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Abstract: This study focuses on improving the sustainability of electrical supply in the healthcare
system in the UK, to contribute to current efforts made towards the 2050 net-zero carbon target. As
a case study, we propose a grid-connected hybrid renewable energy system (HRES) for a hospital
in the south-east of England. Electrical consumption data were gathered from five wards in the
hospital for a period of one year. PV-battery-grid system architecture was selected to ensure practical
execution through the installation of PV arrays on the roof of the facility. Selection of the optimal
system was conducted through a novel methodology combining multi-objective optimisation and
data forecasting. The optimisation was conducted using a genetic algorithm with two objectives
(1) minimisation of the levelised cost of energy and (2) CO2 emissions. Advanced data forecasting
was used to forecast grid emissions and other cost parameters at two year intervals (2023 and
2025). Several optimisation simulations were carried out using the actual and forecasted parameters
to improve decision making. The results show that incorporating forecasted parameters into the
optimisation allows to identify the subset of optimal solutions that will become sub-optimal in the
future and, therefore, should be avoided. Finally, a framework for choosing the most suitable subset
of optimal solutions was presented.

Keywords: grid-connected; hybrid renewable energy systems; multi-objective optimisation; machine
learning; forecasting; NHS; CO2 emissions; net-zero systems; hospital

1. Introduction

In a recent report [1], the National Health Service of the UK (NHS) outlined plans
to reach net-zero emissions by 2040, with an 80% reduction by 2028–2032 compared to
1990 levels. This amounts to around 6.1 MtCO2e.The report calls for better utilisation of
roof spaces to install on-site renewables, which could save up to 580 ktCO2e annually.
Furthermore, it was highlighted that earlier adoption will maximise the benefits through
the accumulation of reductions overtime. Hospitals have high energy consumption, due to
complex building functions, continuous hours of operation, and high density of electrical
equipment for diagnosis and treatment [2]. Given that the NHS generates 18% of all emis-
sions deriving from the UK non-domestic buildings [3], adopting ambitious sustainability
targets will lead to significant reductions in the carbon footprint of the entire UK.

A hybrid renewable energy system (HRES) can be defined as an energy system
with more than one source and at least one renewable generator [4]. HRESs can be grid-
connected (GC) or stand-alone (sometimes called micro-grids). The study of HRESs have

Energies 2021, 14, 7084. https://doi.org/10.3390/en14217084 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-4741-9592
https://orcid.org/0000-0001-9126-7613
https://orcid.org/0000-0003-1246-8981
https://orcid.org/0000-0002-7097-9969
https://orcid.org/0000-0003-4743-9136
https://doi.org/10.3390/en14217084
https://doi.org/10.3390/en14217084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14217084
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14217084?type=check_update&version=1


Energies 2021, 14, 7084 2 of 23

gained attention due to their potential in providing tailored solutions to local demands
at competitive prices. HRESs have benefited from the significant reductions in costs of
renewable generators in the past decade [5,6]. GC-HRESs have different architectures or
configurations, depending on the components of the system, the existence of storage, and
type of electricity (AC or DC). The simplest architecture is grid-PV architecture, where PV
modules are connected in parallel to the grid via an inverter and supervised by a controller.
The controller monitors grid parameters, such as voltage and frequency, and synchronises
the output of he solar array with the grid on a real-time basis [7]. Most of the residential
rooftop PV installations fall in this category, where PV output is used in covering the
electrical demand and the excess is exported back to the grid. Several studies investigated
this type of HRES, interested readers can refer to a recent review by Shen et al. [8].

Another common GC-HRES architecture is the grid-PV-battery combination. In many
cases, it is beneficial to store the excess electricity in batteries instead of exporting back
to the grid. The excess can then be used in times of high demand offsetting the need to
import from the grid during peak times, which can often be more expensive than other
times. Optimising the electrical power dispatch strategy is one of the topics that gained
attention recently. A study carried out by Shabani et al. [9] concentrated on developing a
sophisticated battery model to accurately predict the state of the battery. They used the
model to size the HRES system with a battery and found that using the complex battery
model helped in accurately predicting the state of charge and electrical power discharge
characteristics. Hassan et al. [10] concentrated on the battery power management strategy
through a case study, in Australia, of several grid-PV-battery configurations. The study
accounted for uncertainties in solar generation and energy consumption patterns using the
Monte Carlo method.

High penetration PV systems can cause challenges to the grid operators because of the
need for grid upgrade, including upsizing transformers. In a recent study in Switzerland by
Sevilla et al. [11], it was found that the PV curtailment can be a more cost-effective solution.
However, adding energy storage will mitigate most of the issues of grid upgrading. Fur-
thermore, knowledge of the grid-pricing mechanism plays an important role in the energy
management of grid-connected PV-battery systems [12–14]. Progress in dynamic pricing is
seen as essential for electricity networks to adapt to the high penetration of renewables [14].
Recently, Zhang and Tang [12] studied grid-connected residential PV with battery storage.
The grid had a variable tariff; when there was excess energy it could be either stored or
exported based on the prices of the exports. They performed single-objective optimisation
with the cost as the objective function and their proposed model was able to minimise the
cost in different grid-export tariff schemes, such as time-of-use tariff and step tariff.

Healthcare facilities in general, and hospitals in particular, have specific consumption
patterns and unique challenges. The demand for energy spans electricity, heat, and cooling.
Previous researchers tackled several issues, such as do Espirito and Denilson [15] and
Lakjiri et al. [16], who proposed tri-generation plants based on solar energy, to cover
electricity, heating, and cooling demands, in hospitals. Furthermore, Jahangir et al. [17]
studied the possibility of using HRES to supply electricity to a hospital in Iran. The grid
connected-HRES included wind turbines, PV array, diesel generators, and battery banks.
It was found that grid-connected PV and WT produced the most favourable results in
terms of reduction of LCE and emissions of the system. The recent developments in
machine learning had provided data scientist with a wide range of libraries that can be
utilised to forecast a time-varying process. Forecasting can be fruitful when dealing with
renewable energy sources that has distinct seasonality and trends [18,19]. For example, for
a system that has PV cells and batteries, forecasting the carbon intensity can inform the
dispatch strategy, whether to store the generated energy or to consume it, depending on
the predicated intensity. Several other applications are presented in the literature, such
as the study by Abushnaf et al. [13], which used forecasting to estimate the demand of a
stand-alone HRES. In this paper, we apply the state-of-the-art forecasting algorithm, i.e.,
Facebook Prophet [20], to provide the dispatch strategy with the information to optimise
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its performance. In the context of GC-HRES, forecasting has been used before to predict
solar irradiance [21,22], loads [23], and costs [24]. However, emission forecasting is not
yet used.

Evolutionary algorithms, such as genetic algorithms and particle swarm, are widely
used in optimisation of HRES systems (e.g., the study by Bhandari et al. [25]). In multi-
objective optimisation, two or more objectives are defined and the optimisation algorithm
attempts to reach the Pareto front solutions. These solutions are said to be non-dominant,
which means that any improvement of one objective has to come at the expense of other
objectives. This means that, theoretically, all the solutions on the Pareto front are equiva-
lent. Choosing one solution from the set of optimum solutions becomes challenging and
therefore meta-heuristic algorithms are usually deployed to aid in decision making.

The aim of this work is to study the feasibility of installing grid-connected HRES in
an NHS hospital in south-east England. The feasibility is defined here as a cost-effective
solution with maximum CO2 reductions to align with the ambitions of the NHS, to dras-
tically reduce their carbon footprint [1]. The main novelty of the work is by combining
multi-objective optimisation with data forecasting to reduce the number of optimal solu-
tions. The optimisations are run iteratively, once using present parameters and twice using
projected parameters. Optimum solutions that are projected to become sub-optimal in the
future are excluded and the Pareto front is divided into segments. Decision-makers can
then have an informed decision on which area of the solution to consider based on the
specific objectives. To maximise the applicability of the study, practical constraints (e.g.,
available roof space, export limits, etc.) are considered. This would help facility managers
in other NHS Hospitals to reach an informed decision regarding HRES installations.

The rest of the paper is organised as follows: in Section 2, the methodology is detailed;
in Section 3, the forecasting of emissions are presented then optimisation results using
existing and forecasting data are presented and discussed. In Section 4, final remarks and
future work are presented.

2. Methods

This section outlines the methods adopted to conduct this study including the data
used in the simulations, followed by the system architecture, emissions forecasting algo-
rithm, and the mathematical modelling of the GC-HRES.

2.1. Data

This section details the two datasets used in this study. The first represents the
electricity data that were collected as part of a previous study [26] conducted in Medway
NHS Foundation Trust, in the south-east of England. The second dataset is that of carbon
intensity recorded across the UK, which was obtained from an open source online API and
can be found at [27]. The particulars of each dataset are detailed in Sections 2.1.1 and 2.1.2.

2.1.1. Electricity Consumption Data

The data were collected using a wireless electricity data logger (WEDL), presented
in [28], directly from the hospital’s electricity meters. The data spanned a 12-month period,
from January 2018 to December 2018, and were recorded at a half-hourly (HH) rate. The
electricity meters pulsed 1 kWh pulses, which were collected for half an hour by the WEDL
and pushed to the server every hour.

The dataset represents the electricity consumption recorded for five wards/ depart-
ments from Medway NHS Foundation Trust over the previously mentioned period. It
represents a diverse group of wards/departments, including clinical and non-clinical areas,
which further strengthens the case for the applicability of the proposed system, primarily
to other NHS hospitals and the health sector, but also to other sectors of the society.

The selected five wards/departments can be divided into two categories, the first
category, which has four out of the five wards, would incorporate the clinical wards and
the second the non-clinical ones, under which comes the fifth department in this study.
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The clinical category can be subdivided into “Day only” and “24/7” wards, two of each
were part of this study. Although it is not in the scope of this study, the aim behind
the ward selection strategy was to ensure a diversity in the operational nature of each
ward/department which would mean various electrical loads and consumption patterns.
For instance, Figure 1, shows a box and whisker plot of the daily consumption of the four
clinical wards and the non-clinical department in this study. It is clear that the daily median
value of the two “24/7” wards and the non-clinical department is much less than that
of the two “Day” wards, with the minimum value of “Day ward#1” still more than the
maximum amongst the two “24/7” wards and the non-clinical department.

Although the data were collected for each ward/department, individually, the dataset
was combined, in this study, and considered as one, to optimise the HRES based on the
collective demand. Accordingly, Figure 2 shows the seasonal demand represented by the
selection of wards/departments in this study. As can be seen from the box and whiskers
plot, the months of October, July, and June recorded the highest daily median, respectively.
However, the demand in other months does not significantly drop as seen in the figure. For
instance, the minimum value, recorded in March, is just under 700 kWh and the difference
in the medians is between 5% and 10%. This shows the high demand of the selected
wards/departments and is a reflection of that of the hospital.

Monthly rates of electricity for the duration of the study were collected and are
shown in Figure 3. The variable rate is common for businesses in the UK and depends
on consumption. Usually, lower rates are offered to larger consumers. The rates varied
between GBP 0.11/kWh to GBP 0.14/kWh , with an exception in the month of March. The
rate of GBP 0.025/kWh was considered an outlier and replaced with the mean value of the
rest of the readings.

0 100 200 300 400
Electricity consumption per day (kWh)

Day Ward#1

Day Ward#2

24/7 Ward#1

24/7 Ward#2

Non-clinical Dpt

Figure 1. Electricity consumption per day, showing the different wards.
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Figure 2. Electricity consumption seasonality per day.
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Figure 3. Electricity Rate (GBP/kWh).

2.1.2. Carbon Intensity

The carbon intensity of electricity is an indicator that shows the amount of CO2
emissions related to electricity generation only. In Great Britain (GB), the National Grid
Electricity System Operator (ESO), in partnership with Environmental Defense Fund
Europe and the World Wide Fund for Nature (WWF), have developed a series of regional
carbon intensity forecasts for the GB electricity system, with weather data provided by the
Met Office [27].
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The carbon intensity dataset incorporates CO2 emissions from all large metered power
stations, inter-connector imports, transmission, and distribution losses, and accounts for
national electricity demand, and both regional embedded wind and solar generation. The
dataset does not consider the CO2 emissions of un-metered and embedded generators. The
GB carbon intensity Ct time t is found by weighting the carbon intensity cg for fuel typeg
by the generation Pgt of that fuel type. This is then divided by national demand Dt to give
the carbon intensity for GB [29]:

Ct =
∑G

g=1 Pg,t × cg

Dt
(1)

As a result of the efforts made towards the transition to more renewable energy
sources, the electricity generation carbon footprint has been decreasing throughout the
years, as shown in Figure 4.
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Figure 4. Carbon intensity yearly of the electricity generation trend.

We can also observe that the average intensity through the months are not significantly
changing, as shown in Figure 5.

In this paper, we used the carbon intensity dataset (from September 2017–until August
2021) to forecast the intensity in the future. Initially, Facebook Prophet [20] was used to
model the data, then we fine-tuned the model and evaluated its performance. Finally we
used the model to forecast the intensity over the next four years.

Facebook Prophet is a time-series forecasting model, designed to handle time-series
data. One notable feature is that it could model and handle variations caused by season-
ality. It achieves this by using a decomposable time-series model [30]. The model’s main
components are trend, seasonality, and holidays; thus, it is calculated by,

y(t) = g(t) + s(t) + h(t) + ε (2)

where g(t) represents the trend, s(t) is the periodic change (e.g., weekly and yearly season-
ality), the effects of holidays is h(t), and ε is the error. In our model, all these parameters are
used since they all affect the demand on the national grid and, thus, the carbon intensity.
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Figure 5. Carbon Intensity monthly trend.

2.1.3. Solar Irradiance Data

Solar irradiance was taken from the online tool PVGIS [31]. The location of the hospital
was used to download a typical meteorological year. Global Horizontal Irradiance (GHI)
data were chosen as the input for the PV calculations, given that this study is at early stages
and we do not have accurate positioning of the PV modules.

Figure 6 shows the yearly-averaged irradiance data and the yearly averaged electrical
demand for all the studied wards. It can be seen that there is a good match between the
two profiles, although a peak in demand is also seen in the evening hours. Given the
continuous operation nature, demand will reduce in the night but will not stop.
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Figure 6. Yearly average irradiance at the hospital location and yearly average demand for all
the wards.
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2.2. System Architecture

Figure 7 shows the system architecture considered in this study. PV array and battery
banks are on the DC bus and are connected to the grid and load via a bi-directional
converter with a size large enough to allow for maximum demand to flow between the
AC and DC sides of the system. A dump load is a dummy load (such as heat resistor) that
can divert excess energy and maintain the energy balance of the system. It is connected
from both ends, although in this case, only the DC side will generate excess energy to be
dumped since there are no other AC renewables in the system (e.g., no wind turbines).

Dump 

load

Inverter

Battery

 Bank

Rectifier

Electrical

 Load

Electrical

 Load

PV 

AC bus DC bus

Grid

Figure 7. Proposed system architecture of HRES.

This architecture is chosen given that PV installation can be on the rooftop of the hos-
pital, where land acquisition, consent, and permitting processes are simpler. Furthermore,
the footprint of the battery bank is small and is usually accommodated within the utilities
rooms available in the hospital.

2.3. Electrical Power Modelling
2.3.1. PV Array

The electrical power output of the PV array can be calculated from the following
equation [25]

Ppv = ApvGTηpv
(
1 + αp(Tc − Tc,stc)

)
(3)

where Apv [m2] is the surface area of the PV modules, GT [W/m2] is the global irradiance
incident on the plane of the PV module, ηpv is the system efficiency; αp [ %/Co] is the
module’s temperature derating coefficient; Tc is the temperature of the cell surface and
Tc,stc is the temperature of the cell surface at standard test conditions (STC). The last term
in Equation (3) takes into account the effect of ambient temperature on the efficiency of
the module by introducing the efficiency correction term proportional to the difference
in the cell surface temperature between standard test conditions and the prevailing cell
temperature on site. The model assumes that maximum power point tracking is included
to obtain maximum output at each irradiance level.

2.3.2. Battery Bank

In this study, we consider a single-node storage model to calculate the battery’s State
of Charge (SoC) as follows [32,33]

SoC(t) = SoC(t− ∆t)(1− δ) +
(P− L)× ∆T
NbatVbat Abat

ηbat (4)
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where, δ is the internal self-discharge rate of the battery; ∆T is the interval at which
the measurements are taken. In this work, ∆T = 1 hour unless otherwise stated. The
term (P− L)∆T is the net energy flow into the battery bank during one hour. The term
Pbat,nom = NbatVbat Abat is the nominal capacity of the battery bank and ηbat is the round-trip
efficiency of the battery.

At each timestep in calculating the battery’s SoC, two quantities are needed, namely,
the extractable power from the battery Pbat,e and the electrical power required to fill up the
battery Pbat, f . They are calculated as follows:

Pbat,e = (SoCmax − SoCt−∆t)Pbat,nom (5)

Pbat, f = (SoCt−∆t − SoCmin)Pbat,nom (6)

2.3.3. Grid Electricity

In this work, the system can interact with the grid in a bi-directional manner. Electricity
is imported from the grid to provide the balance of energy, when the PV-battery system
cannot cover the load. In times of high generation and low demand, excess electricity
can be exported back to the grid. The amount of export is usually capped by the size
of the circuit breaker, which in turn is based on the maximum electrical demand of the
building. In this study, the hourly exports are capped at 125% of the maximum electrical
demand. This is taken as an approximation of the rating of the circuit breaker feeding the
wards, given that data about the actual rating were not available. Losses in transmission
for imports and exports are neglected.

2.4. Dispatch Strategy

The dispatch strategy is the electrical power management algorithm that controls the
balance of energy of the components, most importantly the battery bank. As can be seen
in Figure 8, the dispatch strategy used has constant preference of renewable electricity,
because PV electrical output is non-dispatchable. Moreover, there is a significant price
difference between importing and exporting electricity to the grid (i.e., it is always better
to use the local renewable electricity).

When there is excess renewable electricity, the algorithm will check if the energy can
be absorbed by the battery, if there is still excess, it will be exported back to the grid. If
the battery is full and the export to the grid reached its limit, the rest will be dumped via
the heating element. On the other hand, when there is a deficit, the algorithm will check
if there is enough charge in the battery to fulfil the demand. If not, then grid electricity
is used to cover the deficit. In this case, the battery bank is discharged to the minimum
allowable state of charge.

2.5. Cost Modelling

Cost modelling is used to evaluate the cost of the system through its lifetime. The
cost components considered in this study are: (i) capital cost; (ii) fixed operation and
maintenance cost; (iii) variable operation and maintenance cost; (iv) replacement cost;
and (v) salvage costs. For each system component, the discounted cost over the entire
life project is calculated and summed to give the total net present value CNPC,tot . The
discounted cost is calculated from the nominal cash flow using a discount factor, which is
determined as [6,34]

fd =
1

(1 + i)N (7)

where, N is the total project life (in years) and i is the real discount rate, which can be
calculated from the expected inflation rate

i =
i′ − f
1 + f

(8)
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where, i′ is the nominal discount rate. CNPC,tot is then used to calculate the total annualised
cost (total discounted cost split equally over the entire project years) as follows:

Cann,tot = CFR× CNPC,tot (9)

where, CFR is the capital recovery factor, which can be calculated as follows [35]

CRF =
i(1 + i)N

(1 + i)N − 1
(10)

Finally the Levelised Cost of Energy (LCE) can be calculated as follows [35,36]:

LCE =
Cann,tot

Ptot − Pdump
(11)

where, the value in the denominator represents the useful electrical energy. It is the sum of
the renewable and grid electricity minus the dumped energy, which does not add value to
the system.

Pr > Lel?

No

Pr + Pbat,e > Lel?

No

 Pgrid > 0 ,
 SoCmin

Pr, Pbat,e, Pbat,f

i = i+1
i < imax?

No

Yes
Pr  - Lel > 

Pbat,f?

Read inputs 

Initialise 

Yes

SoCmax ,
Pexp > Pexp,max ?

No

Charge 
battery

Yes 
Discharge 

battery

Yes exit

Pexp = Pexp,max , 
Pdump

Yes

No

Figure 8. Electrical dispatch strategy with constant renewable and battery priority.
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2.5.1. Cost Parameters of System Components

Accurate cost parameters are crucial in obtaining representative results. As shown
in [6], the prices of renewable energy components have seen a steep decline over the past
decade and this trend continues to the present. The most up-to-date values for the UK
market are compiled and adapted from [5,37] after taking a 0.73 conversion ratio between
USD and GBP.

PV array: the total installed cost of a residential PV system is around GBP 1600/kWp,
and for commercial PV systems, it is GBP 1125/kWp. We will assume a median price of
GBP 1350/kWp.

Battery bank: getting an accurate estimate of the installed cost of battery bank is more
challenging, given that sizing methodologies assumes a certain size of the system in order
to perform cost calculations and projections. However, it is clear that the cost of storage
is declining rapidly and is projected to continue the decline in the next decade in the
range of 30 → 60% [37]. According to the latest figures from [5], the UK’s median price
for Lithium ion battery bank for stationary applications is around GBP 545/kWh of net
capacity (the usable capacity (SoCmax − Socmin)× Pbat,max). On the other hand, the authors
in [37] put the cost around GBP 255/kWh for a 4-h utility scale system. This does not
include installation costs. The lifetime of the batteries also varies between 10 and 20 years.
From the above discussion, we chose to account for GBP 545/kWh as the total installed
cost for the battery bank.

Grid: The cost of grid-electricity is taken according to Figure 3 on a monthly basis. As
for the exports back to the grid, given that, at the time of the study there was no PV system,
actual data are not available. In this study, an average export tariff of GBP 0.04/kWh was
adopted.

The values of the cost parameters used in this study are summarised in Table 1. The
total installed cost is divided into capital and installation costs. The cost of the PV module
is shown in GBP/m2 with assumed conversion factor of 8 (1 kWp = 8 m2).

Table 1. Cost Parameters for system components.

Component Capital Installation Fixed Variable Replacement Exports/Salvage Component LifeCost (CC) Cost (IC) O&M O&M Cost

PV GBP 50/m2 2.5 × CC GBP 2/m2 0 (CC + IC) 0 25 min
Battery GBP 300/kWh 0.5 × CC 0.01 × CC 0 (CC + IC) Linear (15 years, 3000 cycles)

Grid 0 0 0 variable 0 GBP 0.04/kWh 25

2.5.2. Forecasted Cost Parameters

The most important cost parameters are forecasted and used in the future optimisation
of the system, this includes: (i) grid price; (ii) PV module capital cost; and (iii) battery bank
capital cost.

Grid: Figure 9 shows the long term electricity selling price in the UK; these prices
include the climate change levy and VAT and are taken from [38]. The upward trend is
clear; as such, linear fit regression was used to project likely electricity costs in the future.
The fit equation is given as:

y = 0.1378x + 5.935 (12)

From the above equation, prices of Q3-2023 and Q3-2025 are calculated as GBP
16.82/kWh and GBP 17.92/kWh, respectively.

As for the export price levels, in January 2020, the UK government discontinued the
Feed-in-Tariff (FiT) scheme and replaced it with the Smart Export Guarantee Scheme [39].
Under this scheme, only exports are compensated (as opposed to generation and exports
in FiT). Individual electricity suppliers will set up their rates. Current rates on offer range
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from GBp 1.5/kWh to GBp 6/kWh. Customers will be allowed to change suppliers, as
such, it was assumed that the average rate of GBp 4/kWh is maintained through 2025.

PV: according to a recent study [40], PV prices are also expected to keep declining.
Accordingly, the projected capital cost of PV modules in 2023 and 2025 are 88.4% and 80.7%
respectively. These values will be used in scaling the capital cost of the PV modules when
conducting the optimisation.

Battery bank: as shown in [37], steep declines in battery costs are projected in the
coming years. Here we used the normalised curve to predict the possible price fall in 2023
and 2025, taking the middle of the year as a chosen point of reference. The capital cost
price is expected to fall to 79.2% in 2023 and to 68.9% in 2025. These values will be used to
scale down the battery price.

Demand: as for the demand, given the lack of long term data to project future con-
sumption, we will assumed constant electrical demand.
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Figure 9. Long term electricity selling prices in the UK to small commercial businesses, long term
data is taken from [38], hospital bills for the duration of the study is shown for comparison and linear
fit is produced.

2.6. Multi-Objective Optimisation

The decision variables of the study are the main size parameters of the system com-
ponents. This is mainly the area of the PV array (Apv) and the number of batteries Nbat.
A multi-objective optimisation is carried out using genetic algorithm (GA) code devel-
oped in MATLAB. The code utilises the built-in GA optimiser. The two objectives to be
minimised are LCE and emissions.

min
(

LCE(Apv, Nbat), Eco2(Apv, Nbat)
)

(13)

Reliability constraints were not imposed on the system since it is assumed that the
grid electricity is reliable; therefore, no blackouts are expected.

The upper bound of the variables are taken as follows

UBpv = αpv
max(Lel(t))

ηpvḠT(t)
(14)

UBbat =
β ∑24

i Lel,i(t)
VbatCbat

(15)
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where αpv = 1.1 is a capacity reserve factor and β = 1 is the autonomy days of the system.
UBpv is capped at the maximum area at the hospital roof that can be utilised to install PV
array. The lower bounds of the variables are set to zero for both to enable the system to
eliminate the non-feasible components.

{LBpv, LBbat} = {0, 0} (16)

The main GA parameters used throughout the study are shown in Table 2. The Pareto
fraction refers to the proportion of the population on the Pareto front that will propagate
to the next generation. Values less than 100% ensure that the population is diverse even
if some of the solutions have sub-optimal fitness, which in turn improves convergence to
the global optimum. The optimisation run converges if the change in the spread of the
Pareto solutions is less than the convergence criteria sustained over the maximum number
of stalled generations.

Table 2. Main GA Parameters.

GA Parameters Value

Population size 200
Max number of generations 400
Probability of crossover 0.8
Convergence criteria 1× 10−4

Max number of stalled generations 30
Pareto fraction 50%
Number of genes 2
Type of genes integers
{UBpv, UBbat} {470, 700}
{LBpv, LBbat} {0, 0}

Optimisation Methodology

Optimisation simulations are carried out three times. The first time involves using the
prevailing parameters at the present including current cost parameters and grid emissions.
Then two further optimisations are carried out for the future state of the system. The first
point chosen is mid-2023 and the second is mid-2025. In this way, an informed decision
can be reached in which optimum solutions are likely to remain optimum in the future.

3. Results and Discussion
3.1. Grid Carbon Intensity Forecasting

Initially the forecasting model was used and tuned to model the carbon intensity.
Figure 10 show the measured values—provided by the dataset—and the forested values
(ŷ) estimated using the forecasting model. Moreover, we provided the upper and lower
limits of the forested values. It can be observed that the model is able to capture the trend;
however, some of the outliers and the sudden changes in the values are not captured in
the model. The accuracy of the model is assisted by using the mean absolute percentage
error (MAPE). As shown in Figure 11, the model achieves very low errors, in particular,
the MAPE ranges between 0.1 and 0.5.
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Figure 10. Carbon intensity forecasting model.
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Figure 11. Carbon intensity forecasting model accuracy assist using the Mean Absolute Percentage
Error (MAPE).

Thus, the model was used to forecast the carbon intensity for the period between
August 2021 and December 2025. As shown in Figure 12, the range carbon intensity would
remain as it is at the moment, since in the model, we are not assuming any change in the
grid or the electricity generators. The predication mean values were utilised in Section 3.3
to evaluate the performance of the optimised systems.

3.2. Optimum PV-Battery System

Figure 13 shows the Pareto front in objective function space. The size of the bubbles
represent the PV system size and the colour represent the number of batteries. Baseline
grid emissions and cost are shown for comparison, as well as the zero emissions level.
Solutions to the left of the grid-cost line (red-dotted line) are solutions with lower cost than
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existing grid-only system. Solutions to the right of the red line and over the green line are
solutions that are more expensive but with lower emissions. Solutions under the green
line will have overall negative emissions because of the large amount of export back to the
grid. All the solutions that have more than zero emissions have no or small number of
batteries. Table 3 shows the sorted solutions at the Pareto front with corresponding fitness
and system size values.
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Figure 12. Carbon intensity forecast values.
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Figure 13. Pareto Front results for all wards in objectives space, the colour of the bubble represent
the size of the battery bank and the size of the bubble represent the nominal size of the PV system.
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Table 3. Sorted Pareto front solutions, solutions 1–28 are cheaper than existing grid, solutions 29–47 have deeper emission
reductions, approaching net zero, solutions 48 to 74 have net negative emissions.

Sol LCE Eco2 Ppv Nbat Sol LCE Eco2 Ppv Nbat
# (GBP/kWh) (t/year) (kWp) (#) # (GBP/kWh) (t/year) (kWp) (#)

1 0.1285 57.3 86 0 38 0.1565 10.0 267 1
2 0.1285 56.3 89 0 39 0.1588 8.8 275 2
3 0.1285 55.2 92 0 40 0.1612 7.8 282 4
4 0.1287 53.1 98 0 41 0.1625 6.9 288 3
5 0.1289 51.3 103 0 42 0.1657 6.1 294 9
6 0.1293 48.2 112 0 43 0.1673 4.5 306 3
7 0.1296 46.4 117 0 44 0.1686 3.8 312 2
8 0.1298 45.7 119 0 45 0.1725 2.3 324 4
9 0.1302 43.7 125 0 46 0.1772 1.2 333 17
10 0.1306 42.3 129 0 47 0.1782 0.0 345 3
11 0.1313 39.7 137 0 48 0.1831 −1.9 363 2
12 0.1315 39.0 139 0 49 0.1857 −2.7 371 3
13 0.1321 38.0 142 1 50 0.1863 −3.0 374 2
14 0.1322 37.1 145 0 51 0.1897 −3.7 381 10
15 0.1327 35.8 149 0 52 0.1953 −5.0 394 19
16 0.1332 34.6 153 0 53 0.1987 −5.9 404 21
17 0.1336 33.7 156 0 54 0.2014 −6.7 413 21
18 0.1340 32.9 159 0 55 0.2047 −7.6 423 22
19 0.1345 32.3 161 1 56 0.2108 −9.1 441 25
20 0.1346 31.7 163 0 57 0.2168 −9.8 446 47
21 0.1352 30.6 167 0 58 0.2213 −10.8 458 51
22 0.1361 28.9 173 0 59 0.2267 −11.1 452 87
23 0.1372 27.9 177 2 60 0.2338 −12.4 457 126
24 0.1384 26.1 184 2 61 0.2367 −12.8 458 140
25 0.1389 25.1 188 1 62 0.2488 −13.7 451 215
26 0.1402 23.7 194 2 63 0.2519 −14.5 459 219
27 0.1405 23.0 197 1 64 0.2601 −14.6 445 284
28 0.1419 21.4 204 1 65 0.2619 −15.4 455 278
29 0.1423 20.9 206 1 66 0.2701 −15.7 446 334
30 0.1434 19.7 212 0 67 0.2766 −16.3 445 369
31 0.1465 17.5 223 4 68 0.2780 −17.3 458 357
32 0.1481 16.0 231 2 69 0.2799 −18.2 455 435
33 0.1490 15.2 235 2 70 0.2867 −18.9 460 462
34 0.1519 13.2 247 2 71 0.2904 −19.5 466 472
35 0.1532 12.5 251 5 72 0.3063 −20.0 463 679
36 0.1545 11.4 258 2 73 0.3096 −20.5 468 690
37 0.1561 10.9 261 5 74 0.3096 −20.5 468 690

As can be seen from Figure 14, the share of each of the electrical supply components is
shown as a ratio of the total electrical demand. PV, grid, and battery components make up
100% of the demand. The direct PV contribution ranges between 30% for solution 1 and
50% for solution 74. Exports to the grid steadily increase until the size of storage becomes
bigger than 50 kWh then the ratio starts declining. Excess energy becomes significant
between solutions 25 and 74. This is mainly due to the large increase in PV output in the
warm part of the year, while the exports are limited as discussed in Section 2.4. The high
levels of excess is mostly responsible for increasing the overall cost of the system as this
excess energy is not considered useful and do not contribute to the revenue.
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Figure 14. Ratio of supply to demand of the different components for the solutions on the Pareto
front. X-axis is numbered as per Table 3.

Further assessment of the optimum solutions is shown in Figure 15. In Figure 15a,
payback period is calculated for all the solutions. It is an important metric to measure the
economic viability of a project. The simple payback is the number of years to reach the
break-even point; where the cumulative savings have equalled the initial investment [41].
A system is deemed profitable when the payback period is smaller than the project life. It
can be seen that solutions 1→ 45 can be considered profitable with payback period from
approx 8 years for solution 1 to 24.8 years for solution 45. In Figure 15b the cumulative
savings are calculated by subtracting the total initial expenditure from the yearly savings
until the end of the project [42]. As can be seen, systems that have a payback period of less
than the project life will generate revenue (solutions 1→ 45 with maximum savings for
solution 1 of around GBP 270, 000.

Similarly, Figure 15c shows the cumulative CO2 savings in tonnes. The calculations
assumed constant CO2 emissions from the grid throughout the lifetime of the project.
Values ranged from around 800 tonnes for solution 1 to around 2800 tonnes for solution 74.

3.3. Optimisation Using Forecasting Data

In this section, we perform optimisation of the system using forecasted emissions,
grid-prices, PV, and battery capital costs in years 2023 and 2025. The original solutions
will be referred to as solution 2018 given that the electrical consumption data were taken
in 2018.

Figure 16 shows the optimisation results using the parameters from Table 1 and
then projected parameters for 2023 and 2025 including PV capital cost, battery capital
cost, forecasted emissions, and grid prices. The 2018 Pareto front produced the most cost
competitive results in absolute terms, especially in the region of high emissions(top left).
This can be attributed to the lower prevailing grid prices, which constitutes around 60% of
the supply share. On the other hand, in 2023 and 2025, a larger proportion of the Pareto
solution is situated to the left of the baseline cost (grid only system). The difference between
the cheapest solution in 2018 and the grid-only cost is GBP 0.01201/kWh , this increased to
GBP 0.026358/kWh in 2023 and to GBP 0.033547/kWh in 2025. Furthermore, in 2025, it
would be possible to reach a net zero system while being cheaper than the grid. The size of
the system in 2023 and 2025 solutions was consistent with the 2018 solution, whereby most
of the solutions have little storage capacity until PV system becomes larger than 400 kWp
nominal power. This indicates that the optimum configuration is unlikely to change in the
future, rather, the overall cost of the system will change depending on the change in the
financial parameters as shown in Figure 16.
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Figure 15. (a) Payback period for all the solutions on Pareto front, (b) cumulative monetary savings
and (c) cumulative CO2 savings throughout the project life (25 years).
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Figure 16. Pareto front for system using 2018 parameters (in blue), using 2023 projections (in red),
and using 2025 projections (in yellow). Vertical lines with a corresponding colour refer to the LCE for
the grid-only system for the three Pareto fronts.

The optimum solutions of 2018 are evaluated using the forecasted parameters of 2023
and 2025 and compared with the Pareto solutions of the respective years are shown in
Figure 17. This comparison enables us to estimate how the optimum solution chosen based
on 2018 parameters would change in the future. It can be seen that optimum solutions
in 2018 remain on or very close to the Pareto solutions in 2023 and 2025. However, the
cheapest solutions in 2018 (solutions # 1 to 12) are out of the Pareto solutions. This indicates
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that, if the projections are accurate, the solutions will no longer be optimal in the future
and, therefore, should be avoided.

0.15 0.250.2
LCE (GBP/kWh)

-20

-10

0

10

20

30

40

50

E
m

is
si

on
s 

(t
C

O
2)

(a) 2023

Pareto Front 2023
2018 solutions

0.15 0.250.2
LCE (GBP/kWh)

(b) 2025

Pareto Front 2025
2018 solutions

Figure 17. Comparison between the Pareto solutions of the forecasted years and the optimum
solutions of 2018 when evaluated using forecasted parameters, (a) using 2023 parameters, and
(b) using 2025 parameters.

Figure 18 shows how the payback period changes when forecasted parameters are
used to estimate payback of the original Pareto solutions (refer to Figure 13). It can be
seen that the payback period is expected to accelerate driven by the combined effect of
reductions in PV and battery prices and the expected increases in the grid prices. The
cheapest solution will have a reduction of payback by around 2.5–3 years. Furthermore, all
the optimum solutions will become commercially viable by having payback less than the
project life, including solutions with net negative emissions.

100 150 200 250 300 350 400 450 500
P

pv
 (kWp)

0

10

20

30

40

Pa
yb

ac
k 

(y
ea

rs
)

Project Life

Z
ero 

E
m

issions

2018 parameters
2023 parameters
2025 parameters

Figure 18. Evolution of payback for the Pareto solutions of 2018 against the size of PV system. Blue
dots are the original solutions, red and yellow dots are the original solutions evaluated with 2023
and 2025 forecasted parameters. Solutions to the left of the green line are net positive emissions, and
to the right are net negative emissions.
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Figure 19 shows a method to recommend a subset of the Pareto front solutions based
on the projected optimisation values. The plot is for LCE against the corresponding size of
the PV system. The Pareto fronts for 2018, 2023, and 2025 are shown. The bottom horizontal
line shows the minimum PV size on the Pareto 2025 solutions. The upper horizontal line
shows the zero emissions line (above which are negative emission solutions). The two
vertical lines are the grid-prices in 2018 and 2025. The two vertical and horizontal lines
define several regions in the plot. Area 1 shows the optimum solutions in 2018 that will
become sub-optimal in the future. This can be observed from the 2023 and 2025 solutions
that will undergo change in direction. This is due to the relatively large grid-import
proportion of the total supply share, combined with increase in the grid electricity price.
Area 2 contains solutions that will remain at optimal in the future and are still cheaper
than the existing grid-only system. However, these solutions will also get significantly
more expensive in the future as the cost of the grid increases. In area 3, solutions will
remain optimal and will undergo small increase in the future. Solutions in area 3 are
more expensive than the current grid-only system but will become cheaper in the future.
Furthermore, these solutions will have smaller CO2 footprint by comparison with solutions
in areas 1 and 2.

As such, it can be concluded that solutions in areas 2 and 3 are the most suitable and
the choice of which area is more preferable will be according to the preferences of the client.
Referring back to Table 3, solutions 1→ 12 fall in area 1. Solutions 13→ 26 are in area 2
and solutions 27→ 47 are in area 3.
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Figure 19. Projected change to Pareto solutions. Solutions in area 1 are currently optimum but will

become sub-optimal in the future. Solutions in area 2 are optimal and will remain optimal in the

future, while being cheaper than grid-only system. Solutions in area 3 are optimal and will change
less than solutions of area 2 in the future. Currently, they are more expensive than grid-only solution,
but they will become cheaper in the future.

4. Discussion of the Results

It can be seen from the optimisation results that installing PV system with 30–40%
share will be economically viable, while at the same time, decreasing the carbon emissions
from the hospital by 800–1000 tonnes of CO2 over the lifetime of the PV array. Increasing
costs of the grid plays a major role in shifting the optimum solutions towards larger PV
installation and possibly introducing storage to complement the production and reduce
exports back to the grid. The elimination of the battery bank from most of the optimum
solutions can be attributed to the good match between demand and irradiance (refer to
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Figure 6) combined with the high capital cost of batteries. We carried out optimisation
simulations using capital cost of batteries less than GBP 200/kWh, the optimum solutions
contained significantly larger battery banks. This indicates that, in the near future, grid-PV-
battery architectures will become optimal.

Given the large amount of excess energy that cannot be exported back to the grid, it
would be beneficial to reduce this amount by either increasing the levels of storage or by
utilising in the heating and cooling of the hospital. This seems like a good opportunity to
utilise the excess energy generated on site in fulfilling dispatchable loads such as heating,
cooling and ventilation.

5. Conclusions

In this study, we investigated supplying a healthcare facility in the south-east of
England with a grid-connected HRES. Multi-objective optimisation with cost and emissions
as objectives was performed using prevailing prices and projections of emissions and costs
for 2023 and 2025. Taking the future state into consideration, a subset of the optimal
solutions can be recommended based on the preferences of the end-user. The following
conclusions can be drawn:

- In the UK healthcare context, installing grid-connected HRES can be economically
viable and can even help reduce the cost of energy than grid-only system, yielding
cumulative savings in the same order of magnitude as the initial cost over the lifetime
of the system. A side benefit includes dampening the effects of grid-price fluctuations
on the overall energy cost of the hospital. Given the long term trend of electricity price
increase in the UK, the system can become more profitable with time.

- Installing grid-connected HRES will directly address the NHS ambition of becoming
net-zero health provider. A Net-zero system for the hospital section under study, will
save around 2000 tonnes of CO2 over 25 years of project life.

- If our projections of grid-emissions and cost parameters are accurate, then the opti-
mum systems will become more cost effective in the future.

- Incorporating forecasting into the optimisation helped in selection of the most suitable
subsets of the Pareto solutions, which was not obvious without using this approach.

- A significant drop in storage prices or a change in the exports to the grid mechanisms
are needed to make the grid-PV-battery system the optimal choice. Significant re-
ductions in battery prices are expected over the coming years and changes to export
incentives by offering higher rates for customers with storage are starting to emerge
in the UK electricity market.

Finally, some further work that is considered for the future include: more extensive use
of forecasting from using two points in the future to the entire life of the project. Utilisation
of excess energy in the supplying thermal loads and dispatchable loads, and studying more
sophisticated HRES structures, such as adding wind turbines and CHP units.
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Abbreviations
The following abbreviations are used in this manuscript:

NHS National Health Service (UK)
WEDL Wireless Electricity Data Logger
HH Half Hourly rate
O&M Operation and Maintenance
HRES Hybrid Renewable Energy System
GC Grid-connected
GBP Pound Sterling
GBp Penny Sterling
PV Photovoltaic
GHI Global horizontal irradiance
UB Upper bound (optimisation)
LB Lower bound (optimisation)
STC Standard test conditions (PV modules)
CRF Capital Recovery Factor
LCE Levelised Cost of Energy
SoC State of Charge (battery bank)
FiT Feed-in-Tariff
MAPE Mean Absolute Percentage Error
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