψ), 1)], (2)

where LCE is the cross-entropy loss, ΘS is the set of the parameters of φS (ΘT for φT
respectively), and Ψ is the set of parameters for the discriminator.

As in [7,18], we emphasise that this feature alignment step using adversarial learning
is unsupervised. In the next sections, we provide a description of the proposed variance-
based regulariser and of the stopping criterion.

3.2.1. Variance-Based Regularisation Preventing Posterior Collapse

During adversarial adaptation, the network may learn biased predictions on the target
dataset. The worst scenario occurs when predictions clash to the same output, regardless
of the input: this phenomenon is called posterior collapse [37]. To tackle this problem,
we impose the network to increase the variance of the outputs of the regressor R when
provided with the features generated by φT . As such, we add a variance-based regulariser
over the outputs of R (cf. Figure 2B), as follows:
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max
ΘT

σ2
ŷt
= max

ΘT
E[(ŷt −E[ŷt])

2], (3)

where ŷt is the output of the regressor when provided with the features generated by φT ,
i.e., ŷt = R(φT(xt)). This regulariser is applied during the optimisation of Equation (2).

Compared to other regularisers preventing the posterior collapse, such as Kullback-
Leibler divergence used in [18], our variance-based regulariser has the advantage of not
requiring labels from the source domain, i.e., it is source-free.

3.2.2. Stopping Criterion

Finding a suitable stopping point during training mitigates overfitting. As, at this
stage, we do not use labels from the target domain, we propose a novel stopping criterion
that jointly exploits the Maximum Mean Discrepancy (MMD), as well as the GAN Global
Optimality condition.

MMD: Let Xp = {xp
i }

M
i=1 and Xq = {xq

i }
N
i=1 be two sets of samples drawn i.i.d. from

the distributions P and Q,H a universal reproducing kernel Hilbert space (RKHS), ϕ(·)
the feature map associated with the kernel map k(xp, xq) = 〈ϕ(xp), ϕ(xq)〉. We use the
MMD, as proposed in [21,38], to compute an empirical estimation of the distance between
P and Q and, therefore, to quantify the covariate shift. Thus, we compute the following:

MMD2(Xp, Xq) =

∥∥∥∥∥ 1
M

M

∑
i=1

ϕ
(

xp
i

)
− 1

N

N

∑
j=1

ϕ
(

xq
j

)∥∥∥∥∥
2

H

(4)

We set Xp = φS(xs) and Xq = φT(xt), with xs ∈ XS , xt ∈ XT and M = N = 2048, i.e.,
as the size of the representations produced by the feature extractor. We use MMD as it
is typically done with a validation loss: when it starts increasing, we stop the adversar-
ial training.

GAN Global Optimality Condition: As proven in [22], the optimal discriminator
D∗(z) is reached when the discriminator is unable to differentiate between real and gener-
ated data. This happens when the generator distribution pg equals the data distribution
pdata, i.e., pg = pdata. If the adversarial adaptation is trained properly, in our case we expect
that P(φS(xs)) = P(φT(xt)). When this occurs, the output of the optimal discriminator
D∗(z) = 1

2 , ∀z ∈ Φ = ΦS ∪ΦT (ΦS and ΦT are the feature spaces for the source and target
dataset respectively—cf. Section 2.1). This means that, after a certain number of epochs,
we will have Ez∼Φ[D(z)] = 1

2 . Hence, when the function:

GGO(z) = Ez∼Φ[D(z)]− 1
2

(5)

is starting to increase, we can terminate the adversarial adaptation process.
Our results show that either Equation (4) or (5) may not always lead to a good

stopping point. Therefore, we combine both as follows: during training, we observe both
Equations (4) and (5) at each epoch and we save their best values. If neither of the two
stopping criteria have improved for 10 epochs, then training is terminated. We demonstrate
the effectiveness of our stopping criterion (together with the variance-based regulariser) in
an ablation study in Section 4.4.

3.3. Fine-Tuning of the Regressor R

As discussed in Section 3.1, labels in YS were normalised into [0, 1]. In a real-world
application, normalised predictions may be meaningless. To adjust the regressor to make
predictions in the range of labels in the target set YT , we fine tune R with a handful of
annotated images taken from the target dataset. Note that, up to this point, our approach
has been unsupervised.

As displayed in Figure 2C, we put together the φT, obtained from the previous step, and
the regressor network R, obtained from the pretraining step. We fine-tune this model with a
handful of annotated images taken from the target domain. We will show, in Section 4.5, that
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10 annotated images are enough to successfully restore the predictions in YT . The resulting
model is then used to make predictions in the target dataset.

3.4. Implementation Details

Prior training, images are rescaled to 320 × 320. Then, we perform a histogram
normalisation as in [17]. Finally, we normalise input images in a range [−1, 1] as in [18]. To
prevent the overfitting, we employ data augmentation with flipping and colour jitter and
initialise the feature extractor (ResNet-50) with the ImageNet weights.

During the fine-tuning step (cf. Figure 2C), we randomly select a handful of annotated
images from the target dataset. In the Supplementary Materials, we report the list of
hyperparameter utilised for training. The proposed approach was implemented with the
framework Pytorch [39] and was trained on a GPU NVIDIA Quadro P5000.

Our code is available at https://github.com/MattiaLitrico/Semi-supervised-Domain-
Adaptation-for-Holistic-Counting-under-Label-Gap (accessed on 20 September 2021).

4. Experimental Results
4.1. Datasets

In this section, we describe the datasets used to evaluate our semi-supervised DA
approach. Overall, we test our method under three counting scenarios: (i) synthetic
microscope images of cell; (ii) pedestrian; and (iii) plants.

Cells: As in [40], we adopted images of synthetic fluorescence microscopy of cells
to benchmark our method. These images were generated using the framework proposed
in [41]. However, the dataset used in [40] contains only 200 images (more information
at https://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html—accessed on
17 September 2021). Moreover, the dataset contains images generated from the same
distribution, which is not suitable for domain adaptation purposes. Therefore, we generated
3 synthetic cell datasets, each containing 60,000 images of size 256× 256 (cf. Figure 3). In
particular, we generated:

• S: it contains images of blue cells with counting ranging in [20, 50]. To generate these
images, the option cytoplasm was disabled. We used this dataset as source domain.
During training, we split the dataset as follows: 55% as training set, 20% as validation
set (used for early stopping during pretraining), and 25% as test set.

• T2: it contains images of red cells (cytoplasm option enabled) with a counting ranging
in [20, 50] as well. This dataset is used as target domain to benchmark our approach
in a scenario of covariate shift only.

• T3: similar to T2, but with a different cell counting ranging in [35, 90]. To fit more
cells in the same image, we generated smaller cells as in T2. This dataset exhibits both
covariate and label gap.

Pedestrian: We used the publicly available UCSD [42] dataset containing videos of
pedestrian in walkways acquired from stationary cameras. Specifically, the dataset contains
the following videos of two different scenes (with different perspective):

• Vidf: it contains 4000 frames with people walking towards and away from the cam-
era, with some amount of perspective distortion. These images have a pedestrian
counting ranging in [11, 45]. We used it as source domain for this experiment and the
training/validation/testing sets are split as for the cell data.

• Vidd: it contains 4000 frames with pedestrian moving in parallel wrt the camera plane.
The number of people appearing in the scene ranges in [0, 15]. This dataset will serve
as target domain for this experiment.

Plants: We also evaluated our method in the same plant biology context as in [18],
namely leaf counting. Specifically, the following datasets are taken into consideration:

• CVPPP*: The CVPPP2017 dataset contains three subsets of Arabidopsis thaliana (named
A1, A2, and A4), and tobacco (A3) images [43,44]. We used A1, A2, and A4 as source
domain, i.e., excluding the tobacco plants (as in [18], we named this group of images

https://github.com/MattiaLitrico/Semi-supervised-Domain-Adaptation-for-Holistic-Counting-under-Label-Gap
https://github.com/MattiaLitrico/Semi-supervised-Domain-Adaptation-for-Holistic-Counting-under-Label-Gap
https://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html
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CVPPP*). Overall, the CVPPP* dataset contains 964 images and a number of leaves
ranging in [4, 32]. For training, we split this dataset as in [17] to perform a 4-fold
cross-validation for the pretraining step.

• MM: We use the RGB Arabidopsis thaliana images of the Multi-Modal Imagery for Plant
Phenotyping [45] with 576 images and a leaf counting ranging in [5, 12].

• Komatsuna: we use the Komatsuna, a Japanese plant, dataset [46], with 300 images
and a leaf counting ranging in [2, 8].

We refer to the adaptation from CVPPP* to MM as intra-species, as both datasets
contain images of the same plant species. Differently, adapting from CPPP* to Komatsuna
is referred to as inter-species. The leaf counting scenario is more challenging than the other
two due to the limited dimension of datasets, especially for the inter-species case.

Figure 3. Samples of the cell datasets generated with [41]: S is the source dataset, and T2 and T3 are
the target datasets. S and T2 were designed to exhibit covariate shift only, whereas S and T3 exhibit
both covariate shift and label gap. (Best viewed in colour.)

4.2. Evaluation Metrics

To evaluate the performance of our approach, we use the same metrics as in [17,18,47,48].
These evaluation metrics have been widely used in the CVPPP/CVPPA Leaf Counting Challenges
(more information about the latest edition of this workshop is available at https://cvppa2
021.github.io/—accessed on 17 September 2021). Let εi = yi − round(ŷi) be the prediction
error (i.e., the difference between the ground truth y and the rounded algorithmic prediction
ŷ), the evaluation metrics are defined as follows:

• Absolute Difference in Count [|DiC|]: 1
N ∑N

i=i |εi|. This metrics is also known as mean
absolute error;

• Difference in Count [DiC]: 1
N ∑N

i=i εi;
• Mean Squared Error [MSE]: 1

N ∑N
i=i ε2

i ;
• Percentage Agreement [%]: 1

N ∑N
i=i 1[εi = 0], where 1[n] is the indicator function. This

metrics is similar to the accuracy used in classification.

4.3. Main Results

Here, we present the experimental results of the proposed semi-supervised DA ap-
proach for holistic counting of cells, pedestrians, and leaves in plants. We compare our
approach with the one proposed in [18]. We also compare our approach with DANN [5], as
it is another approach in literature that can be easily applied to holistic counting. Together
with the DA results, we also report the upper bound (UB) and the lower bound (LB) results:
in this context, UB is obtained by feeding the pretrained model (cf. Section 3.1) with the
target dataset (e.g., no adaptation step); LB is obtained by training the feature extractor and
regressor network directly on the target domain (fully supervised).

Section 4.4 shows the benefit of the variance-based regulariser (cf. Section 3.2.1) and
the proposed combined stopping criterion (cf. Section 3.2.2). For all the results, we used 50
annotated images taken from the target dataset for the fine-tuning (cf. Section 3.3). Section 4.5
shows that, with just 10 annotated images, we obtained satisfactory results in all the three
adopted datasets.

https://cvppa2021.github.io/
https://cvppa2021.github.io/


J. Imaging 2021, 7, 198 9 of 15

4.3.1. Cell Counting Results

These experiments serve as a benchmark for our method, as T2 exhibits only covariate
shift wrt S, whilst T3 exhibits both covariate shift and label gap. Overall, the experimental
results are reported in Table 2.

Table 2. Cell counting domain adaptation results for S→T2 and S→T3 experiments. Together with the
DA results, we also report the upper bound (UB)—testing on the target dataset without the adversarial
adaptation step—and the lower bound—supervised learning on the target dataset. Main results are
highlighted in grey. For DiC and |DiC| we report mean (std).

Method XT |DiC| ↓ DiC ↓ MSE ↓ % ↑
UB T2 24.39(7.40) 24.39(7.40) 650 0.0

DANN [5] T2 3.11(2.53) 1.16(3.84) 16.12 10.8
Giuffrida et al. [18] T2 0.16(0.38) 0.03(0.41) 0.17 83.7

Ours T2 0.53(0.58) 0.03(0.79) 0.63 50.9
LB T2 0.01(0.10) −0.01(0.10) 0.01 99.1
UB T3 59.12(14.54) 59.12(14.54) 3708 0.0

DANN [5] T3 20.79(11.01) 20.79(11.01) 553 0.0
Giuffrida et al. [18] T3 26.33(8.14) 26.33(8.14) 759 0.0

Ours T3 1.84(1.48) 0.04(2.37) 5.62 17.0
LB T3 0.36(0.49) −0.01(0.61) 0.37 64.3

S→ T2: In the presence of covariate shift only, the approach in [18] outperforms ours.
Despite that, our results show an MSE < 1, i.e., our method is approx. ±1 cell off.

S → T3: As stated above, T3 differs from S not only in appearance but also in the
total number of cells per image. In this situation, our approach drastically outperforms the
others across the board, reducing the MSE from 759 to 5.62. By observing the DiC, it can be
seen that both DANN and the approach in [18] always underestimates the number of cells.
As T3 contains many images with a cell counting above the label range in S, we argue that
this occurs because those approaches have never seen samples with a count over 50 cells
and, thus, cannot predict numbers outside the source label range.

These benchmark experiments demonstrate that our method well aligns the two
datasets under label gap. Next, we present the DA results on two publicly available datasets
taken from real-world applications that also demonstrates the ability of our approach to
face the label gap.

4.3.2. Pedestrian Counting Results

We use the UCSD dataset [42] for the pedestrian counting task. Specifically, we use
the Vidf scene as source domain and the Vidd scene as target. The domain shift is due
to different: (i) camera perspectives; (ii) locations. Moreover, the label ranges are highly
different between the two datasets, exhibiting label gap. As shown in Table 3, also in this
experiment our approach drastically outperforms the others.

Table 3. Pedestrian counting domain adaptation experiments results using the UCSD dataset. The
Vidf scene is used as source domain whereas the Vidd scene is used as target domain.

Method |DiC| ↓ DiC ↓ MSE ↓ % ↑
UB 2.54(1.68) 2.50(1.73) 9.28 8.60

DANN [5] 9.58(1.47) −9.58(1.47) 94 0.0
Giuffrida et al. [18] 11.22(2.47) −11.22(2.47) 132 0.0

Ours 0.89(0.82) −0.12(1.21) 1.47 34.5
LB 0.15(0.37) 0.01(0.40) 0.16 84.8

Figure 4 shows the performance of our method against the others: it can be seen that
the predictions of our method (green line) in the target domain are very similar to the
ground-truth (purple line). On the contrary, the predictions made by [18] are condensed



J. Imaging 2021, 7, 198 10 of 15

in the range [15, 20] (yellow). Also DANN [5] struggles to correctly predict the number
of pedestrian in the target domain (blue line). This confirms our hypothesis that these
methods cannot make predictions outside the range of the source dataset (red line).

Therefore, this experiment demonstrates that our approach is able to perform DA also
in a real-world application. The next experiment exhibits an extra challenge, as source and
target datasets have a limited number of images.

Figure 4. Histogram visualisation of counting frequencies in Pedestrian experiments. (Best viewed
in colour.)

4.3.3. Leaf Counting Results

Similarly as in Section 4.3.2, we assess the performance of our method on another
real-world scenario applied to plant biology. For the following experiments, we used the
CVPPP* dataset as source domain. The first experiment considers the MM [45] dataset
as target and shows the ability of our approach to perform domain adaptation in the
intra-species scenario, as both source and target domains include images of the same plant
species. In the second test, we show the ability of our approach to also successfully perform
domain adaptation in the inter-species scenario. Both experimental results are shown in
Table 4.

Overall, it can be noted that our proposed method outperforms the others also in this
set of experiments, lowering the MSE < 1 and increasing the percentage agreement (on
average) by ∼ 20%. Furthermore, the obtained results are very close to the lower bound in
both intra- and inter-species experiments.

As we displayed for the pedestrian dataset (cf. Section 4.3.2), Figure 5 visualises the
counting values (and their frequencies) for the leaf counting datasets: for both intra- (cf.
Figure 5a) and inter-species (cf. Figure 5b), our approach well approximates the target
label distribution.



J. Imaging 2021, 7, 198 11 of 15

Table 4. Leaf counting DA results for the CVPPP*→MM (intra-species), and CVPPP*→ Komatsuna
(inter-species) scenarios.

Method |DiC| ↓ DiC ↓ MSE ↓ % ↑
Intra-species: CVPPP*→MM

UB 1.76(0.99) 1.47(1.39) 4.11 8.33
DANN [5] 0.85(0.84) −0.15(1.18) 1.43 37.5

Giuffrida et al. [18] 1.18(0.98) −0.39(1.49) 2.36 26.0
Ours 0.67(0.65) 0.15(0.92) 0.88 43.1

LB 0.54(0.53) 0.24(0.72) 0.59 47.2
Inter-species: CVPPP*→ Komatsuna

UB 4.82(1.38) 4.82(1.38) 25.19 0.0
DANN [5] 1.72(1.02) −1.64(1.15) 4.01 10.6

Giuffrida et al. [18] 1.04(0.87) −0.78(1.12) 1.84 26.0
Ours 0.54(0.56) −0.15(0.76) 0.60 49.2

LB 0.34(0.31) −0.21(0.68) 0.47 54.4

(a)

(b)

Figure 5. Visual representation of the leaf counting results. (a) Intra-species: CVPPP* [43,44]→MM [45].
(b) Inter-species: CVPPP* [43,44]→Komatsuna [46].

4.4. Ablation Study

To assess the effectiveness of the stopping criterion (cf. Section 3.2.2), as well as
of the variance-based regulariser (cf. Section 3.2.1), we perform an ablation study re-
moving, alternately, each of these components using the cell and the UCSD datasets
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(cf. Sections 4.3.1 and 4.3.2). Results, shown in Table 5, prove that the combination of
both stopping criterion and regulariser achieves the best performance. It can be noted
that either the use of Equation (5) or (4) does not always lead to a good stopping point,
as the experiments with the cell dataset demonstrate, compared to the ones with the
pedestrian dataset.

Overall, this study shows that each component of our method contributes to mitigate
overfitting. Furthermore, it also demonstrates the effectiveness of the proposed regulariser
to prevent posterior collapse.

Table 5. Ablation study on cell and pedestrian datasets. GGO indicates the GAN Global Optimality
Condition; MMD is the Maximum Mean Discrepancy; σ2 is the variance-based regulariser.

GGO MMD σ2 MSE ↓ % ↑
Cell UCSD Cell UCSD

X - X 8.61 1.47 14.9 33.4
- X X 6.66 2.23 15.8 25.7
X X - 6.38 1.51 16.6 34.4

X X X 5.62 1.47 17.0 34.6

4.5. Fine-Tuning Performance Analysis

In the third training step of our approach (cf. Section 3.3), we fine-tune the regressor
with a reduced number of random annotated images sampled from XT . We perform
this last semi-supervised step to remap the predictions in target dataset from [0, 1] to
YT = [a′, b′]. In Section 4.3, we show the achieved results using 50 annotated samples from
the target domain XT .

Here, we want to analyse the performance of our method with a decreasing number
of annotated examples from XT . Figure 6 shows the variation of MSE in pedestrian and
plant experimental setups. Overall, the performance remains very stable and satisfactory,
even with only 10 samples, as the MSE is always <2. From a practical perspective, the
annotation of 10 random images taken from the target domain is a rather tractable task.

Figure 6. MSE variation during fine-tuning (cf. Section 3.3) wrt a decreasing number of annotated
samples from the target dataset.

5. Conclusions

In this paper, we proposed a semi-supervised domain adaptation (DA) approach
for the holistic counting task, where a model predicts a continuous value y ∈ R. The
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proposed approach was devised to jointly tackle covariate shift and label gap. We employed
adversarial training to reduce the covariate shift, and we normalised the label range (in the
source domain) to tackle the label gap. As a consequence, our method can be used under
closed set, open set and partial DA.

To reduce overfitting, we proposed a stopping criterion that monitors both GAN
Global Optimality (GGO) and Maximum Mean Discrepancy (MMD) conditions to determine a
good stopping point and, thus, to learn a better feature representation. Furthermore, we
proposed a variance-based regulariser to prevent posterior collapse. The effectiveness of
each component in our method was demonstrated with an ablation study.

Lastly, we used a handful of annotated images from the target dataset to restore the
original label range and we demonstrated that as fewer as 10 annotated images are enough
to obtain stable and satisfactory results.

Overall, our method outperformed the state-of-the-art across the board under three
different scenarios: cell, pedestrian, and leaf counting. Furthermore, our method also
demonstrated to successfully perform domain adaptation also when limited datasets are
provided, as shown in the leaf counting experiments. Particularly in this case, our method
narrowed the MSE toward the lower bound performance.

The main limitation of our approach is the semi-supervised training, although it
requires a handful of annotated images in the testing set. Future works should focus on
making the training fully unsupervised with the help of additional tasks. Furthermore,
the use of an alternative adversarial loss (e.g., least squares [36] or Wasserstein [49,50]) is
another avenue of improvement, as it may yield better results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jimaging7100198/s1, Table S1: Notation adopted in the paper, Table S2: Hyperparameters
used in the experiments, Figure S1: Fine-tuning performance comparisons of our method against [18]
on all the real-world used datasets.
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