
Disambiguating serial effects of multiple timescales

Nikos Gekas
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What has been previously experienced can
systematically affect human perception in the present.
We designed a novel psychophysical experiment to
measure the perceptual effects of adapting to
dynamically changing stimulus statistics. Observers are
presented with a series of oriented Gabor patches and
are asked occasionally to judge the orientation of highly
ambiguous test patches. We developed a computational
model to quantify the influence of past stimuli
presentations on the observers’ perception of test
stimuli over multiple timescales and to show that this
influence is distinguishable from simple response biases.
The experimental results reveal that perception is
attracted toward the very recent past and
simultaneously repulsed from stimuli presented at short
to medium timescales and attracted to presentations
further in the past. All effects differ significantly both on
their relative strength and their respective duration. Our
model provides a structured way of quantifying serial
effects in psychophysical experiments, and it could help
experimenters in identifying such effects in their data
and distinguish them from less interesting response
biases.

Introduction

Human perception is affected by what has been
previously experienced. However, there is ongoing
debate with regards to the exact nature of the
correlation (positive or negative), the timescales in-

volved (from the recent to the distant past), and the
mechanisms responsible (one vs. multiple mechanisms).
Visual adaptation, for example, produces a plethora of
visual aftereffects, from motion (Mather, Verstraten, &
Anstis, 1998) to color (Webster & Mollon, 1991) and
orientation (Jin, Dragoi, Sur, & Seung, 2005). Consis-
tently, these aftereffects reveal a negative correlation
between the current percept and the adaptor (Thomp-
son & Burr, 2009). For example, after adaptation to a
leftwards oriented grating, the perceived orientation of
a vertical grating is biased rightwards, opposite of the
adaptor.

Contrary to these classical negative aftereffects,
many studies have reported that there is a positive
correlation between visual features of the current
percept, such as orientation, numerosity, or facial
attributes, with those of the immediate past (Cicchini,
Anobile, & Burr, 2014; Fischer & Whitney, 2014;
Liberman, Fischer, & Whitney, 2014). The argument
for this serial dependence is that the physical world is
usually stable and continuous over time, so the recent
past can be a good predictor of the present. It is
counterintuitive that the same mechanisms can be
responsible for two diametrically opposite effects.
Recently, Fritsche, Mostert, and de Lange (2017)
suggested that perception is repelled away from
previous stimuli, while postperceptual decisions are
biased toward previous stimuli. In their paradigm, the
positive bias increased for longer delays between
perception and decision, suggesting that working
memory representations might be the source of this
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bias. These findings suggest that two different mecha-
nisms may be involved in perceptual and decisional
biases. Even so, Cicchini, Mikellidou, and Burr (2017)
found that it is possible to observe strong serial
dependencies within both perceptual and decisional
processes.

The features of the stimulus itself as well as the
timescale of presentation largely determine the nature
of the visual aftereffect. Adaptation usually results
from prolonged exposure to the same strong, salient
stimulus, whereas serial dependence is present after
brief exposure to a less salient stimulus and appears to
be highly dependent on attention (Kiyonaga, Scimeca,
Bliss, & Whitney, 2017). It is important to acknowledge
that serial dependence may be present in adaptation
paradigms but it may be too weak to be measured in
the data. This implies also a significant difference in the
magnitude between the two effects. However, opposite
effects can be seen even for the same stimulus. In a face
features discrimination task, Taubert, Alais, and Burr
(2016) found strong positive dependencies for gender
features but negative dependencies for expressions. In
this case, the biases appear to depend on the
permanence of the features, or, in other words, the
expected timescale of change of these features (people
change their expression faster than their gender).

Most visual aftereffects last for a limited amount of
time. Serial dependence appears to progressively decay
and disappear after several seconds (Fischer & Whit-
ney, 2014). Adaptation can last longer after extensive
and continuous exposure or even for days in special
cases like the McCollough effect (McCollough, 1965;
Jones & Holding, 1975) but generally also decays and
disappears quickly. An interesting question that has
been investigated less often is how adaptation affects
perception after a longer period of time, or, inversely,
how stimuli further in the past affect the current
percept. Chopin and Mamassian (2012) found that
adaptation produces a negative correlation between the
current percept and visual events presented just before
and a positive correlation with events presented further
in the past. This finding cannot be explained by most
theories of adaptation that posit that the visual system
attempts to recalibrate itself relative to the recent past
(Kohn & Movshon, 2003) or corrects the activity in the
sensory channels by comparing it to a fixed distribution
(Dodwell & Humphrey, 1990). A potential explanation
is that adaptation is predictive. The visual system may
use the distant past as an estimate of the world’s
statistics, which is then combined with the more recent
history to predict the next percept (Chopin &
Mamassian, 2012).

In this study, we address the question of how the
current percept is affected by the stimulus history from
the immediately preceding stimulus to hundreds of
stimuli further in the past. We do this through two

novel experimental paradigms in which we measured
the perceptual effects of adapting to changing stimulus
statistics. We presented human observers with a series
of Gabor patches and monitored how their perception
of the orientation of highly ambiguous stimuli were
changing in conjunction with the abrupt (Experiment
1) or gradual (Experiment 2) change in stimulus
statistics. We hypothesized that a negative tilt afteref-
fect for short timescales gradually changes into a
positive effect, though relatively weaker, for trials
further in the past. We quantify the relation between
the presented stimuli and the observers’ responses using
a series of computational models, and we show that the
positive correlation with stimuli further in the past is a
genuine effect of the stimulus statistics on perception
and not an artefact of the observers’ own responses.

Experiment 1

Methods

Thirty-eight human participants took part in Ex-
periment 1. They all had normal or corrected-to-
normal vision. All were naive with regard to the
purpose of the study, and they gave informed written
consent in accordance with the local ethics committee
and the Declaration of Helsinki.

The experiment was completed in one session that
lasted approximately 1 hr and 15 min. The session was
divided into two phases. During Phase 1 (Figure 1A),
participants saw three high contrast (80%) Gabors
(spatial frequency: 2 cycles/degree) in succession at
fixation. Two Gabors, that we label A and B, had
orientations that were 258 and 658 right of vertical and
were presented multiple times in a randomized order.
The third Gabor, that we label X, had an orientation
between these two extremes. Whenever a test stimulus
X was presented, participants were asked to report in a
two-alternative forced-choice (2AFC) task whether its
orientation was closer to A or B. The orientation of the
test stimulus was determined by four interleaved
adaptive staircases. Feedback was provided in the form
of sound to familiarize participants with the task.
Afterwards, the orientations of all stimuli were rotated
by 908 counterclockwise and participants performed
four interleaved adaptive staircases without feedback.
The process was repeated and a full psychometric
function was generated from the eight staircases. The
psychometric function is a logistic function defined as
w hð Þ ¼ 1= 1þ e�k h�cð Þ� �

, where h is the orientation of
test stimulus X, k is the maximum slope, and c is the
point of subjective equality (PSE). For each partici-
pant, the PSE c and the threshold k0, which is defined as
the distance in degrees between 0.5 and 0.75 of the
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psychometric function, were fitted to the data. These
were used to generate the stimuli for the second phase
of the experiment. The relationship between k0 and k is
k0 ¼ 2 � ln 9ð Þ=k.

During Phase 2 (Figure 1A), a series of Gabors were
presented to the participants, who were asked to attend
to their orientations and wait for a circular cue to appear
after a random number of stimuli. Each Gabor was
presented for 300 ms and the interstimulus interval was
900 ms. When the cue appeared, participants were asked
to report whether the last shown stimulus (the X

stimulus) was closer to the A or B stimulus (658 and 258

left of vertical, respectively). The next stimulus was
presented after the participant’s response. The response
cue appeared consistently every 16 stimuli (the ‘‘key
response’’) and once more in between these 16 stimuli at
random. The proportion of A and B stimuli (14 stimuli
in total) before each key response was manipulated over
time. For the first and last third of the experiment, there
was an equal number of A and B stimuli (ratio A to B
equal to 7:7) before each key response. During the
middle third of the experiment, the proportion was

Figure 1. Experiment 1 paradigm. (A) Experimental procedure. During Phase 1, participants saw three Gabors in succession at fixation.

The first two Gabors were ‘‘A’’ and ‘‘B’’ Gabors in a randomized order. The third Gabor had an orientation between these two

extremes. Participants were asked to report whether its orientation was closer to A or B. They repeated this task for a total of eight

adaptive staircases. During Phase 2, participants were presented with a series of high-contrast Gabors in succession. They were asked

to attend to the orientations of the Gabors, and, when the response cue appeared, to report whether the orientation of the last

Gabor before the cue was closer to the A or B stimulus. A response cue was shown every 16 stimuli (key response) with an additional

cue randomly inserted between these stimuli. (B–C) Experimental stimuli. (B) The proportion of adaptor stimuli (A and B) that

participants did not respond to before each key response (14 stimuli in total) was manipulated over time. In the first and last thirds of

the session, A and B Gabors were seen in equal proportions. In the middle third of the session the ratio of A to B stimuli was 3:11,

constituting a clockwise bias in the distribution of orientations for participants of Group 1 and vice versa for Group 2. (C) Participants

were tested on three distinct orientations: X0, which was at the participants’ initial PSE and XA and XB, which were halfway between

the PSE and each of A and B. Over the whole session, the X0 orientation was shown 2 times as often than the XA and XB orientations

combined.
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skewed (Figure 1B); for Group 1 (22 participants), there
were 11 B stimuli to 3 A (ratio A to B equal to 3:11), and
vice versa for Group 2 (ratio 11:3; 16 participants). The
orientations of the test Gabors X were chosen based on
each participant’s psychometric function. Two thirds of
the stimuli had orientations at the PSE (X0), namely the
most ambiguous orientations. Even though these X0
stimuli were the most informative because they were the
ones most likely to be biased by previous stimuli and
responses, we avoided only presenting these stimuli
because this could have led participants to always
respond the same thing if they noticed it. The remaining
test Gabors were split between the XA orientation
(equidistant from the PSE and A) and XB orientation
(equidistant from the PSE and B; Figure 1C). Partici-
pants were presented with 2,880 stimuli in total and were
asked to respond 360 times. Supplementary Figure S1A
shows the stimuli orientations (blue dots) shown to a
representative observer (Participant 3) of Group 1 and
the responses (orange dots) provided by that participant.
The blue and orange lines show the moving average of
the previous 320 stimulus orientations and 40 responses,
respectively (320 stimuli and 40 responses correspond to
the same duration in seconds).

All stimuli were generated using the MATLAB
(MathWorks, Natick, MA) programming language
with the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997) and displayed on a CRT monitor with a
resolution of 1280 3 960 pixels at 100 Hz. Participants
viewed the display in a darkened room at a viewing
distance of 60 cm, and a chin rest was used to maintain
a constant head location and viewing distance.

Data analysis

Using the responses to the test stimuli in the first
third of the experiment, where the proportion of A and
B stimuli was balanced, we calculated a new psycho-
metric function for each participant. The extracted
threshold k0 values were used to evaluate whether
participants performed adequately in the task. For five
participants of Group 1 and one participant of Group
2, threshold values were larger than 1008, indicating an
inability to accurately discriminate between the test
stimuli and correctly perform the task. Therefore, these
participants were removed from further analysis and
the results presented below correspond to 17 partici-
pants in Group 1 and 15 participants in Group 2.

Computational model

We developed a computational model to quantify
the effect of past stimuli and past responses on
participants’ behavior in the experiment (Figure 2A).

We are interested in the probability ps of responding
‘‘closer to B’’ for a stimulus s with physical orientation
hs. We take this probability to be simply the value of
the psychometric function with midpoint cs at hs, i.e.:

ps ¼
1

1þ e�k hs�csð Þ ð1Þ

So, for example, if the physical orientation of a
stimulus is at the midpoint hs ¼ csð Þ, the probability of
responding ‘closer to B’ is 0.5 (Figure 2B).

The model assumes that the history of past stimuli
and responses shifts the original midpoint of the
psychometric function c0 such that the new midpoint of
the function cs is:

cs ¼ c0 þ shiftstimuli þ shiftresponses ð2Þ
We assume that the influence of past stimuli is

stronger for stimuli more distant from the PSE. Our
assumption is based on the well documented pattern of
the tilt aftereffect (Clifford, Wenderoth, & Spehar,
2000; Gibson & Radner, 1937), where the direction and
magnitude of the orientation shift depend on the
relative orientation difference between the adapting
and test stimuli. Orientation differences up to around
508 lead observers to perceive the test pattern as
oriented opposite to that of the adapting pattern with
peak strength between 208 and 308. It is plausible that
adapting patterns very far from the test pattern will
have a negligible adapting effect, but our experiments
did not include these stimuli. We tested more complex
relations between the magnitude of the effect and the
relative orientation difference between the stimulus and
the PSE, and we think that a linear relation is a good
first approximation without the need for the inclusion
of more free parameters. So, for example, for the
stimulus presented just before the current one, this past
stimulus will create a shift equal to:

shift1 ¼ cs�1 � hs�1ð Þ � F 1ð Þ
where hs�1is the orientation of the previous stimulus,
cs�1is the PSE of the psychometric function when that
previous stimulus was presented, and F 1ð Þ is a weight
parameter. Generalizing for multiple past stimuli, the
overall effect shiftstimuli is calculated by multiplying the
distance between the orientation of each past stimulus
hs�1 . . . hs�n and the midpoint of the function at that
time cs�1 . . . cs�n with a function F of the influence each
past stimulus has on the shift:

shiftstimuli ¼ k0
XS
i¼1
ðcs�i � hs�iÞ � F ið Þ ð3Þ

where S is the number of all stimuli presented before
stimulus s. We add the threshold k0 in Equation 3 to
normalize the magnitude of the function across
participants, independently of the participant’s sensi-
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tivity. The larger the distance of each past stimulus
orientation from the midpoint, the larger the shift.
Without the influence of past stimuli, the shift regresses
to zero.

The function F has as many degrees of freedom as
there are past stimuli. However, we can assume that
this function is smooth, and to a first approximation,
we assume that it is a linear summation of simple linear
functions F ¼ f1 þ f2 þ f3 þ . . .. Each linear function
f1; f2; . . . is defined by two parameters (Figure 2C): (a)
the initial weight w of the one-back stimulus, and (b)
the number of stimuli m it takes for that weight to reach
zero. The value of the function for each preceding
stimulus i is calculated as follows:

f ið Þ ¼ wþ �w� i�1ð Þ
m ; 1 � i � m

0; i.m

�
ð4Þ

The complexity of function F can increase by adding
more linear components and summing them. The
resulting function is a piecewise linear function with an
even and moderate number of free parameters. We also
considered a function F as a superposition of expo-

nential functions. These are similarly described by two
free parameters; f ið Þ ¼ w � e�i=s, where w is the initial
weight of the one-back stimulus and s is the decay rate.
We did not find any qualitative differences between the
models. We selected a piecewise linear function because
we believe that it represents a good approximation of
the underlying function without making a strong
assumption about it. In addition, the piecewise linear
function is able to reach 0 at a specific past stimulus.
This has two advantages; first, it is reasonable to expect
that there is a cutting point after which the effect of
past stimuli is negligible instead of continuing into a
very long tail. Second, it is computationally less
expensive during the fitting process as the function does
not have to take into account all past stimuli unless the
optimization process dictates so.

The effect of the history of past responses shiftresponses
is quantified in a similar way. A different function G is
multiplied with the responses given in the past rs�1 . . .
rs�n and the sum corresponds to the shift in the
midpoint of the psychometric function:

Figure 2. Computational model of influence of past stimuli and responses. (A) The perceived orientation of the current stimulus is

affected by the perceived orientations of past stimuli according to function F, and by past responses according to function G. (B) The

probability of responding ‘‘closer to B’’ ps for a test stimulus s with physical orientation hs calculated from the psychometric function

individually for each participant. The midpoint of the function cs is shifted from the original midpoint c0 by the history of past stimuli

and/or responses and a new probability of responding ps is calculated from the shifted psychometric function. (C) Each component f

of the influence function F is a linear function determined by the initial weight w with the one-back stimulus (or response for G) and

the number of stimuli (or responses) m until the weight reaches zero. The influence function can be composed of an increasing

number of components that sum up to a piecewise linear function. The model fits the parameters of the function by maximizing the

log likelihood of obtaining the participants’ responses.
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shiftresponses ¼
XR0

i¼1
rs�i � G ið Þ ð5Þ

where R0 is the number of all past responses before the
current stimulus, and responses r are coded as�1 for A
and þ1 for B. Similar to F, the function G is a linear
summation of simple linear functions
G ¼ g1 þ g2 þ g3 þ . . .. Each function g is defined by
two parameters: (a) the initial weight w of the one-back
response, and (b) the number of responses m it takes for
that weight to reach zero (Equation 4).

In order to fit the model’s parameters to the data, we
calculate the log likelihood of obtaining each partici-
pant’s responses and the model’s parameters are the
ones that maximize the log likelihood L:

logL pð Þ ¼
XR
i¼1

ri � log pið Þ

þ
XR
i¼1

1� rið Þ � log 1� pið Þ ð6Þ

where R is the number of all responses given by the
participant during the experiment, and responses r are
normalized to 0 for A andþ1 for B. We tested
increasingly complex models, with various number of
components quantifying the effect of past stimuli and
responses, and we compared the fitness of each model by
calculating the Akaike Information Criterion (AIC)
value of each one. The AIC is defined (Cavanaugh,
1997) as 2j� 2 ln Lð Þ þ 2j jþ 1ð Þ= n� j� 1ð Þ, where L
is the likelihood of generating the experimental data
from the model, j is the number of parameters in the
model, and n is the number of data points available.
Further, we calculated the Akaike weights (Wagen-
makers & Farrell, 2004) of each model defined as

wi AICð Þ ¼ exp �0:5Di AICð Þð Þ=PM
j¼1 exp �0:5Dj AICð Þ

� �
, where D AICð Þ is the difference

in AIC value between each model and the best candidate
model (the model with the smallest AIC) for all M
models tested. Akaike weights can be considered as
conditional probabilities for each model and are more
intuitive than raw D AICð Þ values. All models were fitted
to all responses from all participants, so each model’s
parameters were fitted to a total of 32 (participants) 3
360 (responses)¼ 11,520 data points.

Results

Participants viewed serially presented oriented grat-
ings selected from five stimulus orientations: A, XA,
X0, XB, and B. Upon the appearance of a cue,
participants were asked to indicate whether the last
shown stimulus’s orientation (X0, XA, or XB) was

closer to the A or B stimulus. The distribution of A and
B orientations was balanced evenly for the first and last
third of the experiment, and biased toward one
orientation for the middle third. The black lines in
Figure 3A show the moving average for Group 1 (top)
and Group 2 (bottom) of the previous 40 responses.
The yellow lines show the moving average of the
adaptor pattern for visual comparison.

A first point to notice is that there is a clear
differentiation between the mean responses in the
balanced and unbalanced parts of the experiment. The
mean responses during the middle third of the experi-
ment appear to be biased away from the more frequently
presented orientation (B for Group 1 and A for Group
2). Moreover, there are differences between the two
balanced parts of the experiment. While in the first part,
the mean responses appear mostly stationary over time
in agreement with the balanced distribution, there is a
deviation at the beginning of the last third of the
experiment where the mean response is attracted toward
the biased orientation, and this attraction appears to last
even longer for Group 2. According to our hypothesis,
this might be a lingering effect of exposure to the
unbalanced distribution even after exposure to hundreds
of stimuli with a balanced distribution.

We used a series of models to quantify the effect of
past stimuli and responses from the recent to the more
distant past (see Methods). By design, the test stimuli are
highly ambiguous so it is expected that responses should
be noisy. Even with a high number of participants (32),
there was a large variability between participants as
indicated by the confidence intervals (CIs) in Figure 3A.
Thus, we fitted the same parameters to all participants in
order to increase the reliability of the fitting process and
avoid overfitting noise. Each model is fitted to each
participant separately and not to averaged data, as each
participant has presumably a distinct stimulus and
response history. During the fitting procedure, the
models were free to include any number of preceding
stimuli or responses from one to all and any positive or
negative value for the initial weight. Thus, the shape of
the function was defined strictly by the data. We tested
seven models in total with various combinations of
influence functions; Stimulus 1, Stimulus 2, and Stimulus
3, where the stimulus influence function had one, two,
and three components, respectively; Response 1 and
Response 2, where the response influence function had
one and two components, respectively; Stimulus Re-
sponse, where there was both an effect of the stimulus
and the response history (functions of one component
each); and No History, where there were no serial effects
at all. An overview of the models and their Akaike
weights can be seen in Supplementary Table S1, and
their D AICð Þ values in Supplementary Figure S2A. The
AIC comparison of the models suggests that the
Stimulus 3 model is overall the most probable out of the
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tested models (Akaike weight of 0.99 out of a maximum
of 1). This model assumes that only the stimulus history
has an effect on participants’ responses and that the
history is best described by three components. The
models that assume only an influence of past responses
or a combination of past stimuli and responses perform
badly, indicating that the stimulus statistics drive
participant behavior.

The purple lines in Figure 3A show the predicted
mean responses of the best fitting model for each group.
The model can track the long-term trends of the data
adequately, especially the positive correlation at the start
of the last third of the session. Figure 3B shows the
influence function of past stimuli fitted by the Stimulus 3
model. The bar heights represent the weight of each past
stimulus on the current percept, and the color represents

Figure 3. Experiment 1 data and model comparison. (A) Participants’ mean responses and model fits. Lines show moving averages of

responses (black) for all participants of Group 1 (top) and Group 2 (bottom), probability of responding as generated from the best

fitting Stimulus 3 model (purple), and the pattern of adaptor stimuli (yellow). Each point of the line is the average of the current

response and 39 previous responses. Gray and purple areas indicate 95% CI for the data and the model respectively. (B) Model

weights. The weight of each past stimulus before the current stimulus is plotted against the stimulus’s position in time, according to

the best fitting Stimulus 3 model. Red bars indicate positive weights and blue bars negative. The x-axis is in log scale because of the

differences in timescale between the three components of the model. The inset table shows for each component of the model the

initial weight (w), the number of stimuli with a nonzero weight value (m), and the cumulative influence of the component on the

current stimulus.
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the sign of the correlation: red for positive and blue for
negative. The function is shown in log space over the x-
axis because of the significant difference in the timescales
involved. The inset table shows the fitted parameters of
each of the components of the model: initial weight w
and the number of stimuli with a nonzero weight value
m. The weight values suggest distinct effects at three
different timescales. There is a strong positive correla-
tion with the immediate past one-back stimulus. Then,
there is a weaker negative correlation with preceding
stimuli that lasts up to 115 stimuli in the past, followed
by an even weaker positive correlation that lasts up to
792 stimuli in the past. Looking at the timescales
involved, the negative correlation lasts up to 3 min,
while the positive correlation lasts up to 17 min. Figure
3B illustrates the significant difference between the
magnitudes of each of the components. We calculated
the cumulative influence of each component on the
current stimulus by comparing the summed weights of

each component
Pm

i¼1 f ið Þ to the summed weights of all

components
P3

j¼1
Pm

i¼1 fj ið Þ. Interestingly, while the
weight of the positive one-back stimulus component is
the strongest, when factoring the cumulative influence of
all stimuli up to 792 stimuli in the past, it accounts for
only 11.6% of the total influence. The second (negative)
component accounts for the majority of the influence
with 56.4%, whereas the third (positive) component for
32% of the influence. Overall, the modeling of partici-
pants’ behavior suggests that the effect of past stimuli
may be more complex than a simple negative or positive
correlation and changes both in sign and strength for
stimuli further in the past.

Experiment 2

In Experiment 1 the statistics of the stimuli are stable
for extended parts of the session. For Experiment 2, we
wanted to investigate how participants are able to track
gradual changes in the statistics over time. To accom-
plish that, the experimental paradigm of Experiment 2
was modified in two major ways. First, the orientations
of adaptor stimuli changed gradually over the whole
session and were generated randomly from a range of
possible orientations instead of being restricted to only
two possible orientations. Second, we now asked
participants to compare the orientation of the test
stimulus with a static reference because a comparison to
the two extreme orientations was not possible anymore.

Methods

Twelve human participants took part in Experiment
2. They all had normal or corrected-to-normal vision.

All but one were naive with regards to the purpose of
the study, and they did not take part in Experiment 1.
The results did not differ when the nonnaive partici-
pant was removed from the analysis. All participants
gave informed written consent in accordance with the
local ethics committee and the Declaration of Helsinki.

The experiment was completed in one session that
lasted approximately 1 hr and 20 min. The experi-
mental paradigm was very similar to that of Experi-
ment 1 but with some key differences in the design. We
first estimated the orientation discrimination accuracy
and precision of each observer. During Phase 1 (Figure
4A), participants did an orientation discrimination task
where they compared the orientation of a high contrast
(80%) Gabor with a static reference that was placed
outside the envelope of the Gabor. In a 2AFC task,
they indicated whether the orientation of the Gabor
was clockwise or counterclockwise of the reference. As
in Experiment 1, a full psychometric function was
generated from two sets of four interleaved adaptive
staircases. The PSE and threshold were calculated for
each participant and they were used to generate the
stimuli for the remainder of the experiment.

During Phase 2 (Figure 4A), a series of Gabors was
presented to participants who were asked to attend to
their orientations and wait for the reference to appear
occasionally after a random number of stimuli. The
orientations of these stimuli were randomly drawn
from a Gaussian distribution (Figure 4B) of which the
mean followed a hard-to-predict oscillating pattern
(Figure 4C) and the variance matched the variance of
the measured psychometric function of each partici-
pant. The frequency of the oscillating pattern was
steadily increasing for participants of Group 1 (six
participants), whereas it was decreasing for Group 2
(six participants). For Group 1, the mean of the
Gaussian before each response was calculated accord-
ing to mean rð Þ ¼ PSE0 þ 10 � sinð 1þ k r� 1ð Þð ÞrÞ,
where r is the response number (1 to 360) and k ¼ 4=3
59 (angles are in degrees). For Group 2, the equation
wasmean rð Þ ¼ PSE0 þ 10 � sin 3þ k r� 1ð Þð Þ 361� rð Þð Þ,
where k ¼ �2=359. Similar to Experiment 1, one key
response was every 16 stimuli, with one more response
randomly in between. When the reference appeared,
participants were asked to report whether the orienta-
tion of the last shown Gabor before the appearance of
the reference was clockwise or counterclockwise of the
reference. Unbeknownst to the participants, the orien-
tation of the stimuli presented before the reference was
always at the PSE0 (Figure 4D). Unlike Experiment 1
where we were concerned not to always present the
same test stimulus, we reasoned that in Experiment 2
this was not a problem because of the rich variability of
orientations of all the other stimuli. Supplementary
Figure S1B shows the stimuli orientations presented to
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a representative observer (Participant 2 of Group 2)
and responses provided by that participant.

Computational model

As the test stimulus orientation was always at the
PSE, it is impossible to recalculate participants’
psychometric functions, so the threshold k0 values were
generated from the original psychometric function
measured from the adaptive staircases. We used the
same models and model comparison metrics as in
Experiment 1. Likewise, the models were fitted to all
responses from all participants, so each model’s
parameters were fitted to a total of 12 (participants) 3

360 (responses)¼ 4,320 data points.

Results

We presented a series of oriented Gabors to
participants and we measured the perceived orientation
of an ambiguous Gabor in comparison to a static
reference. Adaptor orientations were drawn from a
Gaussian distribution with a moving mean following a
hard-to-predict oscillating pattern and fixed variance,
while the test stimuli were always at the initial PSE0

measured at the beginning of the experiment. The black
lines in Figure 5A show the moving average of the
previous 40 responses for Group 1 (top) and Group 2
(bottom), and the yellow lines show the moving average
of the adaptor pattern for comparison. Participants’
responses are strongly anticorrelated with the adaptor
pattern and participants are more consistent in their

Figure 4. Experiment 2 paradigm. (A) Experimental procedure. During Phase 1, participants saw a Gabor followed by a static

reference. They were asked to do an orientation discrimination task where they compared the orientation of the Gabor with that of

the reference and indicate whether the orientation of the Gabor was clockwise or counterclockwise of the reference. They repeated

this task for a total of eight adaptive staircases. During Phase 2, participants were presented with a series of high-contrast Gabors in

succession. They were asked to attend to the orientations of the Gabors and, when the reference appeared, to compare the

orientation of the last shown Gabor with the reference. (B–D) Experimental stimuli. The stimuli orientations of adaptor stimuli to

which participants did not respond to were randomly drawn from a Gaussian distribution (B) of which the mean followed a complex

oscillating pattern (C) over time. The mean was updated after every response. The oscillating pattern was contracting for participants

of Group 1 and expanding for Group 2. (D) Test stimuli orientations were always at the initial PSE of each participant as measured at

the beginning of the experimental session.
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behavior than those in Experiment 1. On the other
hand, it is now difficult to visually identify from the
mean responses the effect of stimuli further in the past
because the stimulus distribution is changing gradually
and not abruptly as in Experiment 1. The computa-
tional model analysis is required to see if there is indeed
a positive influence of past stimuli or responses.

From the model comparison (Supplementary Figure
S2B), the Stimulus 3 model outperformed all other
models overall. However, looking at the Akaike

weights, the Stimulus 3 model obtained a value of 0.7
and the Stimulus 2 model 0.3. That indicates that three
components are not as probable as they were in
Experiment 1. The Response models again were
outperformed by the Stimulus models, indicating that
the effect of previous responses is minimal. The purple
lines in Figure 5A show the moving average of
predicted response probability obtained from the
Stimulus 3 model for each group. The model is able to
capture the participants’ behavior very accurately.

Figure 5. Experiment 2 data and model comparison. (A) Participants’ mean responses and model fits. Lines show moving averages of

responses (black) for all participants of Group 1 (top) and Group 2 (bottom), probability of responding as generated from the best

fitting Stimulus 3 model (purple), and the pattern of adaptor stimuli (yellow). Gray and purple areas indicate 95% CI for the data and

the model respectively. (B) Model weights. The weight of each past stimulus before the current stimulus is plotted against the

stimulus’ position in time, according to the best fitting Stimulus 3 model. The inset table shows for each component of the model the

initial weight (w), the number of stimuli with a nonzero weight value (m), and the cumulative influence of the component on the

current stimulus.
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Figure 5B shows the influence function of past stimuli
fitted by the Stimulus 3 model. There is a strong
negative influence that lasts up to 17 stimuli followed
by a weak positive influence that lasts up to thousands
of stimuli. There are two major differences with the
results of Experiment 1. There is no strong positive
effect from the one-back stimulus. Instead, there is an
additional negative influence of the one-back stimulus.
However, looking at the cumulative influences, the
influence of that component is minimal, as it accounts
only for 1% of the influence. The longer negative
component accounts for the 43.4% of the influence,
whereas the positive component for the majority of the
influence with 55.6%. Looking at the Stimulus 2 model,
it assumes a short negative and a long positive
component. This suggests that the long-term positive
component is required to explain the data in Experi-
ment 2 in both most likely models (Stimulus 2 and
Stimulus 3).

It is important to note here that the stimulus
statistics of Experiment 2 are significantly more
autocorrelated than the statistics of Experiment 1. This
is because the stimulus orientations are drawn from a
concentrated distribution whose mean is varying
continuously. So, the statistics of the recent past could
sometimes match the statistics of the distant past. This
could explain the increased influence of the long-term
positive component in comparison to Experiment 1. In
order to mitigate this effect, the frequency of the
oscillating pattern that controls the properties of the
adaptor stimuli changed over time, so that the
autocorrelations also changed over time. Moreover, the
characteristics of the pattern differ greatly between the
two groups of participants. Therefore, it is unlikely that
the strong effect is only due to autocorrelations.
Overall, the experimental and modeling results suggest
that apart from the expected negative correlation of
recent stimuli with participants’ responses, there is a
relatively weaker but significantly longer lasting posi-
tive correlation with stimuli further in the past.

Discussion

Our experiments show that there are serial effects at
different timescales that affect the perception of visual
features. A positive correlation with the immediate past
is followed by a negative correlation with presentations
of the recent past and by a positive correlation with
presentations of the more distant past. Crucially, the
presence of these correlations can only be revealed and
measured if the experimental conditions are suitable. In
Experiment 1, participants were asked to compare the
most recently presented stimulus with two distinct
stimuli oriented at two extremes. The presentation of

one of the two alternatives before the test stimulus had
a strong attractive influence on the perception of the
current stimulus. In Experiment 2, where participants
compared always with a static reference and the one-
back stimulus was oriented pseudorandomly, we did
not observe a strong attraction to that stimulus.
Instead, we observed a slightly increased negative
influence. This does not imply that the attractive effect
is not present but that the effect may not be strong
enough to be distinguishable. Due to the high number
of repetitions of similar orientations over a longer
period of time, the adaptation effect is stronger in
Experiment 2 than in Experiment 1. The positive effect
of the immediate past may then be masked by the
strong adaptation. Similarly, the attractive effect of
stimuli further in the past was observed in both
experiments but it is stronger in Experiment 2 because
the design of the experiment facilitated the extraction
of that effect from the data (e.g., by removing the
strong attraction to the one-back stimulus).

Our experimental paradigm differs from most serial
dependence studies (e.g., Fischer & Whitney, 2014;
Fritsche et al., 2017) in two crucial ways. First,
participants were asked to attend to each stimulus, but
they did not have to make an explicit judgment on each
one. Second, they were placed in a 2AFC task instead
of manually reproducing the stimulus orientation. Our
design could minimize potential memory, motor, or
response biases that affect responses to sequential
decisions (Abrahamyan, Silva, Dakin, Carandini, &
Gardner, 2016; Bliss, Sun, & D’Esposito, 2017).
Moreover, the presentation of hundreds of stimuli has
a two-faceted effect on observers. It induces visual
adaptation due to repeated presentations of highly
salient stimuli and it provides extensive information
about the stimulus statistics, allowing the observer to
build a strong hypothesis of the generative model that
produces these stimuli. Thus, it facilitates the genera-
tion of multiple effects at multiple timescales that are
well balanced, as indicated by the cumulative influence
of each of the model components on the perception of
the current stimulus. In comparison, Pinchuk-Yacobi,
Dekel, and Sagi (2016) looked at the effect of
expectations on the tilt aftereffect and found that the
influences of adaptors shown more than 4 s before the
test have negligible effect on the perception of the test
stimulus. Likewise, Suárez-Pinilla, Seth, and Roseboom
(2018) showed that, in judgments of visual variance,
there may be two opposite serial effects at two distinct
timescales: one positive with the immediate past and
one negative up to 10 trials in the past (approximately 1
min). The current study shows unequivocally that these
long-term effects are distinct from effects of shorter
timescales, and it quantifies not only their relative
timescale (as in Chopin & Mamassian, 2012) but also
for the first time their relative strength.
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The three distinct serial effects suggest that the visual
system is processing information differently at three
distinct timescales. As Taubert et al. (2016) suggested,
the sign of the serial effect may depend on the expected
timescale of change of the features in question (e.g.,
expression vs. gender). Likewise, the positive correla-
tion with the immediate past may correspond to the
tendency of the visual environment to remain mostly
stable in the millisecond to second range where
observers typically maintain eye fixation on an object.
The negative correlation might instead reflect changes
in the visual image due to eye and head movements, as
well as small objects displacements. Finally, the long-
term positive correlation might reflect long-term
stability of environments in the minutes and longer
timescales. The relative magnitude of these effects may
also correspond to the weight that the visual system
gives each time in the past. As the immediate past can
be the best predictor of the present, it is weighted
significantly more than the distant past. However, if the
environment is shifting quickly, the negative effect is
going to overwhelm the immediate positive effect. It is
unclear from our data whether the strength of the
effects is solely a function of time or a function of time
and number of presented stimuli. Chopin and Ma-
massian (2012) suggested that adaptation is more
dependent on discrete events than duration, and
Aagten-Murphy and Burr (2016) found that to be true
for numerosity judgments. We speculate that there is a
complex relationship between number, duration, and
attributes (e.g., orientation difference from the present
stimulus and the PSE) of past events that can be
uncovered by careful investigation of serial effects.

We presented a computational model that is able to
distinguish between the effects of stimulus history and
response history. Fründ, Wichmann, and Macke (2014)
modeled history biases as a combination of stimulus
and response weights and reported that observers are
influenced by previous choices even when trials are
independent. Our modeling results suggest that previ-
ous responses did not affect participants’ behavior. The
distance in time between response prompts (from 3.6 to
14.4 s) may have reduced any memory or motor biases.
Our model can be easily modified and applied to
different experimental paradigms. For example, in a
motion-direction discrimination task, the probability
that a random dot stimulus is moving leftwards or
rightwards may depend on the stimulus’ coherency.
The only part of the model that needs to change is the
calculation of the perceptual shift. In this case, the
perceived motion direction of the current stimulus is
affected by the motion directions of past stimuli. The
model can also be extended to more complex psycho-
metric functions where the shift can be applied to more
than one parameter of the function. A potential
weakness of the model is the neglect of a possible

change of the slope of the psychometric function in
addition to the modeled change of the PSE. This is
common to models that describe serial dependencies as
response biases (Abrahamyan et al., 2016; Fründ et al.,
2014; Raviv, Ahissar, & Loewenstein, 2012). From our
experimental design we expect that the slope changes
more slowly than the PSE, so any changes to the
sensitivity would be minimal in comparison with the
changes in the center of the function. Additionally, we
chose to test participants around the PSE of the
psychometric function so that changes in sensitivity
would not solely explain the systematic biases observed
in the data. Nevertheless, we think that it would be
worthwhile to investigate the timescales of the change
in the slope in the pursuit of a more complete model of
serial dependencies.

In summary, our results suggest three distinct serial
effects on perception at three distinct timescales: a
positive correlation with the immediate past (few
seconds), a negative correlation with the recent past
(few minutes), and a positive correlation with the more
distant past (tens of minutes). The positive correlation
with the immediate past has been attributed to
postperceptual working memory (Bliss et al., 2017;
Fritsche et al., 2017) and attention (Fischer & Whitney,
2014), but it can be observed even in the absence of
working memory demands (Cicchini et al., 2017;
Manassi, Liberman, Kosovicheva, Zhang, & Whitney,
2018; and our study). Therefore, this positive effect
may correspond to a process of very short-term
integration of information across multiple levels of
cortical processing (Kiyonaga et al., 2017) working
independently from longer term effects and being
present even when it reduces sensitivity to dynamic
stimuli (Alais, Leung, & Van der Burg, 2017). The
negative correlation with the recent past may indicate a
shift in the perceptual space so that perceptual
sensitivity is increased and the whole response range
can be used. Finally, the positive correlation with the
more distant past may correspond to dynamically
updating the observer’s prior expectations about the
stimulus in a Bayesian framework (e.g., Chalk, Seitz, &
Seriès, 2010; Gekas, Seitz, & Seriès, 2015), which
combines with the likelihood to form the posterior
percept. The model proposed here can be seen as an
implementation of the suggestion that adaptation is
predictive. The predictive nature of adaptation can be
conceptualized such that future percepts are biased to
make the statistics of recent perceptual history more
similar to that of older history (Chopin & Mamassian,
2012). The contrast between recent and past history is
captured in the biphasic nature of the function F in
Equation 3 (ignoring here the effect of the immediate
past). An outstanding issue is whether the neutral point
of the perceptual space (i.e., the midpoint of the
psychometric function c0 in Equation 2) is fixed or
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instead depends on the long-term perceptual experi-
ence. These two alternatives could be potentially
distinguished by measuring this new midpoint after
long exposure to biased stimulus statistics but in
absence of recent stimulus history.

A direct prediction of our model is that for a less
salient test stimulus, which is associated to a flatter
psychometric function, the effect of past stimuli should
have a smaller effect on the current stimulus because
the perceptual shift would be smaller. Serial effects are
thought to be more pronounced for weak stimuli
(Mattar, Carter, Zebrowitz, Thompson-Schill, &
Aguirre, 2018), but it is unclear how these effects might
depend on the saliency of the test stimuli. If the two
opposing effects (short-term repulsion and long-term
attraction) at distinct timescales are due to distinct
neural mechanisms, the repulsive effect will be weak-
ened for less salient test stimuli (as predicted by the
current model which accounts for the shift in percep-
tual space), whereas the attractive effect will be
strengthened (due to the wider likelihood as predicted
by Bayesian models). A systematic manipulation of the
saliency of both adaptor and test stimuli is a
worthwhile future investigative direction, and it should
help us understand how past history affects perception.

Keywords: adaptation, serial dependence, orientation
perception, timescale
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