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Evidence-driven decision making in smart specialisation strategies: A 

patent-based approach for discovering regional technological capabilities 
 

Abstract   

Discovering regional technological capabilities is key to underpinning the place-based and 

evidence-driven logic of smart specialisation. However, a comprehensive methodological 

approach for operationalizing the mapping, assessment, and benchmarking of regional 

technological knowledge is urgently required. To address this need, we design and test a patent-

based methodology, which helps to profile technological domains in EU regions, detects 

technological competitive advantages and opportunities for knowledge recombination, 

assesses selected S3 priorities against regional innovation performance measures, and conducts 

benchmarking activities. This study lays the foundation for tailoring a digital application, to 

complement the suite of online services for S3 development currently available. 
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1. Introduction 

 

The analysis of emergent technological sectors is a key activity underpinning the place-based 

and evidence-driven logic of the smart specialisation approach (Correa and Güçeri, 2016; 

Vezzani et al., 2017). Technological analysis allows regional and national governments to 

profile their technological competences, detect priority areas of investment, and support the 

knowledge discovery process that Research and Innovation Strategies for Smart Specialisation 

(RIS3) advocate for. It also allows them to conduct benchmarking exercises and establish 

evidence-informed collaborative partnerships (Foray, 2014; Piirainen et al., 2017). However, 

in spite of the relevance of and urgent need for a comprehensive methodological approach for 

operationalising the mapping, assessment, and benchmarking of technological knowledge at 

the regional level, regional studies literature investigating this matter has been relatively scant, 

with a few notable exceptions (Ciffolilli and Muscio, 2018; D’Adda et al., 2019; Komninos et 

al., 2018a). 

We contribute to addressing this research gap by designing and testing a methodology for 

discovering regional technological capabilities, whose implementation can assist in developing 
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the evidence base required to inform smart specialisation strategy (S3) formulation. This 

methodology leverages patent data and patent-based indicators to assist in: profiling 

technological domains in EU regions; assembling a graphical representation of these profiles; 

detecting competitive advantages and potential opportunities for knowledge recombination; 

assessing the alignment between selected S3 priorities and regional innovation performance 

measures; and supporting cross-regional benchmarking activities. 

In this study, we assemble the proposed methodology and test its practical feasibility, 

effectiveness, and operability by deploying four EU regions registered in the S3 Platform as 

testbeds. South-West Oltenia (Romania), Lombardy (Italy), the Walloon Region (Belgium), 

and Central Jutland (Denmark) are the regions selected for conducting this pilot study, which 

begins with the collection of patent data. A database is built, which collates all data on patents 

developed by inventors residing in the four pilot regions, whose application date falls between 

2014 and 2019. This data is sourced from the United States Patent and Trademark Office 

(USPTO) database. A set of key indicators used in patent analysis are then applied to profile 

technological capabilities. These indicators inform on the knowledge stock embedded in EU 

regions. Additionally, patent-based indicators are also used to assess the alignment between 

selected S3 priorities and the actual regional innovation performance. 

The paper adopts the following structure. The following section exposes the significance of 

outlining technological capabilities in the RIS3 context and the role that our methodology can 

play in tackling the design and implementation issues affecting S3 practice. The third section 

of the paper introduces such a methodology, whose functionality is subsequently tested in the 

fourth section. The last section of the paper expands on the theoretical and practical 

implications of this study and details its limitations. 

 

2. Literature review 

 

Strategies for smart specialisation represent prioritisation agendas for supporting regional 

innovation policy development and result from the connection between non-spatial innovation 

policy debate and the European Cohesion Policy (McCann and Ortega-Argilés, 2013). The 

paradigm shift underpinning S3 lies in the combination between a place-based approach to 

regional innovation paths, which “strongly depend on territorial elements rooted in the local 

society, its history, its culture, and its typical learning processes” (Camagni et al., 2014: 72), 

and a policy-prioritisation logic that “explicitly avoids automatically prioritizing high-
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technology sectors by taking a broader systems perspective” (McCann and Ortega-Argilés, 

2015: 1293). 

The smart specialisation approach demonstrates the commitment of the European Commission 

towards constantly enhancing the procedure for programming and allocating Structural Funds. 

This upgrade is premised on the benefits of adopting a prioritisation logic that builds on the 

evidence-based potential for research and innovation excellence in EU regions. Strategies for 

smart specialisation promise improved regional innovation processes, yet this policymaking 

approach has struggled to deliver on the expectations. The limited methodological guidance 

offered by the European Commission on how S3 should be crafted (Foray et al., 2012; Gianelle 

et al., 2016), has left regional governments deprived of their power to act with confidence, 

undermining the capability of the smart specialisation process to lay the foundations for a 

European economic renewal (Boschma and Gianelle, 2014). 

Without methodological advice, instead of bringing competitive advantage in an uncertain 

competitive landscape, policymaking in smart specialisation runs the risk of being tangled in 

one-size-fits-all policy discourses (Balland et al., 2019) or meeting public and private interests 

that are not necessarily linked to regional potential for innovation (Fotakis et al., 2014). This 

danger has triggered the reaction of academic institutions and research organisations operating 

in the RIS3 domain, whose research efforts have been instrumental in producing an initial set 

of supporting tools for S3 design and implementation. Most of these tools can be found in the 

S3 Platform (Kleibrink et al., 2014; McCann and Ortega-Argilés, 2016; Sörvik and Kleibrink, 

2016) coordinated by the European Union's Joint Research Center, and the platform Online S3 

(Komninos et al., 2018b), which has been assembled in the framework of a recently completed 

Horizon 2020 project. 

In alignment with the RIS3 Guide (Foray et al., 2012), Online S3 breaks the formulation of 

smart specialisation policy statements in six complementary phases and provides a set of semi-

automated digital services for knowledge-based policy development. The platform hosts 29 

applications, which tap into a rich open-data environment and help regional and national 

European governments to: create synergies among RIS3 stakeholders; build cohesive 

governance systems stimulating collaborative leadership; analyse regional contexts to 

determine the potential for diversification and recombination; formulate shared visions of what 

future development paths should be pursued; select the mix of research and innovation 

priorities that can boost regional competitive advantage; design action plans for RIS3 
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implementation; monitor the progress, evaluate the results, and refine the existing strategy to 

increase performance (Komninos et al., 2018a; Komninos et al., 2018b). 

As Foray (2019: 2074) notes, the main characteristic of S3 formulation is “the combination 

between a planning logic and an entrepreneurial discovery logic”, which respectively 

represent the top-down and bottom-up components of the S3 policy process. After completing 

the planning phase, which is expected to end with the selection of specific research and 

innovation priority areas, S3 development should continue with an ongoing Entrepreneurial 

Discovery Process (EDP). Interactive and inclusive bottom-up conversations among RIS3 

stakeholders are conducted, to determine what collection of projects should be implemented to 

transform the selected priorities into regional competitive advantage (Santini et al., 2016). 

Diversification, relatedness, recombination, and knowledge complexity are the critical factors 

underpinning the EDP cycle (Crespo et al., 2017). Research has shown that regional economic 

renewal requires working towards reinforcing regional growth paths that build on 

diversification opportunities connected to new and more complex technological specialisation 

domains (Balland et al., 2019). This requires embracing a knowledge recombination approach 

(Griffith et al., 2017; Weitzman, 1998); the development paths of regional economies relate to 

local technological capabilities (Storper, 1995), and effective RIS3 are expected to profile such 

capabilities, evaluate their degree of relatedness, and recombine them in more complex 

knowledge-based settings that can forge competitive advantages (Boschma and Gianelle, 

2014). 

The RIS3 guide (Foray et al., 2012) and implementation handbook (Gianelle et al., 2016) 

released by the European Commission both advocate the importance of profiling technology-

related competitive advantages in EU regions to increase S3 effectiveness, but they fall short 

of providing clear guidance on how to fulfil this exercise (Griniece et al., 2017; Iacobucci and 

Guzzini, 2016). Review of available S3 research reveals that, very few studies have attempted 

to overcome the lack of theoretically sound methodologies and supporting tools for guiding the 

selection and assessment of S3 priorities in light of existing regional technological 

competences (Balland et al., 2019; D’Adda et al., 2019; Santoalha, 2019). As a result, EU 

regions still need to be supported regarding this dilemma (Balland et al., 2019).  

A research stream has developed which suggests that related variety measures at the industry 

level are useful instruments for evaluating regional diversification and specialisation (Frenken 

et al., 2007; Van Oort et al., 2015). However, since these measures are focused on industry 

classification codes, they can capture commonalities across different industries but fail to map 
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relevant technological development paths within regional territories. Other indicators to assess 

regional diversification, which are based on commonalities between sectors, such as the cross-

industry labour flows (Neffke and Henning, 2013), suffer from the same disadvantage.  

Considering this gap and building on the aforementioned S3 literature, we suggest studying 

regional technological capabilities by adopting patent-based measures. Despite some 

limitations1, patent-based measures have proven accurate in discovering regional patterns of 

technological evolution (Ardito et al., 2018; Lee and Lee, 2013) and assessing selected S3 

priorities by analysing the actual output of innovative activities embedded in regional territories 

(D’Adda et al., 2019; Santoalha, 2019). This capability is evidenced in studies examining S3 

development by means of patent analysis. However, methodological approaches for outlining 

and analysing the technological profile of regions have yet to be assembled. For example, 

patent data has been used to proxy the technological capabilities of regions and support 

foresight (Piirainen et al., 2017). In addition, some initial attempts have been made to leverage 

patent data to verify whether the strategies for smart specialisation which EU regions have 

designed, are in alignment with their innovative capabilities (Balland et al., 2019; D’Adda et 

al., 2019; Santoalha, 2019). Of particular interest is the recent work by D’Adda et al. (2019), 

which leverages patent data to assess the coherence between the technological domains 

selected by Italian regions in the S3 formulation process and their technological capabilities. 

This research activity represents a seminal contribution to the patent-based methodology that 

we propose for discovering regional technological capabilities.  

 

3. Data and methodology 

 

In light of the current knowledge gap and the possibilities that patent-based indicators offer to 

informed strategy formulation in smart specialisation development (Capello and Kroll, 2016; 

Fischer et al., 2019), a three-stage methodology was assembled, which allowed the researchers 

to profile the technological capabilities of EU regions, helped to detect opportunities for 

enhancing regional competitive advantage by means of knowledge recombination initiatives, 

and inform the selection of S3 priorities.  

 

 
1 Some technological developments may be overlooked because not all inventions are patented (Zuniga et al., 2009). 

Additionally, there is some time-lag between the R&D effort and the subsequent patent application, which may limit the 

timeliness of the measures (Kondo, 1999). Finally, different propensities to patent may characterise distinct technological 

sectors and geographical areas (Albino et al., 2014), but this can be mitigated by using relative measures. 
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3.1. Stage 1: Patent data collection 

 

The analysis begins with a data collection phase. Our methodology leverages patent indicators 

to detect and analyse regional technological trends (Jacobsson and Philipson, 1996; Rocchetta 

and Mina, 2019). Patents and their International Patent Classification (IPC) system represent a 

rich data source for examining innovation processes and technological evolution (Jaffe and 

Trajtenberg, 2002) within countries and regions (Iversen, 2000). Patent data can be sourced 

from a number of databases; however, when the objective is to determine regional 

technological capabilities, we recommend adopting the USPTO database. Unlike other patent 

offices, USPTO provides very clear and detailed information about the geographic location of 

the inventor, making it possible to easily search for, extract, and analyse patented technologies 

developed in EU regions, with the highest level of granularity. Additionally, USPTO clearly 

indicates backward and forward patent citations, which are paramount to apply the proposed 

methodology. The USPTO database is also one of the world’s largest repositories of patent 

documents and has the highest resident to non-resident ratio of applications (Kim and Lee, 

2015). These features suggest that this database is particularly effective for performing 

comprehensive cross-region analyses of technological capabilities.  

 

3.2. Stage 2: Technological profiles 

 

After collecting the necessary patent data, the technology-related competitive advantages of 

EU regions and their potential opportunities for knowledge recombination can be examined. 

The following set of indicators is assembled to build regional technological profiles, that can 

be easily visualised and compared using graphical methods. These indicators are based on 

patent data and are considered the most suitable for tracing regional technological capabilities. 

They were selected based on insight offered by available literature on patent-portfolio analyses 

(Ernst, 2003; Jaffe and Trajtenberg, 2002) and regional-level patent-based analyses (Iversen, 

2000; Jacobsson and Philipson, 1996; Kogler et al., 2017). These indicators help capture the 

existing technological knowledge base of EU regions and produce the insight needed to inform 

the S3 priority selection process, ensuring that S3 development truly embraces a location-based 

perspective (Camagni et al., 2014). This methodology strengthens the idea that strategies for 

smart specialisation are not one-size-fits-all policies for regional growth, and differences in 

technological knowledge should be reflected in the selection of S3 priorities (Foray, 2019). 
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Accordingly, defining regional technological profiles and examining technological relatedness 

is crucial in guiding S3 development. 

The first indicator we propose uncovers the linkages between patented technologies and 

scientific knowledge (SciKnowledge). This connection is evaluated by relying on the non-

patent backward citations, as listed in the focal region’s patents. These citations represent the 

scientific knowledge leveraged in the patent development process (Callaert et al., 2006). 

Therefore, SciKnowledge for a specific region is calculated as: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
∑ 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑗𝑗𝑗𝑗

𝑡𝑡𝑃𝑃𝑃𝑃
 

 

where PAT denotes the total number of patents associated with the selected region, whereas 

WeightedNPCitationsj represents the weighted number of non-patent backward citations of the 

j-th patent related to such a region. Following the method proposed by Hall et al. (2001), we 

suggest creating cohorts of patents which aggregate USPTO-registered European patents, 

showing identical main IPC technological class and application year. The average number of 

non-patent backward citations is calculated for each cohort, and the WeightedNPCitationsj is 

computed as the ratio between the number of non-patent backward citations of the j-th patent 

and the average value of its cohort. This approach makes it possible to obtain comparable 

measures, which allow for cross-year comparison and where regional economic diversification 

is properly taken into account. 

An informative technological profile needs to show the extent of the pioneering nature of the 

technology developed (Pioneering) (Nerkar and Shane, 2007). Pioneering technologies 

significantly diverge from current technological solutions and may suggest a shift in 

technological progress, by creating new innovation pathways (Ahuja and Morris Lampert, 

2001). We measure Pioneering as the average number of backward citations of a region’s 

patents: 

 

𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 =  
∑ 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑗𝑗𝑗𝑗

𝑡𝑡𝑃𝑃𝑃𝑃
 

 

where WeightedBackwCitj denotes the weighted number of backward citations of the j-th patent 

belonging to the selected region — calculated by adopting the cohort method proposed by Hall 

et al. (2001). It should be noted that this indicator is inversely coded (Nerkar and Shane, 2007); 
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hence, a high value of the indicator suggests that regional technologies are strongly linked to 

previous technological solutions. 

Moreover, we propose to evaluate the technological impact of a region’s patents by using 

TechImpact. To measure this indicator, we use the forward citations received by the focal 

patents, which are largely recognised in the scientific literature as being related to the extent of 

technological progress spurred from such patents (e.g. Trajtenberg, 1990). Considering that 

forward citations are influenced by the time elapsed since a patent had been first disclosed 

(Hall et al., 2001), the weighted forward citations received annually by each patent since its 

application, should be averaged by the number of patents belonging to a specific region. This 

mathematical calculation is described in the following formula: 

 

𝑃𝑃𝑆𝑆𝑆𝑆ℎ𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑆𝑆𝑡𝑡 =  
∑ 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑃𝑃𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑗𝑗𝑗𝑗

𝑡𝑡𝑃𝑃𝑃𝑃
 

 

where WeightedForwCitj denotes the number of forward citations received by the j-th patent 

referring to a region — weighted using the cohort method by Hall et al. (2001) — from the 

date of the j-th patent application to the retrieval of its forward patents from the selected 

database. In this way, we take into account the truncation of forward patent citations, which is 

caused by the presence of patents applied for in different years (Hall et al., 2001). 

In our methodology, we also consider the degree of generality of the technologies developed 

in a region, which describes their suitability for application in multiple domains and potential 

technology development in different industrial sectors (Bresnahan and Trajtenberg, 1995). The 

value of technological generality (TechGenerality) is calculated by applying the measure 

defined by Hall et al. (2001), which is based on the Herfindahl-Hirschman index (HHI). 

However, in this case, the unit of analysis is a region, rather than a single patent. Additionally, 

to avoid bias in the analysis of regions characterised by a low number of forward citations, the 

correction factor suggested by Hall (2005) is adopted. Accordingly, we measured technological 

generality as: 

 

𝑃𝑃𝑆𝑆𝑆𝑆ℎ𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝐺𝐺 =
𝑡𝑡𝑆𝑆𝑃𝑃𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡

𝑡𝑡𝑆𝑆𝑃𝑃𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡 − 1
�1 −� �

𝑡𝑡𝑆𝑆𝑃𝑃𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑘𝑘
𝑡𝑡𝑆𝑆𝑃𝑃𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡

�
2

𝑘𝑘
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where ForwCit denotes the overall number of forward citations received from a region’s 

patents and ForwCitk denotes the number of forward citations received by the patents of the 

region in the k-th IPC technological class2.  

Technological generality measures are complemented with an indicator focused on the search 

breadth (SearchBreadth), which is based on the patents’ backward citations. This indicator is 

used to evaluate the breadth of the range of domains that inventors leveraged to develop the 

focal technologies and is based on the HHI of the backward citations’ technological classes 

(Hall et al., 2001), including a correction factor to avoid bias, due to the presumably low 

number of backward citations (Hall, 2005). SearchBreadth is measured as follows: 

 

𝑆𝑆𝑆𝑆𝑡𝑡𝑃𝑃𝑆𝑆ℎ𝑡𝑡𝑃𝑃𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡ℎ =
𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡

𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡 − 1
�1 −� �

𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑘𝑘
𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡

�
2

𝑘𝑘
� 

 

where BackwCit represents the overall number of backward citations made by the patents of a 

region and BackwCitk denotes the number of backward citations made by the same patents in 

the k-th IPC technological class3. 

The following indicator (TechDiv) defines the range of technical areas where a region has 

technological competences (Granstrand and Oskarsson, 1994). This measure uses the HHI of 

the technological classes of the focal patents (Garcia-Vega, 2006; Natalicchio et al., 2017): 

 

𝑃𝑃𝑆𝑆𝑆𝑆ℎ𝐷𝐷𝑆𝑆𝐷𝐷 = 1 −  � �
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘

𝑡𝑡𝑃𝑃𝑃𝑃
�
2

𝑘𝑘
 

 

where PatClassk denotes the number of patents belonging to a region and reporting the k-th 

IPC technological class.  

To detect potential opportunities for knowledge recombination, we recommend calculating the 

average technological relatedness (AverageTechRel) with the approach proposed by Kogler et 

al. (2017): 

 

𝑃𝑃𝐷𝐷𝑆𝑆𝑃𝑃𝑡𝑡𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆ℎ𝑅𝑅𝑆𝑆𝑆𝑆 =
∑ ∑ 𝑆𝑆𝑖𝑖𝑗𝑗 ∗ (𝑡𝑡𝑖𝑖 ∗ 𝑡𝑡𝑗𝑗) + ∑ 2𝑡𝑡𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖

𝑡𝑡 ∗ (𝑡𝑡 − 1)
, 𝑓𝑓𝑆𝑆𝑃𝑃 𝑆𝑆 ≠ 𝑗𝑗 

 
2 For TechGenerality and the following three indicators, the first four digits of the IPC technological classes were used. 
3 For TechGenerality and SearchBreadth, we did not weigh the forward and backward citations, respectively, because this 

action could introduce bias in the information offered by both indicators. 



 
10 

 

 

Considering a specific time period, Ni and Nj represent the numbers of patents that a region has 

applied for in the i-th and j-th IPC technological classes, respectively, and P denotes the total 

number of patents that a region has applied for. Finally, Sij denotes the technological proximity 

(also referred to as knowledge relatedness) between the i-th and j-th IPC technological classes, 

which is measured as: 

 

𝑆𝑆𝑖𝑖𝑗𝑗 =
𝑡𝑡𝑖𝑖𝑗𝑗

�𝑡𝑡𝑖𝑖 ∗ 𝑡𝑡𝑗𝑗
 

 

where Nij represents the number of patents applied by a region and jointly related to both the i-

th and the j-th IPC technological classes for the selected time frame.  

It is important to highlight that the average technological relatedness should be calculated for 

the whole technological portfolio of a region. A high AverageTechRel value indicates relative 

specialisation; the technological knowledge production of a region is characterised by a limited 

co-occurrence of different IPC classes. On the contrary, a low value suggests a higher 

diversification, because the technological knowledge developed by a region covers a higher 

number of different couples of IPC technological classes (Kogler et al., 2017). 

 

3.3. Stage 3: S3 priorities assessment  

 

After building the technological profile of a region, the alignment between its S3 priorities and 

actual regional innovation performance can be assessed, generating opportunities for cross-

regional benchmarking. This activity requires matching the IPC technological classes with the 

regional S3 priorities, as encoded in the Eye@RIS3 tool. For each S3 priority, a group of 

keywords describing the main technological field should be selected and used to identify the 

most closely related technological classes from the IPC database. This identification process, 

especially for complex and multifaceted S3 priorities, may require the participation of patent 

experts to define the keywords associated with the priorities and find a match with the IPC 

technological classes (Noailly and Batrakova, 2010). However, existing classification systems 

matching IPC technological classes with specific technological fields can also be exploited, 

such as the IPC Green Inventory (Albino et al., 2014) or the “J tag” developed by the OECD 

to classify information and communication technologies (Inaba and Squicciarini, 2017).  
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The first indicator we recommend for calculation is the overall number of assigned patents for 

the i-th S3 priority (PATi), on the basis of the identified technological classes. This value helps 

evaluate the development of technological knowledge related to a S3 priority in absolute terms 

and assess its overall importance for the region. Moreover, this data supports the benchmarking 

process, by avoiding biased interpretations due to sensitive differences in the number of patents 

assigned to a specific priority. 

Afterwards, we propose to measure the focalisation of a region on the i-th S3 priority 

(PriorityIntensityi) by calculating the ratio between PATi and the overall number of patents 

developed in the same region (PAT):  

 

𝑡𝑡𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑡𝑡𝐺𝐺𝐼𝐼𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝐺𝐺𝑖𝑖 =
𝑡𝑡𝑃𝑃𝑃𝑃𝑖𝑖
𝑡𝑡𝑃𝑃𝑃𝑃

 

 

This indicator allows specialisation to be evaluated in relative terms at the regional level, and 

it highlights the importance of the S3 priorities for any selected region (Ernst, 2003).  

Alongside this indicator, to provide a more comprehensive picture, the Relative Technological 

Advantage (RTA) is calculated. The RTA is based on the Balassa Index (Balassa, 1963), which 

captures the degree of specialisation for a region in a defined technological field. This measure 

can be easily compared among regions (e.g. EU regions registered in the S3 platform) 

(Debackere et al., 1999). The RTA shows whether a region has a technological advantage in a 

specific field, with respect to the average specialisation of all the regions operating in such a 

technological field. Accordingly, the RTA for a region in the i-th S3 priority (RTAi) is 

calculated as follows: 

 

𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖 =  
�𝑡𝑡𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑃𝑃𝑃𝑃�

�𝑂𝑂𝐷𝐷𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑖𝑖𝑂𝑂𝐷𝐷𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃�
 

 

where OvrPATi is the overall number of patents of all the regions included in the analysis and 

referring to the i-th S3 priority, and OvrPAT is the overall number of patents of the same 

regions. Furthermore, since RTA is strongly asymmetrical, we normalise the indicator for a 

region in the i-th priority (RSTAi) as it follows (Dalum et al., 1998): 
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𝑅𝑅𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖 =
𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖 − 1
𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖 + 1

 

 

A value of RSTAi higher than 0 represents a strong position in the i-th technological field, while 

a value lower than 0 indicates a weak position (Dalum et al., 1998; D’Adda et al., 2019). 

 

4. Results of the pilot study 

 

A pilot study was conducted to illustrate the practical feasibility and effectiveness of the 

proposed methodology. Four pilot EU regions were selected from the S3 Platform (see Table 

1). During the selection process, two main criteria were considered. Firstly, to test whether 

differences in innovation performance affect the functioning of the proposed methodology, the 

selected regions belong to countries with different innovation performances (see Balland et al., 

2019). The information required to assess the innovation performance was sourced from the 

European Innovation Scoreboard (EIS), where regions are clustered in four categories 

(Hollanders et al., 2019). We selected a pilot region from each category. Secondly, regions 

with similar S3 priorities — as encoded in the Eye@RIS3 tool — were preferred, enabling 

benchmarking to form a component of the study. Accordingly, South-West Oltenia (Romania), 

Lombardy (Italy), the Walloon Region (Belgium), and Central Jutland (Denmark) were 

selected as pilot regions. 

 
 South-West Oltenia Lombardy Walloon Region Central Jutland 
 Romania Italy Belgium Denmark 
Size (Km2) 29,211.7 23,862.8 16,903.0 13,000.2 
Population 2,220,224 9,992,548 3,603,439 1,266,682 
National GDP (%) 8.03 21.31 23.40 20.64 
Regional GERD4 
(%) 0.19 1.27 2.91 1.19 

Analysed S3 
priorities 

Agriculture and Food 
Production; 

Energy and Climate 

Agriculture and 
Food Production; 
Aeronautics and 

Space 

Agriculture and 
Food Production; 
Aeronautics and 

Space 

Agriculture and 
Food Production; 

Energy and 
Climate 

Overall number of 
patents collected 
for the pilot study 

25 2,601 606 549 

 

Table 1. Overview of the four pilot regions. Data sourced from S3 Platform and USPTO. 

Demographic and economic data are updated to 2020. 

 
4 Gross domestic expenditure on research and development. 
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The Agriculture and Food Production priority is pursued by all regions, while the other 

priorities under investigation are also shared within the sample: Aeronautics and Space for 

Lombardy and the Walloon Region and Energy and Climate for South-West Oltenia and 

Central Jutland. The identification of the IPC classes associated with the S3 priorities is 

reported in Appendix A. In the cases of Agriculture and Food Production and Aeronautics and 

Space, a direct match between these priorities and the IPC classes was found (WIPO, 2015; 

2019). The Energy and Climate priority was instead referred to the Alternative Energy 

Production topics of the IPC Green Inventory5 that patent experts and the World Intellectual 

Property Organization (WIPO) have developed to classify environmentally sound technologies 

through IPC codes. 

 

4.1. Stage 1: Patent data collection 

 

To conduct the analysis, USPTO data was sourced to build a database in which all patents 

originating in the 28 EU Member States and filed between January 2014 and October 2019 

were compiled. Since our methodology aimed to inform strategy formulation by assessing the 

actual technological performance of regions in the different S3 priority areas, we focused on 

the timeframe related to the first RIS3 design phase. Overall, the database contained 169,873 

patents. After being collected, each patent document was assigned the relevant bibliographic 

data recorded in the USPTO database. This information included titles, filing dates, issue dates, 

backward and forward citations, technological classes, and all inventor details (i.e. full name, 

city, and country of residence).  

Inventor details made it possible to match the patents to the 172 EU regions registered in the 

S3 Platform. This task aimed to establish where the technological knowledge linked to the 

patented material was embedded, by matching the inventors’ city of residence with the 

European region to which it belonged. The matching was performed by sourcing data from the 

national institutes of statistics and public geographic databases, such as Google Maps. While 

conducting this activity, a number of ambiguous cases surfaced which were removed to avoid 

bias: inventors whose allocation to a specific region was prevented, due to the presence of cities 

with identical names within the same country. As a result of the matching process, the initial 

database was expanded with 414,041 inventor-patent couples.  

 
5 Available at: https://www.wipo.int/classifications/ipc/en/green_inventory/ 
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4.2. Stage 2: Technological profiles 

 

The patent data related to the four pilot regions, which accounted for 3,781 patents, were then 

selected to outline the technological profiles. The profiles are detailed in Table 2 and presented 

in Figure 1. 

 

 
South-West 

Oltenia Lombardy Walloon Region Central Jutland 
SciKnowledge 1.47 0.56 0.79 0.67 
Pioneering 1.91 0.81 2.10 0.70 
TechImpact 0.47 0.38 0.31 0.30 
TechGenerality 0.82 0.96 0.96 0.95 
SearchBreadth 0.84 0.96 0.92 0.97 
TechDiv 0.87 0.97 0.98 0.97 
AverageTechRel 0.92 0.06 0.11 0.12 

 

Table 2. Technological profiles of each region 

 

 
 

Figure 1. Regional technological profiles 

 

The technological profiles of the four pilot regions indicate the presence of heterogeneity, that 

may affect the benefits they receive from S3 implementation (Foray, 2019). For instance, the 

profile of South-West Oltenia indicates that the region develops patents focused on specific 
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technological domains, suggesting that it may follow a dependency path, as confirmed by the 

TechDiv, TechGenerality, and SearchBreadth indicators. Moreover, these developed 

technologies highly rely on scientific knowledge and previous technological knowledge, and 

show a high impact. Regions with profiles similar to South-West Oltenia may find it difficult 

to adopt a knowledge recombination approach, due to a narrow focus on few technological 

domains. AverageTechRel corroborates these results; South-West Oltenia has the higher 

average technological relatedness among the pilot regions (0.92). This value suggests that its 

patents tend to focus on few and proximate technological classes, indicating high 

specialisation, which may conversely limit the opportunities for knowledge recombination and 

hinder the potential success of S3 implementation (Crespo et al., 2017). The cases of 

Lombardy, the Walloon Region, and Central Jutland are different; they show high values of 

TechDiv, TechGenerality, and SearchBreadth, thus highlighting that they own the potential for 

knowledge recombination. This result is confirmed by their average technological relatedness. 

Lombardy had the lowest AverageTechRel value among the four pilot regions (0.06); its 

technological knowledge production is diversified and covers several distant fields. In turn, 

this condition may increase the opportunity for knowledge recombination, generating positive 

effects on the value of the resulting technologies and paving the way for technological 

development in new and promising fields. Similarly, the Walloon Region and Central Jutland 

display values are equivalent to 0.11 and 0.12, respectively. Therefore, both regions are slightly 

more specialised than Lombardy, but still have high potential for knowledge recombination. 

In addition, the results presented in Table 2 show that the technologies developed in Lombardy 

rely less on previous knowledge than those of South-West Oltenia, and their scientific content 

is low. However, these technologies have a moderate technological impact. Technologies 

developed in the Walloon Region seem to largely rely on previous scientific and technological 

knowledge. Moreover, as in the Lombardy case, these technologies are highly diversified, with 

high values of search breadth and technological generality, but the technological impact is 

relatively moderate. Finally, the technologies developed in Central Jutland are characterised 

by relatively low reliance on previous scientific and technological knowledge, while their 

impact is slightly lower than the other pilot regions. Therefore, the technologies developed in 

this region may be particularly novel, entailing some difficulties in being easily exploited 

accordingly to the S3 policy. 

 

4.3. Stage 3: S3 priorities assessment 
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First, for each priority, we calculated the absolute number of patents registered by the four 

regions (Table 4). This information complements the relative measures discussed afterwards, 

providing additional insight into the analysis. Table 4 also reports the Priority Intensities and 

the RSTA values which have been measured to verify whether there is an alignment between 

the S3 priorities selected by the four pilot regions and their actual regional technological 

performance. 

The results for South-West Oltenia suggest that the regional technological performance related 

to both the Agriculture and Food Production and Energy and Climate priorities is 0, because 

the region’s absolute number of patents related to the field is 0, although these technological 

fields are indicated as priorities. However, as the analysis was performed using only USPTO 

data, it is possible that patents in these fields were filed at alternative patent offices. In this 

case, we would expect additional supporting evidence to be presented to support the selection 

of the proposed priority areas. In addition, Priority Intensity values confirm that Lombardy and 

the Walloon Region are actively operating in the S3 priorities they have selected. About 2-4% 

of the regional patents are filed in these technological fields. The results for Central Jutland are 

striking: 13.5% of the regional patents are filed in the Agriculture and Food Production sector, 

while for the Energy and Climate sector the value of the indicator is equal to 37.7%. This 

suggests that Central Jutland’s research and development efforts are largely devoted to the 

latter sector. 

To compare these figures with the average performance of all the regions registered in the S3 

Platform, we calculated the RSTA indicator for the regions and the S3 priorities under 

investigation. In analysing the RSTA values, it is possible to establish whether a specific region 

is more (or less) specialised in a technological field, with respect to the EU regions in the S3 

Platform. In particular, a RSTA value higher than 0 indicates that a region is more specialised 

in the technological field — compared to the average of the study sample — while a value 

lower than 0 suggests the opposite. 

 

 
Number of registered 

patents Priority Intensity RSTA 

AFP AS EC AFP AS EC AFP AS EC 
South-West 

Oltenia 0 - 0 0.000 - 0.000 -1.000 - -1.000 

Lombardy 73 72 - 0.028 0.028 - -0.218 -0.325 - 
Walloon 
Region 24 15 - 0.040 0.025 - -0.049 -0.375 - 
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Central 
Jutland 74 - 207 0.135 - 0.377 0.510 - 0.743 

 

Table 3. Regional technological performance: Number of registered patents, Priority 

Intensities and RTA for the Agriculture and Food Production (AFP), Aeronautics and Space 

(AS), and Energy and Climate (EC) priorities. 

 

While the results for South-West Oltenia are not surprising for the reasons previously 

discussed, it should be noted that Lombardy has a RSTA lower than 0. This means that the 

specialisation of the region in the priorities analysed is below the average of the EU regions 

included in the S3 Platform. Nonetheless, it is noteworthy that the absolute number of patents 

related to Lombardy in the two fields is quite high with respect to the other pilot regions. The 

case of the Walloon Region is different; its performance in Agriculture and Food Production 

is barely below the average but, for the Aeronautics and Space priority, the indicator is 

significantly below the threshold level of 0, suggesting a weak technological advantage. 

Finally, the analysis of RSTA indicators provides additional emphasis on the performance of 

Central Jutland in the investigated priorities. In fact, the specialisation in the Agriculture and 

Food Production sector is higher than the threshold of 0, while in the Energy and Climate 

priority the region seems very specialised, with a RSTA of 0.743. This data suggests Central 

Jutland is an European leader in this sector. 

 

5. Conclusions 

 

This study offers both theoretical and practical contributions. First, it advances the current 

regional studies debate on smart specialisation, by expanding the theoretical understanding of 

how the inherent knowledge of regions can inform S3 design, implementation, and evaluation 

(Balland et al., 2019; D’Adda et al., 2019). Second, it improves the current conceptualisation 

of how statistics compiled from patent data can become knowledge indicators (Park and Park, 

2006) and help measure technological innovation capability in territorial contexts (Basberg, 

1987). This objective is achieved by positioning relevant measures of patent analysis in a 

different application domain - from the firm level to the regional context - and by proposing 

the adjustments required to ensure that such measures can be applied for regional study 

purposes. Third, our methodology for discovering regional technological capabilities improves 

the current practical understanding on how S3 formulation should unfold (Capello, 2014; 
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Capello and Kroll, 2016; Gianelle et al., 2016; Kroll, 2015; Reid et al., 2012), and it provides 

the basis for tailoring a digital application, to complement the suite of online services for S3 

development that the Online S3 Platform and Smart Specialisation Platform offer. Our pilot 

study confirms the effectiveness of the proposed patent-based methodology, which can help 

detect technological capabilities across EU regions and enhance the quality of the context 

analysis phase that is required, to structure the evidence base supporting the selection of 

specialisation areas and subsequent activation of the EDP. The pilot study also shows that our 

methodology can be successfully deployed as a self-assessment tool for measuring the extent 

to which already selected S3 priorities are aligned with the actual regional innovation 

performance. As a result, S3 stakeholders can be kept “informed and engaged in the policy 

cycle” (Kleibrink et al., 2016: 1438) and provided with an accurate understanding of what logic 

of intervention should be followed to amend existing strategies (Gianelle and Kleibrink, 2015). 

These monitoring insights can help build trust, reinforce existing collaboration among S3 

stakeholders (Kleibrink et al., 2016), and offer an enhanced understanding of regional 

knowledge stocks (Magro and Wilson, 2013), which can translate into innovative knowledge 

recombination processes (Melero and Palomeras, 2015). Therefore, our methodology can 

contribute to the development of S3 monitoring systems (Tolias, 2019), which can act as ‘early-

warning mechanisms’ (Gianelle et al., 2019) for detecting faulty decision making and 

providing direction for continuous improvement.  

No relevant issues serving to raise questions as to the value of the proposed methodology have 

been detected while conducting the pilot experiment. In addition, it is important to note that 

the methodology, to some extent, can be personalised. In our pilot, for example, the USPTO 

database was preferred due to its granularity and the richness of data available. Nonetheless, 

further applications of our study may rely on different databases, such as Espacenet or 

REGPAT (OECD, 2020). In addition, the time frame for the analysis, as well as the regions 

and their S3 priorities to be examined, can easily be changed to fit emerging research needs.  

Finally, three noteworthy limitations have surfaced while conducting the study, which did not 

undermine the proposed methodology but opened interesting opportunities for future research. 

The first limitation arose whilst attempting to align the IPC technological classes with the S3 

priorities encoded in the Eye@RIS3 tool that the regions under investigation have included in 

their smart specialisation strategies. Matching IPC classes and S3 priorities has proven 

effective in the framework of our pilot study, but it might be particularly laborious when the 

activity is conducted for large-scale analyses since this activity is heavily reliant on the 
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selection proposed by patent experts and the use of existing patent classifications. Integrating 

computer-assisted techniques, such as text mining, can automatise this activity, thereby 

increasing reliability and consistency while reducing the investment of time and effort. 

The second limitation relates to a widely acknowledged challenge for anyone involved in 

patent analyses: not all inventions are patented (Zuniga et al., 2009). For instance, depending 

on the nature of the invention and the business of its inventor, some intellectual products are 

protected as trade secrets rather than being patented, to avoid public disclosure. Some common 

examples include innovative formulas, practices, designs, and manufacturing processes. As a 

result, the proposed patent-based analysis of regional technological capabilities may lead to 

imperfect results, due to possible missing information. Considering that measures based on 

patent data are currently the most suitable source of knowledge for discovering regional 

patterns of technological evolution (Ardito et al., 2018; Lee and Lee, 2013), these possible 

imprecisions should not discourage the deployment of the proposed methodology, because they 

can be mitigated by adopting a multi-method approach to data-driven decision making, in 

which complementary evidence is combined, rather than relying on a single source.  

Moreover, by using the approach proposed by Hall et al. (2001), we avoided potential 

correlation effects among the proposed indicators, due to sectorial composition and time. 

Nonetheless, future studies may collect a higher number of observations to test for the presence 

of underlying unobserved factors that may partially affect the results of the analysis, in order 

to further increase the robustness of the proposed methodology. 

The methodological contribution offered by this paper should not be interpreted as a stand-

alone application. For instance, further research may complement our methodology with 

indicators aiming at capturing opportunities of inter-regional collaborations, in order to make 

S3 more effective. In addition, the proposed methodology may also be deemed as 

complimentary to the tools and techniques for regional context analysis that are already 

available. The Online S3 Platform, for example, offers seven digital applications to inform S3 

design. These applications can easily produce additional technology-related contextual 

information which represents a supplement to the knowledge base developed by our 

methodology, such as: the presence of research infrastructures, innovation clusters, and 

incubators across EU regions; regional scientific production profiles based on bibliometric 

data; and regional technological trends uncovered by looking into grant data. 
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