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Abstract— Internet of things (IoT) in urban transportation 

systems have been ubiquitously embedded into a variety of devices 

and transport entities. The IoT-enabled smart transportation 

system (STS) has thus gained growing tractions amongst scholars 

and practitioners. However, several IoT challenges in relation to 

cyber-physical security are exposed due to the heterogeneity, 

complexity and decentralization of the IoT network. There also 

exist geospatial security concerns with respect to the embeddings 

of 5G networks into public infrastructures that are interconnected 

with the transport system via IoT. To address these concerns, this 

paper aims to apply geospatial modelling approach to propose a 

Smart Transportation Security Systems (STSS). It is modelled and 

simulated by undertaking an experimental study in the city of 

Beijing, China. The simulation outcome of the proposed 

architecture is expected to offer a strategic guide for strategic 

security management of urban smart transportation. 

Index Terms—5G, cyber-physical system, geospatial analysis, 

infrastructural designs, Internet of Things (IoT), security control, 

smart transportation systems (STS), standardization 

I. INTRODUCTION 

group of “things” embedded by software, electronics, 

actuators, sensors, which are linked through the web to 

gather and swap information with one another is termed as 

Internet of Things (IoT) [1]. As reported by the International 

Data Corporation (IDC), the rapid progression of the variety of 

IoT equipment used is forecasted to achieve 41 billion by 2020 

with an $8.9 trillion market [2]. In particular, IoT has been 

deployed in the smart transportation systems (STS) that allows 

optimizing transportation resources and facilities and providing 

better traffic management to the citizens [3]. To date, there has 

been a plethora of IoT-enabled STS applications at scale. For 

example, heterogenous transport data sources are captured from 

millions of vehicles, thereby establishing a data-driven traffic 

network that is often termed as ‘internet of vehicles’ [4]. Driven 

by IoT, the STS recommendation system has developed on the 

basis of predictive computation of user behaviors [5] through 

initiatives like traffic control rooms and surveillance systems. 
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Driven by IoT, smart transportation is increasingly advanced 

by, and embedded with, cyber-physical system (CPS) which is 

built on open network technologies and sensor networks that 

realize interconnections between different nodes of transport, 

instantiated as a system of systems [6][7][8][9]. However, such 

an IoT-driven, CPS-embedded smart transportation faces 

several challenges related to cybersecurity and 5g-enabled 

network connectivity, due to its heterogeneity, complexity and 

decentralization [4][5]. 

First, while using the IoT equipment in the smart 

transportation solution, a variety and large volume of data (e.g., 

traffic data and sensor data) are generated [5][6]. These data, if 

they are harnessed in a proper manner, could help monitor the 

physical traffic environments and achieve the smartness of the 

transportation system. However, with data explosion in the STS, 

traditional security schemes cannot be implemented on IoT 

environments because the nodes contain limited memory space 

that cannot manage the data processing and storage necessities 

of improved security procedures. Such data explosion issues 

also cause system cyber-insecurity due to potential data leakage 

and breach [10]. Second, device-to-device contact permits the 

IoT nodes to swap data with one another in an independent 

manner. The successful utilization of the device-generated data 

improves the scheme execution by making valuable knowledge 

of the domain. However, swapping data between various IoT 

systems is a challenging task due to the heterogeneity, 

complexity and decentralization of IoT-enabled STS. Third, the 

capacity and security of wireless network communication is of 

utmost importance for the STS due to real-time transport of IoT 

traffic and fast response requirements from smart applications. 

Current IoT-enabled smart transportation security system 

mostly suffers from low bandwidth and high communication 

cost [7]. Furthermore, the nodes of wireless network embedded 

in the STS may not be physically secured and exposed to unsafe 

conditions. 

These challenges may not be overcome by simply utilizing 

existing solutions that are available for ‘conventional’ systems, 

namely, to addressing CPS related security problems. This is 

because CPS and IoT innovations are mainly concerned with 

data and smart devices, concentrating on micro-level 

information exchange and data transmissions across nodes 

[11][12][13]. Macro issues in relation to geospatial and public 

infrastructural configurations would also need to be set up, i.e. 

geographical indicators that impose large-scale influence on the 

deployment of transportation infrastructures and sensor 

networks. We claim that overcoming above challenges requires 

the combination of both cyber-physical security and geospatial 
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security management. Therefore, this study proposes an IoT-

enabled smart transportation security system (SSTS) that is 

aimed to address comprehensive security problems of city 

transportation. The main contributions of this study are three-

fold. Firstly, we offer an overview and theoretical explanation 

towards the system architecture for the IoT-enabled STSS. 

Second, we bring together two disciplinaries of information 

science and geoinformatics, and integrate them as a solution to 

address transportation security concerns. Third, we employ an 

experimental study to investigate the city of Beijing to simulate 

possible performance for the application of STSS. 

In the rest of this paper, we present a system architecture of 

STSS in Section II. The simulation of STSS application is 

presented in Section III, followed by a discussion of the 

interrelationships between layers and factors in the STSS 

architecture, and an overall planning strategy towards its 

effective deployment. Conclusions are drawn in the last section. 

II. ARCHITECTURE OF STSS 

The proposed architecture (Figure 1) of IoT-enabled STSS 

proposed in the paper is composed of three layers, including (1) 

security control mechanisms and standard systems, (2) a 5G-

enabled remote communication network, and (3) public 

infrastructural design and geospatial parameters. The upper and 

intermediate layers are concerned with cyber-physical security 

whilst the lower layer stresses geospatial security management. 

The intermediate layer acts as the instrument through which 

IoT-enabled networks bridges the control and standard systems 

to public infrastructural and geospatial designs.  The following 

sub-sections present the functionality and components of each 

layer. 

 
 

Fig. 1. The Architecture of STSS 

A. Security control mechanisms and standard systems 

Security control mechanisms and standard systems refer to a 

set of national and international data and system protocols 

rolled out by standard organizations and technology 

corporations, for the purpose of normalizing the design and 

implementation of intelligent systems, and verifying, validating 

and calibrating parameters of these systems [1][2][14]. For the 

STS, transport entities – e.g. bikes, cars, buses, trains, and 

undergrounds – are identified as the units of the CPS, and have 

been increasingly networked via IoT, i.e. ‘internet of vehicles’ 

[15]. CPS in this sense transforms how humans interact with 

real-world transportation scenarios [18], in a way that transport 

entities are equipped with sensors, navigation devices, and 

high-speed internet bandwidth. Instant messaging and 

telecommunications across these entities would enhance overall 

efficiency and effectiveness of the STS. However, given its 

instantaneity and high capacity nature [16], the CPS-enabled 

STS entails security protection systems to ensure persistent and 

stable data transmissions cross the entities. In what follows, 

three key components are presented in this layer: the smart 

control environment, STS cybersecurity management, and the 

construction of STS standards. 

The smart control environment is concerned with the 

embeddings of sensors and actuators into transportation 

infrastructures (e.g. bridges, gas stations, medical services, car 

parks) and data processing systems (e.g. smart traffic light 

systems, traffic guiding systems, emergency systems, video 

vehicle detectors, city dashboards). These essentials are not 

simply defined as non-functional and technical requirements, 

but also entail functional, regulatory and legal procedures to 

monitor the overall efficacy and operationality of the pervasive 

sensor network and protect it from unintended attacks. 

Cybersecurity management refers to the building of 

mechanisms to identify unintended risks of end-user services, 

including cyber-attacks, privacy violation and information 

disclosure. A typical effective mechanism is data sharing 

protocols for point-to-point transmission of STS data generated 

from both end-user devices and transport infrastructures. When 

data are transferred across sites of practice, it is necessary to 

identify security requirements which allow for the legitimacy 

of data being used and re-used, and for what purpose. These 

requirements are often specified through formulating 

cybersecurity policies and developing appropriate software and 

hardware tools [17]. 

Establishing STSS standards refer to an information security 

management system which provides overall strategic roadmaps 

for designing and implementing the STS. International 

standard-making organizations like IEEE and International 

Organization for Standardization (ISO) make specific data and 

system standards, requiring specific data structure, format and 

data sharing protocols [18]. Our proposed architecture in 

security control involves technical specifications on the basis of 

the standard for IoT-enabled smart city data transmissions 

across transport entities. Data generated from different nodes 

follow the same standard from the data acquisition process to 

the end-user service layer. 

B. 5G-enabled remote communication network 

A 5G-enabled remote communication network allows faster 

timely communications across nodes of transport via internet. 

Vehicles, transport infrastructures, public transports and 

people’s mobile devices become data points which 

continuously transmit information from one site to another [19]. 

5G plays an important role in connecting the overall control 

mechanisms and standard systems on the first layer, and public 
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infrastructures and geospatial indicators on the third layer. In 

comparison with previous generations of network technologies, 

5G is featured by its high capacity, reliability, wide coverage, 

and energy efficiency [20]. This addresses the weaknesses from 

previous cellular standards and therefore further enables IoT 

deployment [21]. 

In transportation, 5G enabled remote communication 

networks can improve the efficiency of transportation security 

control. This is determined by whether the 5G base stations 

have the capacity to cover 5G data transmissions between 

infrastructures and transport entities via the D2D (device-to-

device) technology. Whilst 5G is important to mobile transport 

through smartphones [22], it is also crucial to deploy 

transponders to the public transport network to realize instant 

communications between users and public transports. A proper 

system that supports just-in-time access to information from a 

distance away of public transport stations (e.g. bus stops, 

underground stations) without delay, needs to be set up [23]. 

Smooth transit of both vehicles and humans nearer to public 

transport stations is crucial to the convenience of transportation, 

which further indicates security and safety. 

Based on the remote communication network enabled by 5G, 

real-time transport data within a certain area can be connected 

into a network as a whole. As such, certain practices of control 

for transport entities can be easily carried out (e.g. urban control 

rooms). This improves the regional response rate, reduce in 

accidents and optimize the security control efficiency. 

Furthermore, despite challenges such as large-scale resource 

utilization [24], 5G is tending to be embedded in public 

infrastructures (e.g. medical services, gas stations) which 

mobilize emergency control resources for physical security 

support. These factors can be harnessed by policy-makers in 

order to preempt in emergencies. 

C. Public infrastructural and geospatial indicators 

Our third layer of the proposed architecture is focused upon 

the geographical dimension of the STSS, which will exert 

spatial-temporal impacts on overall security at a macro scale. It 

emphasizes the confluence of public infrastructures in 

facilitating transportation security and smart communication 

technologies [25], as what John Urry calls ‘nexus systems’ [26]. 

Public infrastructural designs based on communication 

technologies connect both transport entities and users to end 

services (e.g. 5G-enabled smart ambulances communicate in 

real time with traffic control systems under emergencies) [27]. 

Conversely, these public infrastructures, in which 5G is 

embedded, in return could generate geospatial data through 

mapping and coding, flowing back through 5G networks (2nd 

layer) and right towards control rooms and standard 

organizations (1st layer). Moreover, location design and master 

planning are vital and geographic dynamics would make 

difference either [28]. This would determine where the 5G-

enabled sensor networks are deployed to what public 

infrastructures (considering the density and distribution). 

This layer of the architecture also contains a set of geospatial 

factors that work synergistically with 5G-enabled 

infrastructures. Geographical information systems (GIS) tools 

are harnessed to identify geospatial indicators for multifaceted 

concerns of security management. The overall planning is thus 

dependent on spatial analysis of transportation resources which 

involves longitudinal and latitudinal coordinates and timely 

tracking of dynamic resource distribution [29]. Designing the 

STSS requires massive spatially referenced data generated by 

digital mapping (e.g. topographic wetness index, surface 

subsidence, wind shelter index) and non-spatial generated data 

(e.g. gas station distribution, medical services distribution). 

Whilst previous studies have placed significance on technology 

that impact upon the security of the STS, our study argue that 

the STS necessitates 5G-enabled infrastructures which are 

crucial to gather geospatial data. Quantifying and mapping 

those very aspects of geospatial influence would help urban 

transport managers make precautionary decisions for mobility 

efficacy and security control. 

III. AN EXPERIMENTAL STUDY: STSS IN THE CITY OF BEIJING 

In this paper, we place our focus on the city of Beijing, China, 

to model and simulate our proposed architecture of STSS and 

give our suggestions for master planning. We firstly examined 

the national standard system (GB/T 33356-2016) applied to 

building smart city systems, and particularly, standardizing data 

created therein. Secondly, we collected seven types of 

geospatial data sets and carried out data modelling process to 

simulate and instantiate both the second and third layers of our 

proposed architecture, on the platform of ArcGIS (10.2). 

ArcGIS is a geographic information system (GIS) tool for 

geoscientific analyses, exploring the geographic information 

contained in vector (such as point, line and polygon) or raster 

(such as image) format. Undertaking the GIS modelling 

processes allows comprehensive analysis of urban 

transportation problems from various operational datasets, such 

as satellite remote sensing and ground based measurement, 

providing an optimized solution for the IoT enabled STSS in a 

state of art. 

A. National standard systems for STSS 

IoT contributes to ongoing data acquisition; the 5G-driven 

and IoT-enabled STS makes possible the big data analytics in 

real-time. However, although these technical instruments open 

up great opportunities, the accompanying privacy and security 

issues necessitate regulatory frameworks to normalize the 

implementation of the STS. Amongst many canonical smart 

city standards organizations (e.g. ISO, IEEE, IEC, ITU-T), 

China’s National Standardization General Working Group on 

Smart City (SMCSTD) carried out 37 national standards for 

smart cities [30]. The national standard GB/T 33356-2016 

"New Smart City Standards Index" was issued in 2016 and 

updated in 2018. This national standard index resonates with 

our proposed architecture of the STSS in a way of highlighting 

that the standard indicators for transportation services are 

focused on both the cyber-security and physical-level security. 

The index of the cyber-physical level is used to assess the 

execution of security responsibility system in the process of 

implementation and management of the STS, enhance the 

overall coordination and top-level design of cyber-physical 



security control in smart cities, and fully construct and legalize 

the authorization system [31]. In the course of the operation of 

the proposed STSS, this standard index will strengthen the 

monitoring of information networks, alert notifications and 

information sharing, and fully enhance the cyber-security risk 

capacity and emergency response. This kind of stand index is 

usually applied to mobility services (e.g. car sharing platforms) 

and online transport transaction systems (e.g. train booking 

systems, automatic car park management systems). 

The index of the geospatial security control refers to the 

definition and stipulation of requirements for data transmissions 

across public infrastructures and transport entities. This index 

is applied to evaluate the multi-dimensional decision-making 

system for traffic control and transportation resource 

distribution for the purpose of constructing public security 

surveillance systems. In Beijing, the large-scale deployment of 

IoT networks through which public infrastructures are 

coalesced further enhance the efficacy of traffic surveillance 

and detection systems, travel recommendation systems, and 

automated license plate readers, by the embedding of 5G-

enabled sensor technologies. 

In terms of data standards, GB/T 33356-2016 normalizes the 

coding structure of smart city data identifiers and clearly 

defines the rules of coding. This usually starts from data fusion 

practices. This allows Beijing’s transportation departments to 

grant each data resource with a unique and non-changeable 

coding identifier for promoting the integration of data coming 

from different sites. This standard index is particularly crucial 

to the second-layer of the proposed architecture. This means 

that the coding process, identifiers and structure of data 

transmitting through 5G-enabled remote communication 

networks, ought to be legally standardized nationwide for 

universal access to data sources. 

B. 5G-enabled base stations coverage and metro convenience 

index 

The proposed 5G-enabled remote communication network of 

the STSS architecture is relied on the distribution of base 

stations that are supported by 5G communications and multi-

antenna technologies. Figure 2 demonstrates an example of the 

coverage of the simulative 5G-enabled base stations within the 

scale of the sixth ring road in Beijing. This coverage is 

calculated by our GIS analysis on the basis of the DEM (Digital 

Elevation Model) – a 3D representation of a terrain’s surface 

referenced by three-value coordinates (x, y and z) with the 

record of the elevation of every single pixel. The base station 

coverage is simulated by setting default parameters – the height 

of the base stations (default: 60m) and the distance of 5G 

signals (default: 1km). The white areas in the figure 

demonstrate geographic areas without 5G coverage. As the 

figure shows, the areas closer to the central Beijing are covered 

with more 5G signals. Modelling this coverage, on the one hand, 

will allow evaluation concerning how 5G would influence the 

commuting capacity of the traffic network, which further 

indicates the extent of security. On the other hand, it 

necessitates the analysis of sensor-enabled public 

infrastructures (e.g. medical services and gas stations) that 

transmit 5G signals between transport entities and themselves, 

which will be demonstrated in the next section. Our analytical 

process highlights that both the traffic network data for the 

former and the infrastructural data for the latter, are crucial to 

be integrated with the base station coverage in order to better 

identify security concerns. 

 
Fig. 2. Base station coverage within the sixth Ring of Beijing 

Indeed, the analysis of the Beijing’s base station coverage 

helps to evaluate the commuting capacity of traffic networks 

via D2D. For example, 5G data transmissions between traffic 

dashboards and traffic control rooms can provide users with 

just-in-time traffic information via smartphone apps or route 

guidance screens. Yet, it is also vital to timely indicate the size 

of everyday commuting across hundreds of public transport 

stations. This is especially useful to quickly respond to 

incidents occurring at various stations at the same time. 

Therefore, it is necessary to deploy 5G-enabled sensor networks 

to myriad public transports, with constantly generated signals 

being uploaded to the traffic control room. Amongst many 

types of public transports, we focus on metro stations, and claim 

that the extent to which metro station resources are arranged 

and distributed have an impact on the metro convenience index 

(Figure 3). 

According to the figure, the higher the index is 

(approximating ‘1’), the more convenient the overall effect of 

commuting will be (approximating red areas). Apparently, the 

factors that determine the convenience index include the total 

transfer distance measured in time and the total times of line 

switching. And such factors further reflect the metro network 

structure and the location of the target point in the metro 

network. Metro stations located in the red areas require 

intensive deployment of 5G sensors and transponders in order 

to fulfill instant messaging via mobile devices and real-time 

interactions between mobile devices and metro infrastructures. 

Thus, given the security concern, convenience index suggests a 

reciprocal relationship between commuters and the metro 

system. High capacity of 5G communications will lead to high 

convenience index, thereby reducing the probability of 
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unintended consequences regarding safety and security, and 

vice versa. 

 
Fig. 3. Metro convenience index within the sixth Ring of Beijing 

C. Public infrastructural data and geospatial factors 

Our data modelling of the third layer of the proposed 

architecture is divided into two parts: public infrastructural data 

modelling and geospatial data modelling. Similar to calculating 

the base station coverage, the DEM analysis is used to model 

all data types involved in this layer. We argue that both public 

infrastructural and geospatial datasets are considered useful to 

precautionary decision-making so as to facilitate the security of 

the STS. 

1) Public infrastructural data modelling 

Public infrastructural data modelling suggests the 

relationship between the IoT network and public infrastructures 

that support just-in-time communications via 5G. This also 

indicates the extent of geospatial security in the physical term. 

Here, we focus on medical services (e.g. hospitals, clinics, 

pharmacies) and gas stations as essential public infrastructures 

that help to remedy security concerns. Medical services play an 

important role in medical treatments in emergency, e.g. traffic 

accidences, whilst gas stations are critical in supporting smooth 

commuting. Similar to the base station coverage, the DEM 

analysis set certain threshold value (e.g. within 3km) to analyze 

the geographic scope of these two services. 

Moreover, these general infrastructures embedded with the 

IoT network will enable real-time information sharing with 

transport agents. Realistically, it is unlikely to have 5G in every 

single medical service and gas station. Take medical services 

for example, 5G technology has gained traction amongst 

healthcare practitioners to facilitate diagnosis. But it is 

necessary more to those with high quality services and making 

use of large-scale mobile health systems and health monitoring 

systems, such as wearable devices, smart ambulances, and so 

on, in order for seamless connection between patients and 

medical service crew [32][33]. This means that those services 

in high demand for 5G would, on the one hand, need to be 

entitled with standard and authoritarian service capabilities. 

Those less qualified, on the one hand, need to overhaul the 

telecommunication system in order to realize data sharing 

across the entire urban healthcare system, and taking a further 

step, data integration. 

We use vector point data to model the distribution of both 

medical services and gas stations, as shown in Figure 4 and 5. 

The figures show that there are 8239 points of medical services 

and 592 gas stations within the area of the sixth ring road of 

Beijing. When building the 5G network, it is necessary for 

decision-makers and practitioners to not only pay attention to 

the density of service points (the figures as reference), but also 

to examine the qualification of 5G arrangements for each 

service point. For those located between the Fourth and Sixth 

Ring would need to ensure seamless communications with 

those inside of the Fourth Ring (closer to the central Beijing). 

Critical precautionary decisions need to be made in due course. 

 
Fig. 4. Medical services distribution within the sixth Ring of Beijing 

 
Fig. 5. Gas station distribution within the sixth Ring of Beijing 

2) Geospatial data modelling 

Geospatial data reflect how different types of geospatial 

factors impose external and indirect influence on the STSS from 



the geospatial point of view, including wind shelter index, 

topographic wetness index and surface subsidence, which are 

modelled through DEM. All of these types of data are 

considered as frames of reference for practitioners to make 

precautionary decisions for smart transportation security. 

Topographic wetness index. Our DEM data sets derive the 

second order parameters of slope, aspect and general curvature, 

and the computation of these parameters alongside precipitation 

data further derive topographic wetness index (TWI). The 

precipitation data indicate predicted volume of rainfall over a 

certain timespan in a particular locale. This data set is gathered 

from ERA-interim [34]. TWI is a measurable indicator that is 

used to estimate the extent to which unconsolidated, permeable 

materials above impermeable bedrocks, are saturated. It is 

impacted by the precipitation dynamics and it considers 

hydraulic conductivity to be constant in a soil mantle overlying 

relatively impermeable bedrock, such as urban highways [35]. 

Figure 6 presents an example of the spatial-temporal variance 

of precipitation in Beijing around July 21, 2012 (from July 16 

to July 26), during which period a destructive rainstorm 

occurred. An animated GIF image corresponding to Figure 6 is 

provided in the supplementary file. This figure indicates that the 

water precipitation (whether in liquid or solid phase) is usually 

a short-term phenomenon. However when it happens, the 

magnitude could be remarkable, causing waterlogging in 

bottomland and threatening the transportation security. IoT 

networks in which sensors are installed to detect rainfalls and 

runoff changes, are used to indicate overall TWI parameters. 

This indication of dynamic TWI can be used to deploy the urban 

drainage systems alike which make direct influence upon road 

capacities under the waterlogging circumstances. 

Wind shelter index. The three second order parameters of 

DEM data are also used to parameterize the effects of the wind 

shelter index (WSI) of Beijing’s terrain through terrain analysis. 

This indicates the impact of wind in the transportation system. 

The areas with high value of WSI are exposed to wind, whilst 

those with low value are wind-shadowed. This means that the 

areas with low WSI value may lead to subsequent issues with 

low visibility, especially under snowy weather conditions. This 

can further impact urban mobility, resulting in traffic 

congestions or even accidents. 

Figure 7 shows the dynamic schema of 10-meter meridional 

wind and 10-meter zonal wind in Beijing around July 21, 2012 

(from July 16 to July 26), during which period a destructive 

rainstorm occurred. An animated GIF image corresponding to 

Figure 7 is provided in the supplementary file. This figure 

indicates that the wind speed and direction frequently changed 

over time. High speed wind in a specific direction may have 

notable influence on safety when people drive on the road, 

especially on highways. In Beijing, many roads are equipped 

with magnetometer sensors and ultrasonic sensors which are 

used to detect road capacity and environmental conditions. 

Alongside the use of remote sensing [36], data gathered from 

various sites through IoT networks that indicate WSI are fed 

back to the control center for traffic control decision-making. 

WSI, thus, can be used to analyze the potential of wind in 

influencing the transportation security at specific localities. 

 

 
Fig. 6. Dynamic schema of precipitation in Beijing from July 16, 2012 to July 26, 2012 (two images per day at 3:00 and 15:00 UTC) 
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Fig. 7. Dynamic schema of 10-meter meridional wind and 10-meter zonal wind in Beijing from July 16, 2012 to July 26, 2012 (two images per day at 3:00 and 
15:00 UTC) 

Surface subsidence. Surface subsidence is another type of 

indicator that makes indirect influence at the geospatial level of 

the STSS. It refers to a phenomenon that the elevation of the 

earth’s surface at a particular location decreases continually in 

a certain period of time, which takes place in all over the world, 

including Beijing [37]. This indicator is calculated by 

subtracting DEM data in one timespan to that in another. 

Surface subsidence data are crucial for transportation facilities 

with high geospatial requirements, such as metro lines. For 

example, if the surface subsidence speed is fast in the area 

where metros pass through, the track lines will be deformed 

after a while, which may lead to tunnel wall rupture and train 

derailment. The cause of this is multi-fold, but taking Beijing 

as an example, this is resulted by long-term over-exploitation 

of groundwater resources [38]. Our GIS analysis shows that the 

subsidence rate in the east and north of Beijing is substantially 

higher than that in other areas; the groundwater in these areas is 

overexploited. More specifically, Figure 8 shows the surface 

subsidence map of the region within the sixth Ring. It clearly 

demonstrates that point B is of the highest value of subsidence 

(-155.86 mm/year) in comparison with the point A and B, with 

value of 1.94 mm/year and -44.52 mm/year respectively. When 

it comes to IoT, surface subsidence exerts impact on 

underground transport systems more than other types as IoT 

networks are usually deployed underneath the surface; it is 

therefore impacted by surface subsidence. We suggest urban 

planning officials to pay more attention to the areas like B when 

IoT networks are deployed to the underground transport 

systems located in these areas. 

 
Fig. 8. Surface subsidence within the sixth Ring of Beijing 

IV. DISCUSSION OF THE HETEROGENOUS SECURITY SYSTEM 

Despite the fact that IoT is ultraefficient, the contemporary 

smart city is meanwhile confronting wicked issues of unstable 

and insecure data transmissions and vulnerability of overall 

transport systems. One of the causes of these issues is that data 

from different sites are not unified and standardized in terms of 

data format, structure, and attributes [39]. Government officials 

would need to embrace the top-level design vison to carefully 

mobilize urban transport resources in order to shape a more 

secure control environment, specifying the standard system and 

strategic management and control of unintended consequences 

of standardization. 

Citizens qua users interact with STS service through mobile 



devices and various means of transport. Therefore, a 

standardized IoT network with 5G coverage is of upmost 

importance to industrial players who actually design and 

implement sensors, transponders, smart cards, and so on. The 

modelled 5G base station coverage and metro convenience 

index are useful indicators to make critical decisions of the 

extent to which a particular type of transport at a particular 

locale is equipped with IoT networks. For example, 5G 

facilities should be embedded more into public transports with 

high population density. Rather than taking post-event 

measures, practitioners should pre-empt to give priority to these 

places with respect to resource allocation for emergency 

response if incidents happen. 

On a more macro level, public infrastructural designs and 

geospatial impacts impose indirect influence on security 

management. Instead of considering public services as separate 

to transportation, it is crucial to leverage 5G networks to 

connect them together for the purpose of instantaneous and 

simultaneous problem-solving for emergencies under various 

circumstances, such as medical services for road collisions and 

injuries, gas station services for vehicles with problems on the 

road. Furthermore, the study makes special contribution to IoT-

enabled STSS by simulating a set of geospatial indicators which, 

from different spatial-temporal dimensions, support master 

planning of IoT networks in facilitating the running of STSS. 

V. CONCLUSION 

The proposed STSS architecture is supposed to address 

security concerns that many smart transportation innovations 

are currently facing. It is advantageous in combining the cyber-

physical system deployed in overall IoT network and a set of 

geospatial impacts, rather than simply overstating the speed and 

volume of big data transmissions across IoT networks [40][41]. 

It is identified as a heterogenous system that provides a guide 

for smart transportation practitioners to consider strategic 

management of security and implementation of IoT-enabled 

STS. However, the proposed architecture on its own also has 

limitations. IoT networks in cities are not simply seen as 

technical systems that rely on computation, algorithms and 

simulation, but instead are socio-technical assemblages that 

require legitimate and social interventions for the purpose of 

examining its feasibility and applicability in different urban 

contexts. 
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