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Abstract 

56 compounds, whose log BB values were known from the scientific literature, were considered and their 
phospholipophilicity values were calculated in silico. These values, along with either experimentally 
determined or calculated lipophilicity values, were used to extract cΔ/Δ’log kw

IAM 
parameters. cΔ/Δ’log 

kw
IAM

 values were found inversely related to data of blood-brain barrier passage, especially in the < -0.20 
log BB range and on the IAM.PC.DD2 phase (r

2
 = 0.79). In multiple linear regression, satisfactory statistic 

models (r
2
 (n-1) = 0.76), based on c/’log kw

IAM.MG
 along with other in silico calculated descriptors, were 

achieved. This method brings the potential to be applied, along with other methodologies, to filter out 
solutes whose BBB permeation is foreseen to be substandard, thus allowing pharmaceutical 
companies/research institutes to focus on candidates that are more likely to concentrate in the brain.  

©2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Combinatorial chemistry involves the generation of a large array of structurally diverse compounds, i.e., 

a chemical library, through systematic, repetitive and covalent linkage of various “building blocks” [1]. This 

technique can be exploited in parallel, delivering hundreds, if not thousands, of molecules of 

pharmaceutical interest in a handful of hours. While the organic synthesis throughput has expanded so 

noticeably in recent years, screening methodologies are still lagging behind, instead [2]. Indeed, most of the 

testing still requires animal models that have the undeniable advantage of mirroring more closely the 

complexity of human beings than cells. However, animal models are facing criticism from the public since 

they often require the sacrifice of vertebrates [3] and heavily impact the environment due to the huge 

number of carcasses to dispose of.  

 The assessment of the ability of a drug to cross the biological membranes in the early stages of its 
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development plays a pivotal role in pharmaceutical industrial research. Notably, the development of drugs 

acting toward the central nervous system (CNS) has poorer success rates and requires longer times than 

non-CNS drugs [4]. This occurs due to the complexity of the blood-brain barrier (BBB).  

In fact, in a healthy brain, the BBB plays a crucial role in protecting normal brain functions from 

potentially harmful compounds occurring in the bloodstream [5]. Strategies for brain drug delivery have 

developed in the last decades, and various techniques are available to study the BBB's role in drug uptake. 

These include in vivo, in vitro [6] and in situ techniques [7]. 

Separation science offers valuable alternatives to animal testing that can provide effectiveness in the 

drug discovery/drug development pipeline as biomimetic liquid chromatography [8-11], performed 

employing stationary phases emulating biological components or using mobile phase ingredients simulating 

physiological environments. A consistent branch of this is represented by liquid chromatography (LC) 

conducted on stationary phases based on immobilized artificial membranes (IAM). IAM phases are based 

on membrane phospholipid analogs covalently bound to aminopropyl silica [7,12,13]. Some of these phases 

are available commercially as IAM.PC.MG and IAM.PC.DD2. Both these support phosphatidylcholine 

analogs (PC), but they differ from each other in the end-capping of the free aminopropyl moieties, which is 

performed with methyl glycolate (MG) or with C3 or C10 anhydrides (DD2).  

 In recent years, we parameterized the excess of the polar/electrostatic interactions occurring between 

drugs and biological membranes as Δlog kw
IAM [14-19]. Δlog kw

IAM is obtained by combining n-octanol/water 

lipophilicity with phospholipophilicity, i.e., the affinity of the compound for the IAM phases measured as a 

retention factor extrapolated at 100 % of aqueous phase (kw
IAM) [20]. This represents the difference 

between the logarithm of the chromatographic retention factor (log kw
IAM) measured for each analyte, i.e., 

the experimentally determined phospholipophilicity, and the value expected for a neutral isolipophilic 

molecule that is estimated by correlative equations. Δlog kw
IAM values were inversely related to the drug 

passage of complex biological barriers, such as the BBB and the intestinal wall [13,17,18]. The increasing 

need for high-throughput drug discovery methods has provided several in silico models of BBB permeation 

based on in vivo log BB values [21,22]. Log BB is generally measured on murine models and is still nowadays 

considered as a solid indication for BBB delivery [23]. Log BB is defined as (Eq. 1):  

log BB = log 
𝐶Brain

𝐶Blood
 (1) 

in which CBrain is the concentration that the analyte realizes in the brain tissues, and CBlood is the 

concentration that it achieves in the blood. The in silico models bring the advantages of being much faster 

to perform and applicable to molecules that are not yet synthesized and/or not easily detectable.  

Back in 2017, we developed some statistical models to predict the phospholipophilicity of small 

molecules based on more than 200 individual measurements performed in our laboratories. This also 

materialized in an online service, namely log kw IAM.MG/DD2 calculator, offering the opportunity to predict the 

phospholipophilicity of all compounds included in PubChem collection as log kw
IAM on both MG and DD2 

chromatographic columns [24]. 

In the present study, we aim at applying these statistical models to calculate the phospholipophilicity of 

a dataset of compounds whose log BB is known from the scientific literature and from there to estimate 

Δlog kw
IAM, based either on experimentally determined or calculated lipophilicity values. Our goal is to 

evaluate whether these parameters calculated in silico, therefore called from here on cΔlog kw
IAM, can offer 

effectiveness in screening libraries of compounds for their potential to reach the brain. If so, we will look at 

ways to implement these procedures in the drug discovery/development industrial programs.  
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Experimental  

Data collection  

Experimental lipophilicity values were collected from the scientific literature. Specifically, all the log P 

values were taken from PubChem but those of nevirapine and thioxolone, which were taken from the 

literature [25].  

Calculated log P values were obtained by either ALOGPS [26] or by MarvinSketch [27]. For acidic 

compounds, whose ’log kw
IAM but not their log kw

IAM were previously found related to log BB, log D7.4 

values were again calculated by MarvinSketch software [27]. Log BB values were taken from the literature 

[28].  

c/’log kw
IAM values calculation  

c/’log kw
IAM values were calculated from phospholipophilicity values estimated in silico according to a 

procedure we developed in 2017 [24]. In brief, the best relationships were found to be: 

log kw
IAM.MG = -0.1405  (0.1282) + 0.4401(0.0297)miLogP + 0.0536 (0.0057)Heavy Atoms - 0.0833 

(0.0201)HLBM - 0.0435(0.0144)Rotatable bonds  (2) 
n=204       r2 = 0.81        q2 = 0.80       SE = 0.438      F4,199 = 213.92      P<1.0 10-8       PC = 39.403 

and 

log kw
IAM.DD2 = -2.3989 (0.2812) + 0.4936(0.0379)miLogP + 0.4354 (0.0470)Volume Diameter - 0.0640 

(0.0226)HLBPSA - 0.0497(0.0173)Rotatable bonds  (3) 
n=160       r2 = 0.85        q2 = 0.84       SE = 0.459      F4,155 = 212.94      P<1.0 10-8       PC = 33.974 

A detailed explanation of the main descriptors, along with relevant references, is reported in supporting 

information (Table S1). In these equations, n is the number of data considered to derive the regression 

equation, r2 is the square of the correlation coefficient, SE is the standard error of the estimate, F (the 

subscripts are the degrees of freedom and the number of variables) is the Fisher statistic of the regression, 

P is the observed significance level, i.e., the probability of obtaining a result equal to or “more extreme” 

than what was observed, and PC is the Amemiya predictive criterion of the regression.  

The hydrophilic-lipophilic balance (HLB) can be taken into account by the methods by Griffin [29] 

(HLBG), Davies [30] (HLBD), and taking into account the steric effects (HLBPSA), not considered by the two 

approaches. HLBPSA is defined as follows: 

HLBPSA=20⋅PSA/Surface 

where PSA is the polar surface area and Surface is the total surface.  

HLB (HLBM) is the mean resulting from the values by all three methods. miLogP is the octanol-water 

partition coefficient predicted by the online program for the calculation of molecular properties and 

bioactivity prediction [31]. 

The calculations were made completely automated and easily accessible to anyone via a user-friend tool 

to predict log kw
IAM.MG and log kw

IAM.DD2, a Web service and a set of scripts for VEGA ZZ program [24]. This is 

available at https://www.ddl.unimi.it/vegaol/logkwiam.htm and offers a calculation of log kIAM.MG/DD2 of any 

molecule included in the PubChem collection as implemented in the script version.  

log kw
IAM values were calculated as the difference between the log kw

IAM computed from equations (2) 

and (3) and the log kw
IAM expected for neutral isolipophilic molecules. Indeed, as reported in our previous 

studies [14,15], IAM retention data on both IAM phases relate unambiguously with log P values of 
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structurally non-related neutral compounds, in the log P range 1.0–4.8. These relationships are expressed 

by the following equations:  

log kw
IAM.MG = 0.792 (±0.038) log P - 0.732(±0.105) (4) 

n =  36 r2 = 0.926 s = 0.248 F1, 34 = 422.40      F1, 34 α,0.001 = 12.90 

log kw
IAM.DD2 = 0.934 (±0.038) log P - 0.883(±0.104) (5) 

n =  36 r2 = 0.946 s = 0.246 F1, 34 =  595.74      F1, 34 α,0.001 = 12.90  

For acidic compounds, analogously to what was reported in our previous study [15], log D7.4 rather than 

log PN was used for the computation of delta values in equations (4) and (5). Their values were therefore 

named ’log kw
IAM values to avoid any ambiguity.  

Molecular modeling  

An ample array (> 1,600) of physico-chemical descriptors, subdivided into 20 logical blocks (atom type, 

functional group, fragment counts, topological and geometrical descriptors), were calculated by the web 

service E-DRAGON 1.0 [32]. In brief, the molecules were input as SMILES code in a text document and 

converted by the integrated applet CORINA in 3D before all the indices were computed. The Quantitative 

structure-property relationship (QSPR) models were obtained by the automatic stepwise approach 

implemented in the “automatic linear regression” script of VEGA ZZ software [33], calculating regression 

models, including from one to five independent variables. The predictive strength of the best equation was 

evaluated by leave-one-out (LOO) cross-validation. The regression coefficients were calculated to evaluate 

the set in terms of the standard deviation of errors (SE), regression coefficients (r2 is the square of the 

correlation coefficient, q2 is the square of the correlation coefficient after cross-validation), intercept, 

Fisher statistic for the regression (F), probability (P) and Amemiya prediction criterion (PC). Descriptors with 

too low regression coefficient (r2 < 0.1) were excluded, and collinear descriptors were detected by 

evaluating the variance inflation factor (VIF) whose threshold value was set to 5.  

Data handling  

Data were input in a spreadsheet and data points were plotted from Microsoft Excel, part of the 

Microsoft Office 365 suite of programs.  

Results and Discussion 

c/’log kw
IAM : simple linear regression 

In our previous studies [14-19, 34], /’log kw
IAM values were found inversely related to the passage of 

complex biological barriers, such as the BBB and the intestinal wall. The calculation of /’log kw
IAM 

parameters are based on two physico-chemical properties, i.e., n-octanol/water lipophilicity either of the 

neutral species (giving log kw
IAM) or of the mixture of the species at the physiological pH, i.e., 7.4 (giving 

’log kw
IAM) and the affinity of the compound for IAM phases. Indeed, in our previous studies [14-16], we 

verified that for acidic compounds, significant relationships vs. log BB data could only be obtained when 

delta parameters were calculated by using the lipophilicity of the mixture of the species present in solution 

at the experimental pH, i.e., log D7.4, rather than that of the neutral species, i.e., log PN. For neutrals, bases 

and ampholytes, delta parameters were estimated by using log PN values instead. For consistency, we 

extended the same approach to delta values surrogated in silico (c/’log kw
IAM).  

However, while there are plenty of tools available to surrogate log P values [35], to the best of our 

knowledge, the in silico platform we developed is the only service that predicts phospholipophilicity. Table 
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1 lists names, chemical nature (A= acid, B=basic, BB= bibasic, N= neutral), calculated log kw
IAM.MG and 

log kw
IAM.DD2, exp log PN, clog PN and calculated log D7.4 (for acids only) values for the dataset considered.  

c/’log kw
IAM values are reported in Table 2 along with the experimental log BB values. 

Table 1. Names, chemical nature (A= acid, B=basic, BB= bibasic, N= neutral), calculated log kw
IAM.MG 

and log kw
IAM.DD2

, 
exp log P

N
, clog P

N
 values for the dataset considered.  

molecule  nature clog kw
IAM.MG

 clog kw
IAM.DD2

 
exp log P

N
 

[36] 
clog P

N
(1) 

[26] 
clog P

N
(2) 

[37] 
clog D

7.4
 

[37] 

1,1,1-trichloroethane N 1.063 1.247 2.49 2.45 2.04 
 

1,2-dimethylbenzene N 1.400 1.635 3.12 3.16 2.98 
 

1,4-dimethylbenzene N 1.421 1.599 3.15 3.15 2.98 
 

1,7-dimethylxanthine A -0.073 -0.001 -0.22 -0.63 0.09 0.09 

1-chloro-2,2,2-

trifluoroethane 
N 0.811 0.774  1.82 1.86 

 

1-hydroxymidazolam N 1.839 2.043  3.09 2.9 
 

2,2-dimethylbutane N 1.283 1.578 3.82 3.74 2.85 
 

2-methylpentane N 1.388 1.706 3.21 3.66 2.82 
 

3-methylhexane N 1.561 1.949 
 

4.18 3.21 
 

3-methylpentane N 1.292 1.599 3.60 3.98 2.82 
 

4-hydroxymidazolam N 1.950 2.191 
 

3.05 3.35 
 

acetaminophen N 0.184 0.302 0.91 0.51 1.09 
 

acetone N -0.247 -0.359 -0.24 -0.29 0.38 
 

aminopyrine N 1.045 1.349 1.00 0.94 1.60 
 

amobarbital A 0.899 1.181 2.07 1.87 1.86 1.60 

antipyrine N 0.901 1.139 0.56 1.18 1.61 
 

bretazenil N 2.103 2.447 
 

3.05 2.29 
 

cyclohexane N 1.476 1.671 3.44 
 

2.38 
 

cyclopropane N 0.284 0.105 1.72 1.56 1.19 
 

Desmonomethyl-

promazine 
B 2.287 2.703 

 
4.28 3.68 

 

didanosine A -0.404 -0.294 -1.24 -1.26 -0.50 -1.06 

diethylene glycol 

divinyl ether 
N -0.127 0.200 0.87 1.26 0.87 

 

enflurane N 1.075 1.203 2.10 2.24 2.42 
 

ethanol N -0.534 -0.683 -0.31 -0.40 -0.22 
 

ethyl ether N 0.162 0.308 0.89 1.12 0.70 
 

ethylbenzene N 1.398 1.616 3.15 3.27 2.91 
 

flunitrazepam N 1.621 1.739 2.06 2.20 2.58 
 

fluroxene N 0.570 0.637 
 

1.70 1.58 
 

halothane N 1.165 1.300 2.30 2.50 1.97 
 

indinavir BB 2.864 2.745 2.90 3.26 2.39 
 

isobutyl alcohol N 0.045 0.169 0.76 0.60 0.65 
 

isoflurane N 1.074 1.207 
 

2.30 2.48 
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Table 1. Continued… 

molecule  nature clog kw
IAM.MG

 clog kw
IAM.DD2

 
exp log P

N
 

[36] 
clog P

N
(1) 

[26] 
clog P

N
(2) 

[37] 
clog D

7.4
 

[37] 

isopropyl alcohol N -0.241 -0.243 0.05 0.04 0.19 
 

mesoridazine B 2.640 3.027 3.90 3.83 3.41 
 

methoxyflurane N 0.864 1.070 2.21 2.01 1.91 
 

methyl cyclopentane N 1.140 1.347 3.37 3.15 2.31 
 

methyl ethyl ketone N 0.047 0.057 0.29 0.41 1.01 
 

mirtazapine B 1.969 2.287 2.90 
 

3.38 
 

m-xylene N 1.410 1.641 3.20 3.15 2.98 
 

nevirapine N 1.152 1.332 2.50 [25] 1.75 2.19 
 

n-heptane N 1.791 2.189  
 

3.28 
 

n-hexane N 1.545 1.861  
 

2.88 
 

nordazepam N 1.838 2.055  2.79 3.24 
 

northioridazine B 3.120 3.607  5.29 5.1 
 

n-pentane N 1.299 1.529  
 

2.49 
 

quinidine B 2.016 2.394 3.44 2.82 2.32 
 

sulforidazine B 2.684 3.057 4.45 4.32 3.6 
 

teflurane N 1.029 1.066 
 

2.07 1.63 
 

thioridazine B 3.318 3.816 5.90 5.93 5.48 
 

thioxolone N 2.414 2.834 3.90 2.69 2.93 
 

tiotidine B 0.186 0.375 0.68 0.59 1.18 
 

triazolam N 2.102 2.365 2.42 2.94 3.31 
 

trichloroethylene N 0.837 0.944 
 

2.45 2.17 
 

trifluoperazine BB 3.305 3.651 5.03 4.87 4.72 
 

valproic acid A 1.135 1.542 2.75 2.54 2.61 0.37 

zidovudine A -0.063 0.094 0.05 -0.1 -0.22 -0.28 

Figure 1 illustrates the relationships between log BB and the c/’log kw
IAM values on the MG (A) and 

DD2 (B) stationary phases and a clear descending trend is visible in both plots. These values, calculated by 

considering exp log D7.4 values for acids and log PN values for all the other molecules, are reported in Table 2 

along with the experimental log BB values. The dataset was divided according to the molecules’ ionization 

in neutrals (N), bases supporting one (B) or two (BB) basic groups and acidic (A) compounds. This was set to 

evaluate whether any specific trend was visible in each subgroup. Three of the assayed molecules markedly 

deviate from the pattern identified by the main distribution of points are triazolam, trifluoperazine and 

valproic acid. The chromatographic behaviorur of small molecules on IAM phases has been characterized by 

many research groups for more than three decades [38,39]. Trifluoperazine is a highly lipophilic base, and it 

is well ascertained [14] that these interact with phospholipids weaker than isolipophilic neutral compounds, 

especially on the IAM.PC.DD2 phase. As to triazolam and valproic acid, the reasons for these deviating from 

the main distribution of points do not seem that straightforward to spot. Triazolam is a benzodiazepine 

derivative featuring a structure of three condensed rings covalently bound to one chlorobenzene moiety 

sharing the same plane. It has been again already characterized [39] that those planar structures tend to 

interact with IAM phases stronger than the extent expected based on their lipophilicity, but it is hard to 

assess whether this played a role in this instance. For its being an acid, the calculation of cΔ’log kw
IAM of 

valproic acid was based on log D7.4 rather than log PN. However, since we could not retrieve the 
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experimental value from literature sources, we had to rely on the calculated value, whose closeness to the 

actual value cannot be reasonably taken for granted. Interestingly, a descending trend is visible for neutral 

compounds between the c/’log kw
IAM and log BB values ranging from +1 to 0 but the distribution flattens 

for log BB < 0.  

 

Figure 1. Relationships between log BB values and c/’log kw
IAM.MG

 (A) and c/’log kw
IAM.DD2 

values (B).  

Table 2. c/’log kw
IAM.MG

, c/’log kw
IAM.DD2

 values and experimental log BB values 
for the dataset considered. 

molecule cΔ/Δ’log kw
IAM.MG

 cΔ/Δ’log kw
IAM.DD2

 log BB   

1,1,1-trichloroethane -0.177 -0.196 0.40 

1,2-dimethylbenzene -0.339 -0.396 0.37 

1,4-dimethylbenzene -0.342 -0.460 0.31 

1,7-dimethylxanthine 0.588 0.798 0.06 

1-chloro-2,2,2-trifluoroethane 0.070 -0.080 0.08 

1-hydroxymidazolam 0.274 0.217 -0.07 

2,2-dimethylbutane -1.010 -1.107 1.04 

2-methylpentane -0.422 -0.409 0.97 

3-methylhexane -0.249 -0.166 0.90 

3-methylpentane -0.827 -0.880 1.01 

4-hydroxymidazolam 0.029 -0.055 -0.30 

acetaminophen 0.195 0.335 -0.31 

acetone 0.675 0.748 -0.15 

aminopyrine 0.985 1.298 0.00 

amobarbital 0.364 0.570 0.04 

antipyrine 1.189 1.499 -0.10 

bretazenil 1.021 1.191 -0.09 

cyclohexane -0.516 -0.659 0.92 

cyclopropane -0.346 -0.618 0.00 

desmonomethylpromazine 0.104 0.149 0.59 

didanosine 1.168 1.579 -1.30 

diethylene glycol divinyl ether -0.084 0.270 0.11 
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Table 2. Continued… 

molecule cΔ/Δ’log kw
IAM.MG

 cΔ/Δ’log kw
IAM.DD2

 log BB   

Enflurane 0.144 0.125 0.24 

ethanol 0.444 0.490 -0.16 

ethyl ether 0.189 0.360 0.00 

ethylbenzene -0.365 -0.443 0.20 

flunitrazepam 0.721 0.698 0.06 

fluroxene 0.051 0.044 0.13 

halothane 0.075 0.035 0.35 

indinavir 1.299 0.919 -0.74 

isobutyl alcohol 0.175 0.342 -0.17 

Isoflurane 0.174 0.166 0.42 

isopropyl alcohol 0.451 0.593 -0.15 

mesoridazine 0.283 0.267 -0.36 

methoxyflurane -0.154 -0.111 0.25 

methyl cyclopentane -0.797 -0.918 0.93 

methyl ethyl ketone 0.549 0.669 -0.08 

mirtazapine 0.404 0.461 0.53 

m-xylene -0.392 -0.465 0.29 

nevirapine -0.096 -0.120 0.00 

n-heptane -0.075 0.008 0.81 

n-hexane -0.004 0.054 0.80 

nordazepam 0.004 -0.088 0.50 

northioridazine -0.187 -0.273 0.75 

n-pentane 0.059 0.086 0.76 

quinidine 0.024 0.064 -0.46 

sulforidazine -0.108 -0.216 0.18 

teflurane 0.470 0.427 0.27 

thioridazine -0.623 -0.812 0.24 

thioxolone 0.057 0.074 0.40 

tiotidine 0.379 0.623 -0.82 

triazolam 0.917 0.988 0.74 

trichloroethylene -0.150 -0.200 0.34 

trifluoperazine 0.053 -0.164 1.44 

valproic acid 1.574 2.079 -0.22 

zidovudine 0.891 1.239 -0.72 

Figure 2 instead displays the relationship occurring between the data of permeation through the BBB 

and experimental n-octanol/water lipophilicity values. The experimental log P values for 1-chloro-2,2,2-

trifluoroethane, 1-hydroxymidazolam, 3-methylhexane, 4-hydroxymidazolam, bretazenil, desmonomethyl-

promazine, fluroxene, isoflurane, n-heptane, n-hexane, nordiazepam, northioridazine, n-pentane, teflurane 

and trichloroethylene were not available and, therefore, calculated values were used instead. Clearly, log P 

represents an index of paramount importance in pharmaceutical discovery and development [40]. The 

assumption is that lead compounds should lie in a specific range of lipophilicity to be considered for further 
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implementations. The expectation is that lipophilicity should be positively related with data of drugs’ 

passage through complex barriers, including the BBB [40]. However, the extremely scattered data points of 

Figure 2 evidence that no relationship between log P and log BB values can be observed. Likewise, no trend 

is visible between the two considered variables if all the compounds are considered. However, an 

ascending trend is visible for acidic compounds, albeit their number is limited.  

 

Figure 2. Relationships between log BB values and log P values.  

Conversely, the situation changes noticeably when considering only the lowest range of log BB (< -0.20). 

Indeed, as Figure 3 displays, the relationship between log BB and cΔ/Δ’log kw
IAM becomes inverse linear for 

this subset with a rather solid r2 value, i.e., > 0.59, with a superior accuracy afforded by delta values on the 

DD2 phase. This is analogous to what we achieved using delta values obtained from experimentally 

determined log kw
IAM values [14-19,34] instead of the calculated ones. We subsequently compared the 

performance in predicting log BB values of delta descriptors again vs. experimentally determined log PN 

values (detailed in Figure 4). Although a direct linear relationship is observable between log BB (< -0.20) and 

log PN values, its accuracy as assessed from r2 is inferior to that of the relationship developed from 

cΔ/Δ’log kw
IAM.DD2 values. If cΔ/Δ’log kw

IAM are calculated from in silico rather than experimental log P data, 

the relationship between log BB (< -0.20) and cΔ/Δ’log kw
IAM values weaken, although not much, especially 

on the DD2 phase (r2= 0.68 by using clogP values calculated by MarvinSketch, data not shown).  

Although the size of our dataset is relatively limited (n = 56), we can extract some interesting 

information from the results achieved. Specifically, the method for predicting cΔ/Δ’log kw
IAM cannot yet be 

used alone in the discovery phase. However, this can be run as complementary along with other assays for 

profiling the ADME potential of drug candidates as it can provide additional information that is not afforded 

by other early assessments, e.g., lipophilicity. Moreover, the method hereby reported seems to be more 

selective in the identification of the candidates with the slimmest chances to gain access to the brain. This is 

advantageous, especially if the potency of the candidates that are screened is high enough to be effective, 

even if the amounts that are successfully delivered to the brain are low.  
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Figure 3. Relationships beween log BB values (<0.20) and c/’log kw
IAM.MG

 (A) and c/’log kw
IAM.DD2 

values (B).  

 
Figure 4. Relationships beween log BB (<0.20) and log P values.  

These considerations would support the implementation of this method as a filter in the discovery phase 

to filter out the compounds intended to act toward the brain, with substandard potential to partition in the 

CNS. The method seems to work better if the estimation of cΔ/Δ’log kw
IAM relies on experimental 

lipophilicity data rather than calculated ones. This is not an obstacle since many high throughput platforms 

for log P assessments are now available on the market [41] or being described [42] and for sure log kw
IAM 

measurements are more demanding since they require samples to be run over (at least) three organic 

modifier concentrations.  

A further consideration concerns the models used to calculate phospholipophilicity. These are already 

rather good but could be improved by analysing more and more chemically diverse solutes to broaden their 

applicability space.  

c/’log kw
IAM : multiple linear regression 

The passage of therapeutics through the BBB is unanimously recognized as an extremely complex 
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phenomenon, which results from an interplay of various passage patterns, including transcellular passive, 

transcellular active and paracellular passage pathways [43]. Therefore, it is rather unlikely that a sole 

descriptor can encode all the interactions taking place in BBB uptake. For this reason, we calculated an 

ample array (> 1,600) of physico-chemical descriptors by the software E-DRAGON 1.0 and studied them in 

(i) simple linear regression and (ii) multiple linear regression vs. log BB values. Task (i) was done to establish 

how c/’log kw
IAM indexes compared to other physico-chemical descriptors in terms of predictive strength, 

while task (ii) was accomplished to study whether using multiple variables to model the BBB passage of the 

dataset could yield some useful statistic models.  

The results of the simple linear regression analysis are listed in Table 3, along with the relevant statistics. 

An analysis of the data suggests that all regression coefficients are significant at the 99 % level. Among all 

the E-DRAGON descriptors, c/’log kw
IAM.DD2 and c/’log kw

IAM.MG ranked fourth and fifth, respectively and 

their r2 values were exceeded only by parameters referring to polarity (TPSA(NO)), molecular lipophilicity 

(AlogPS), and the number of oxygen atoms (nO). A detailed explanation of these and relevant references is 

reported in supporting information (Table S1). The aspect that both the topological surface area and the 

number of oxygen atoms relate to a fair extent with the BBB passage of the molecules in the dataset may 

suggest that H-bonding may act by preventing the uptake of these chemicals through the BBB. This agrees 

well with the observations made by Diamond and co-workers [44] and other research groups [45].  

Subsequently, the incorporation of c/’log kw
IAM descriptors was attempted in multiple linear 

regression reported below: 

log BB = 0.0668 + 0.1548 ALOGPS_logP - 0.0779 cΔ/Δ’log kw
IAM.MG - 0.0046 TPSA(Tot) - 0.3464 nROH (6) 

r2 = 0.73 q2 = 0.67   SE= 0.280  F =  34.45  P=6.26e-14 PC=4.450 

and after LOO:  

log BB = 0.0425 + 0.1657 ALOGPS_logP - 0.0609 cΔ/Δ’log kw
IAM.MG - 0.0043 TPSA(Tot) - 0.3709 nROH (7) 

r2 = 0.76  SE= 0.266  F =  38.79 P=9.35e-15 PC=3.93 Exc: mesoridazine 

Table 3. Variable considered and r
2
 vs log BB values. A detailed 

description of the descriptors is offered in supporting information 
(Table S1). The statistics of the each regressor is reported in 2.3.   

The statistics of the equations has been 

detailed in 2.3, while Exc identifies the 

compound that was excluded from the 

regression. According to both equations 

(6) and (7), the BBB diffusion of chemicals 

seems to be promoted by molecular 

lipophilicity and hindered for molecules 

featuring high c/’log kw
IAM.MG, which is an index accounting for the excess of the polar/electrostatic 

interaction forces realized in the interplay between the chemical species and membrane phospholipids. 

Again, according to the models presented above, the BBB uptake of molecules is less efficient for those 

supporting many polar atoms (and specifically many hydroxyl groups). An r2 (n-1) value equal to 0.76 

suggests that the statistic model is robust and reliable. A plot experimental vs. predicted (according to Eq. 

(7)) log BB values is presented in Figure 5. The value of each descriptor is reported in supporting 

information (Table S2).   

 
 

Variable r
2
 q

2
 SE F P PC 

TPSA(NO) 0.46 0.42 0.385 46.08 9.08e-09 7.985 

ALOGPS_logP 0.42 0.37 0.398 39.36 6.19e-08 8.561 

nO 0.38 0.33 0.411 33.46 3.77e-07 9.138 

cΔ/Δ’log kw
IAM.DD2

 0.38 0.32 0.413 32.82 5.36e-07 9.205 

cΔ/Δ’log kw
IAM.MG

 0.37 0.32 0.414 32.36 5.36e07 9.255 
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Figure 5. Experimental vs predicted log BB values calculated according to Eq. (7).  

Conclusions 

 The present study proposes a method to streamline the drug discovery/development process and filter 

out solutes whose BBB permeation is envisaged to be substandard. Even if the dataset is limited in size and 

the method is not mature enough for broad implementation alone, it may be applied, along with other 

methodologies by pharmaceutical companies and research institutes, to focus only on candidates that tend 

to concentrate on the brain. This way, all the others can be neglected, thus saving time and money 

resources.  
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