
Published in TOOLS Asia ’97 conference proceedings, Beijing , China, 22-25 Sept. 1997.

Mechanisms for Interpretation of OO Systems Design Metrics

Philippe Li-Thiao-Té, Jessie Kennedy and John Owens
Department of Computer Studies, Napier University, Canal Court,

42 Craiglockhart Avenue, Edinburgh EH14 1LT, Scotland, UK
e-mail: {p.li, j.kennedy, j.owens}@dcs.napier.ac.uk

http://www.dcs.napier.ac.uk/osg
Tel: +44 (0)131-455 5340 Fax: +44 (0)131-455 5394

Abstract
A major criticism of metrics for object-
oriented systems design has been their lack in
generating meaningful feedback information.
This paper proposes a data interpretation
method based on visualisation of results
obtained from the method redefinition metric
set. The method encompasses an “alarmer”
technique for identifying suspected design
problems occurring under certain conditions.
We demonstrate how the method provides a
mechanism for metric result interpretation,
design problem identification and design
decision deduction.

Keywords: object-oriented metrics, data
interpretation, visualisation, metrics profile,
Smalltalk class hierarchy.

1. Introduction

“Goodness” of an Object-Oriented (OO)
design depends on its interpretation and can
therefore be the subject of debate. In
comparison with the difficulty of designing an
OO model, assessing it is also troublesome

[Avotins94, Binkley96, Bristol96, Chidamber91,
Koskimies92, Li96, McKim93]. The increased
interest in metrics for OO has been significant
over the last five years [Abbot94,
Chidamber94, Harrison96, Henderson96,
Kemerer96, Lewis95, Li93, Li97, Lorenz94,
Whitty96]. However, little research has been
done on the interpretation and analysis of
metric results, making meaningful design
decisions difficult. Thresholds, averages and
benchmarks constitute the main elements
against which comparisons are possible
[Chidamber94, Henderson96, Lorenz94] but
there are no general standards. The data
visualisation method and alarmer technique
presented in this paper are based on the idea
of metric profiles i.e. typical shapes obtained
for a particular metric. Any deviation from
this “norm” will suggest potential
inconsistencies which correspond to specific
design problems. We chose to assess class
hierarchies as this is the main structural and
behavioural organisation for reusability and
flexibility. Also, it is noticeable that simple
mechanisms such as property inheritance, can
generate complex behavioural problems
which happen more often than expected
[Cook92, Li97, Taivalsaari96]. The different
concepts presented here are based on earlier
work on the multiple descendant redefinition
(MDR) problem and the redefinition metric
set described in [Li97]. Briefly, the MDR
problem contends that the property

- 2 -

inheritance scheme is broken i.e. nothing is
inherited from the ancestor classes, when
methods are completely redefined multiple
times in the same branch of the hierarchy. A
simple redefinition metric set was proposed to
pinpoint such inheritance anomalies. The
results suggest that a typical redefinition
profile might exist for different branches in
the Smalltalk class hierarchy. The detection
and localisation of potential behavioural
design flaws was possible. This paper
concerns the study of the interpretation of
metric results.

In section 2, we will explore how the
assessment of an OO design is possible. In
section 3, a description of the multiple
descendant redefinition problem is given. In
section 4, many visualisations of the same
metric results set are evaluated towards the
identification of potential design problems.
The technique of the alarmer is explained in
section 5, followed by a presentation of our
data interpretation system. Finally, we
discuss related work on metric results
interpretation for OO sytems and present
further work.

2. Assessing OO characteristics

Stating that a design is good is only valid with
respect to criteria such as coupling, cohesion,
reuse, hierarchy structure, polymorphism and
the property inheritance scheme
[Chidamber94, Briand94, Li97, Lorenz94,
Tegarden95]. However, few papers identify
wrong use of OO design concepts where a
metric has been provided to permit its
detection [Barnes93, Brito95, Li97]. Usually,
a suite of coherent metrics is recommended to
be used within a measurement programme,
however, dependencies between them are still
unclear [Henderson96]. In this paper, the
metrics used are aimed at understanding the

inheritance mechanism and the effects
produced in class hierarchies, correctness of
which is generally considered from two
viewpoints [Armstrong94]:

• structural: which concerns the common
properties to be defined in a class,

• behavioural: which concerns the necessary
functionality of a class.

Depending on the designer’s modelling
strategy, a compromise, sometimes difficult,
has to be made. Metrics can assess this
uncertainty providing that the characteristics
to be measured are well-identified and
defined [Kolewe93]. Current criticisms of OO
metrics are that they only provide hints to the
“goodness” of the design. We argue that a
precise identification of suspected problems
with valid metrics for its assessment will
suggest obvious directions or solutions for
design improvement. Therefore, metrics can
be prescriptive.
The next section discusses the multiple
descendant redefinition problem in order to
illustrate our metric profiling technique.

3. The multiple descendant
redefinition (MDR) problem and
associated metrics

The construction of class hierarchies still
remains a problem due to the constraints
involved and the required criteria. Although
the property inheritance scheme defined by
the OO paradigm constitutes a powerful
mechanism for achieving reusability and
flexibility, it can also introduce inconsistent
design which infringes the essence of
inheritance [Cook92, Li97, Meyer88,
Rumbaugh91, Rumbaugh96, Seidewitz96,
Taivalsaari96]. Method redefinition is
justifiable for realising polymorphism
[Meyer88, Rumbaugh91], nevertheless, it
seems unnatural, as the main goal of

- 3 -

inheritance is to inherit, not to redefine.
Method redefinition is the simple syntactic
mechanism by which it is possible for a
subclass to re-implement partially or
completely an inherited method from its
ancestor classes. In [Li97], it was shown that
a high rate of completely redefined methods
occurs in the current Smalltalk class hierarchy
which strongly suggested the problem of
potential behavioural inheritance
inconsistencies. Many methods defined in a
parent class were found to be completely
redefined many times down the hierarchy.
This was referred to as the "multiple
descendant redefinition" problem. In such
cases, there are no benefits from inheritance,
indicating that either the parent class contains
poorly abstracted methods or that the
subclasses are wrongly situated in the
hierarchy thereby obliging the class to ignore
inherited properties. A set of redefinition
metrics was proposed in order to assess such
anomalies. For this paper, only the three main
metrics will be considered:
¾ PRM: percentage of redefined methods

includes the methods completely
redefined, extended and realised,

¾ PCRM: percentage of completely
redefined methods (including the ones
realised),

¾ PEM: percentage of extended methods.
Often, a deep analysis of the class hierarchy
source code depicted that suspected methods
can simply lack from code factorisation and
thereby fall under the case of a complete
redefinition instead of an expected extension.
It was suggested that, due to the class
dependencies problem and incremental
software development, developers would
prefer to re-write their own version.

4. Metric results visualisation and
interpretation

To date, most research work on metrics has
concentrated on the metrics themselves and
does not exploit the results from different
perspectives. The derivation of metrics tends
to generate a large data set, as a result. Thus
the motivation for this work is the problem of
metric results interpretation. A graphical
representation of raw data is the first natural
step. Instead of a table of plain numbers
which might be suitable in some cases, the
main benefits of a visualisation is that it is
easy to pinpoint disparities. We aim at
evaluating different representations in order
to identify the appropriateness of these with
regard to the metric chosen and the design
characteristics expected to be interpreted. The
suitability of the visualisation type chosen
determines the correctness of the
interpretation. In addition, it is sometimes
either convenient or necessary to transform
raw data before being visualised. A pre-
transformation of data is seen as a re-
processing stage where the results from the
transformation are expected to exhibit some
desired features or peculiarities. The choice
of the transformer function is outside the
scope of this paper, however, transformations
in the metrics domain are considered. An
example of a typical transformation could be
simple filtering functions permitting the
distribution of the data in a particular way for
representation. Providing that suitable
visualisation of the metric results exists, it is
possible to identify design inconsistencies
manifested by disparities on the
representation for the assessed characteristic.
Thus, the notion of pattern profiles. The
technique of alarmers are aimed at specifying
and recognising such disparities. More
generally, the identification of conditions

- 4 -

under which a disparity occurs is essential for
design problem detection.
The variety of classical chart types offered by
Microsoft Excel covered our requirements
for evaluating metrics result visualisation.
Ideally, it is sought to recognise typical
pattern profiles which would be classified for
a particular metric and thereby, the
corresponding design problems. Suggestions
for design improvement would then be
facilitated. A profile should exhibit some
expected characteristics or properties related
to the metric considered. Statistical methods
are a possible solution to data interpretation
e.g. variance, covariance, regression and
correlation but these are not considered here
[Henderson96]. An alternative choice is to
look at the range of possible chart types
available for evaluating their appropriateness
against the concerned metric. Not all graphic
representations are suitable for a given
metric, the choice depends on its type, on its
properties, on the characteristics to be

measured and on the type of results expected.
For example, the redefinition metric set
measures the amount of redefined methods in
a class hierarchy. The measure is taken level
by level in the hierarchy and a percentage is
returned for each level. Therefore, the type of
results is discrete which prohibits the use of
smooth curves. Instead, visual representations
such as bar charts or scatter plots are the most
suitable.
A case study assessing the inheritance of the
Smalltalk class hierarchy is used to evaluate a
range of visualisations to aid the
interpretation of the redefinition metric set.
The detection and localisation of the MDR
problem was expected. The same data set i.e.
redefinition metric results, will be used in
order to keep elements of comparison
consistent. The concerned Smalltalk branches
are the Object and the GraphicObject
branches. They were chosen for the reasons
that they show completely different
redefinition profiles and that potential design

7

5

3

1

60
52

45.54
56.03

42.15
19.39

6.48

0 10 20 30 40 50 60

7

5

3

1

D
IT

Smalltalk Objec t Branc h (%)

PRM

7

5

3

1

600
38.2513.75
37.887.66

47.488.55
38.034.12

18.161.23
6.34

0.14

0 10 20 30 40 50 60

7

5

3

1

D
IT

Smalltalk Objec t Branc h (%)

PEM
PCRM

Fig. 1a and 1b: Bar chart profiles for the Object branch

5

3

1

100
81.82
83.24

4.3
7.69

0 10 20 30 40 50 60 70 80 90 100

5

3

1

D
IT

Smalltalk GraphicObject Branch (%)

PRM

5

3

1

1000
71.6810.14
74.288.96

3.44
0.86

7.69
0

0 10 20 30 40 50 60 70 80 90 100

5

3

1

D
IT

Smalltalk GraphicObject Branch (%)
PEM
PCRM

Fig. 2a and 2b: Bar chart profiles for the GraphicObject branch

- 5 -

problems exist in the latter.
In the following sections, a description of the
main representations for the redefinition
metrics are presented. The experiments were
done on the Smalltalk Express1 class library.
The "OO system metric browser" described in
[Li97] was used and extended in order to test
the proposed alarmer technique.

4.1. Bar Charts

The PRM metric is the percentage of
redefined methods without differentiation
between its variants [Li97]. As expected, on
Fig. 1a, the PRM rate of increase of the
Object branch is fairly smooth. The first
surprising feature (Fig. 1b) is the relatively
high number of completely redefined methods
(PCRM) in the whole Smalltalk hierarchy.
Around 40% of methods are redefined from
DIT=3 to DIT=7. The shape for the PEM is
also smooth but the extension mechanism is
not as highly used as expected with a mere
13.75% peak at DIT=6. Redefinition, which
is recommended to be used with care, occurs
frequently at all levels in the hierarchy, and
extension, which is recommended, is rarely
used. This raises the question of the

1 In this paper, Smalltalk Express designates the
version based on Smalltalk/V Win16 and
WindowBuilder Pro/V provided by ObjectShare , a
Division of ParcPlace, http://www.objectshare.com

correctness of the behavioural inheritance
design. Also, the bar charts permit
identification of suspect peaks occurring
suddenly.
For the GraphicObject (Fig. 2b), the PCRM
increases by a factor of 21.6 from DIT= 2 to
DIT=3. This shows that method redefinition
occurred at the top of the hierarchy, and
questions whether the methods were initially
well-abstracted. At this point, it is not
possible to determine if the high level of
redefinition is legitimate i.e. for realising
polymorphic methods. A very suspect feature
is depicted at DIT=5 on Fig. 2b: PCRM=100
and PEM=0 indicating that all classes at this
level are completely redefining all their
methods. Considering this level in the
hierarchy, it is surprising that no methods
were reused nor extended and that no addition
of new methods were made. A deeper study
of the GraphicObject branch reveals that this
phenomenon seems to happen relatively often
and concerns a few leaf classes. This abuse of
the method redefinition mechanism seems to
remedy the lack of multiple inheritance and
seems to confirm our hypothesis.

4.2. Surface bar charts

Surface bar charts are meant to exhibit the
distribution of multiple metric result sets. On
a bar chart scaled from 0 to 100%, it is
possible to show the proportion of one or
other metric for the system measured. This

Smalltalk Object Branch (%)

60
38.25

37.88
47.48
38.03
18.16

6.34

0
13.75

7.66
8.55
4.12
1.23
0.14

0% 20% 40% 60% 80% 100%

7

5

3

1

D
IT

PEM
PCRM Smalltalk GraphicObject Branch (%)

100

71.68

74.28

3.44

7.69

0.86

0

0

10.14

8.96

0% 50% 100%

5

4

3

2

1

D
IT

PEM
PCRM

Fig. 3a and 3b: Surface bar profiles for the Object and GraphicObject branches

- 6 -

representation is useful for metrics which are
complementary, such as the PCRM and PEM
metrics (both variants of the general
definition of method redefinition). While the
PCRM metric takes into account complete
redefinition and realisation cases, the PEM
includes the extension case. On Fig. 3b, the
proportion of PCRM shown raises the issue

of the balance between use of the mechanisms
offered by OO technology. For the
GraphicObject branch, the extension of
methods is poor. This visualisation is
convenient for depicting trade-offs in design
where a compromise characteristic is
expected to be seen. Notice that the join lines
at the PCRM and the PEM boundary are
drawn for ease of reading but do not define a
smooth curve (the metrics results are discrete
value sets). Further experiments on several
other branches seem to confirm that the
profiles shown occur on many occasions. An
early analysis suggests two corresponding
design problems:

• methods in top classes are poorly-
abstracted,

• leaf classes are wrongly-subclassed as
they are not reusing inherited properties.

A 100% of PCRM for the GraphicObject at
DIT=5 suggests further analysis of the
amount of polymorphic methods in the top
classes. Comparing Fig. 3a and 1b the visual
effect is immediate in the former. A quick

glance permits the interpretation of the
behaviour of distribution of PCRM and PEM
down the hierarchy.

4.3. Surface charts

The surface charts are a variant of the surface
bar charts but this representation is

convenient for metrics returning non-discrete
values. Although, not suitable for the
redefinition metrics this is intended only as an
example. Again, this visualisation can quickly
outline the balance between two or more
correlated metrics. Design decisions can
therefore, be quickly deduced. On Fig. 4a, at
DIT=6, the apportionment of PCRM vs.
PEM is 60 to 40 % whereas at DIT=7, the
apportion comes to respectively 100 to 0%.
This suggests that leaf classes are more
subject to complete redefinition than
extension but no conclusions can be drawn on
the correctness of the behaviour.

4.4. Addition bar charts

The addition bar charts are also suitable for
complementary or related metrics. As
completely redefined and extended methods
are redefined methods, the sum of PCRM and
PEM gives the PRM (Fig. 1a and 1b). On
Fig. 5a and 5b, PRM is shown by the total
extent of the bar. The addition bar chart is

Smalltalk Object Branch (%)

6.34 18.16 38.03 47.48 37.88 38.25
60

0.14 1.23 4.12 8.55 7.66 13.75
0

0%

50%

100%

1 2 3 4 5 6 7DIT

PEM
PCRM Smalltalk GraphicObject Branch (%)

7.69
3.44 74.28 100

0 0.86 0

71.68

8.96 10.14

0%

50%

100%

1 2 3 4 5DIT

PEM
PCRM

Fig. 4a and 4b: Surface profiles for the Object and GraphicObject branches

- 7 -

considered an enhanced version of the simple
bar chart as it makes clear the values for each
of the shown metrics. However, to find out
the apportionment for each of the metric, the
surface charts are needed.

4.5. Radar charts

Finally, the radar charts are useful for
exhibiting disparities between profiles. They
can also pinpoint differences in the shape of
the profile. In particular, it is convenient to
use this representation when previous
experiments have defined, for example,
averages or thresholds for what is considered
good or bad. Any disparity can then be
quickly pinpointed. Again, the join lines are
shown for ease of reading but it is possible to
take them into consideration for identification
of pattern profiles. When a smooth increasing
curve is expected, the shape of the profile is a
spiral. Attention should be taken when
interpreting this type of chart as it can hold

large amounts of information which can be
confusing. For the GraphicObject branch,
both curves obtained are rather intriguing as
the redefinition activity seems to take place
only in deeper levels of the hierarchy.

Intuitively, this is confirmed by the
assumption that a class situated deeper in a
hierarchy inherits all methods from its
ancestors classes. It is therefore potentially
able to call a high number of possibly
unrelated methods, thus explaining the high
level of the redefinition. On Fig. 6b, it is
clearly seen that two dimensions 1 and 2 are
negligible compared to those remaining.
Given that those dimensions represent the
DIT level, it seems fair to conclude that a
redefinition activity is more likely to happen
in the bottom of the hierarchy due to the
abstraction property of classes at the top.
However, the rate of increase of the metrics
cannot be easily pictured in those charts.

Smalltalk Object Branch (%)

60
38.25
37.88

47.48
38.03

18.16
6.34

0

8.55
4.12

1.23
0.14

13.75
7.66

0 10 20 30 40 50 60

7

5

3

1

D
IT

PEM
PCRM Smalltalk GraphicObject Branch (%)

100

71.68

74.28

0

10.14

7.69

3.44
8.96

0.86

0

0 50 100

5

4

3

2

1

D
IT

PEM
PCRM

Fig. 5a and 5b: Addition bar charts profiles for the Object and GraphicObject branches

Smalltalk
GraphicObject Branch (%)

0

50

100
1

2

34

5

PCRM

PEM

Smalltalk
Object Branch (%)

0

20

40

60

2

3

45

6

7

PCRM

PEM

Fig. 6a and 6b: Radar charts profiles for Object and GraphicObject branches

- 8 -

4.6. A colour coded range bar charts

In the colour coded range charts, the metrics
results set is pre-processed by a filter function
first. The coloured bars shown in Fig. 7a and
7b have been obtained by checking the pre-
defined ranges in which each metric value is
situated. The coloured range bars are defined
in Table 1. The apportionment has been
arbitrarily chosen to be equal but this is not
necessary. It is important to underline that
this filtering method is not meant to be
compared to a subjective assessment metric
although based on the same principle as
scaling. It is the responsibility of the designer
to define the ranges, therefore the filter
function. Table 1 shows an apportionment
into 7 ranges, roughly equal to 100/7. When
the proportions are equal, the smaller the
proportion is, the closer this visualisation will
be to the equivalent in a bar chart

representation. In our example, colour shaded
rectangles have been used to give a gradual
effect. Also, it might be interesting to
consider non-equal apportionment of the
ranges. In such cases, attention should be
given to the grounds on which the proportions
are attributed to prevent from subjective
interpretation [Henderson96]. For example,
adopting a non-equal range strategy for a
metric m and, providing that previous
statistical experiments deducted a threshold
of 60%, only three ranges are necessary. The
first range is for 0, the second from 0 to 0.6
and the third 0.61 to 1. The same principle of
colour coded rectangles can be used to
quickly locate defects, thus only three colours
would be used in this example.
In the GraphicObject branch, from DIT=2 to
DIT=3, the peak (already pinpointed with the
bar chart) appears even more suspect as the
PRM increases by a factor of 21.6 suggesting

Hiera rchy Branch : O bject

6.48 0.14

19.39

42.15

56.03

45.54

18.16

38.03

47.48

37.88

4.12

8.55

7.66

1.23

PRM
 (%)

PCRM
 (%)

PEM
 (%)

52

60

38.25

60

13.75

0.0

6.34

DIT

1

2

3

5

4

6

7

H iera rchy Branch: G raphicO bject

7.69 7.69 0.0

4.3

83.24

81.82

100 .0

3.44

74.28

71.68

100 .0

8.96

10.14

0.0

0.86

PRM
 (%)

PCRM
 (%)

PEM
 (%)

DIT

1

2

3

5

4

Fig. 7a and 7b: Colour coded bar for the Object and GraphicObject branches

Range Apportion (%) Colour coded bar representation
0 0
1 0.01 - 14
2 14.01 - 28
3 28.01 - 42
4 42.01 - 56
5 56.01 - 70
6 70.01 - 84
7 84.01 - 100

Table 1: Example of equally distributed ranges

- 9 -

potential design flaws at DIT=2. Although
this visualisation seems similar to the bar
charts, but less accurate, the main idea for
such a visualisation is to use it in conjunction
with a triggering function or alarmer.

5. The concept of “alarmers”

The concept of an alarmer is simple. Suppose
we want to detect any factor increase > 2
between two consecutive levels in the
hierarchy. Any values satisfying the condition
is expected to be pinpointed automatically.
This is exactly what the alarmer technique is
intended for. If an alarmer is set on for the
GraphicObject branch in Fig. 7b, only the
values of PRM and PCRM at DIT=3 would
be found. If it was decided to use the colour
coded bar charts for visualisation, only the
two bars at DIT=3 for PRM and PCRM are
shown. Indeed, the visual effect of the colour
coded bar representation is immediate and
asks for further analysis. The alarmer has
accomplished its task in pinpointing the
disparate results.

5.1. The alarmer mechanism

The first desired functionality of an alarmer is
that it should provide a means for defining the
behaviour to be detected. A simple form of an
alarmer would be to detect a particular
expected value within a set. In such a case, a
simple condition function would be sufficient
to filter the initial results set. For instance,
this would be useful for comparing metrics
results to the traditional averages or threshold
numbers. Suppose that after some statistical
analysis of the redefinition metrics results for
a project, a threshold of 40% of redefinition
is arbitrarily defined above which the design
is to be re-considered. Therefore the
triggering condition is simply:
metricValue >= AVERAGE _THRESHOLD

However, in the case of an alarmer triggered
when the “weighted methods per class
(WMC)” metric [Chidamber94] is greater or
equal to 5. The triggering condition becomes
a function:
wmc(class) >= AVERAGE _THRESHOLD

From the two cited examples, we can see that
the core element of an alarmer resides in its
triggering condition. In the case of large data
sets, complex conditions can be applied. In a
general case, an alarmer makes use of the
following main components (Fig. 8):

• a filter function: when not all metric
values are of interest in the whole metric
result set, a filter function can be used to
reduce the amount of data processed.

• a transformer function: if the data has to
be transformed before application of the
triggering condition, a transformer
function e.g. statistical functions can pre-
processed the metric results set.

• a triggering condition: defines the
condition under which the set of values to
check are satisfied.

6. Data interpretation system

A data interpretation system has been built
based on the components shown on Fig. 8.
The raw data in our model can be directly
displayed or pre-processed before being
displayed. The visualiser permits the display
of the possible representations. A data
transformer contains a list of functions
permitting pre-processing of the data set.
Typical transformer functions are filtering
and statistical functions. When the designer
has recognised some design problems in the
hierarchy, the alarmer engine allows one to
define and set up the alarm. In some cases, it
would be necessary to pre-process the data set
before setting up an alarm for the new metrics

- 10 -

set. Thus, the alarmer engine can co-operate
with the data transformer.

7. Discussion and conclusion

Chidamber and Kemerer’s [Chidamber91,
Chidamber94] early work on OO metrics
proposed a suite of six metrics for assessing
the complexity of an OO model. Their
metrics were applied on C++ and Smalltalk
For each of their metric's suite, only simple
histograms and summary statistics in a table
form were produced. The interpretation of
data relied on comparisons made between the
histograms obtained for both sites. All charts
represented the range of metric values (x-
axis) obtained against the number of classes
involved (y-axis) for each of the values. No
correlation between the metrics were
presented. The authors only suggest that a
class hierarchy can be "top” or "bottom-
heavy" i.e. the DIT metric and the "number of
children (NOC)" metric are correlated. A
high peak in the NOC histogram showed that
most of the classes have no child classes. It
was suggested that design practices dictated
the use of shallow inheritance hierarchies, and
that performance was the given reason in
some cases. A use of surface bar charts might
be a good candidate to exhibit previous

observations. In such cases, it would be
interesting to measure the number of classes
per DIT level against their average number of
children. Conceptually, it is expected to lead
to the same conclusions.
In Lorenz and Kidd's [Lorenz94] project
experience database, only histogram charts
were used. In some cases, this type does not
seem very appropriate due to the existence of
large numbers in the results set. For instance,
they considered the "number of message
sends" metric and represented the values
obtained against the number of methods.
They correctly suggested that a rapid drop in
numbers is the typical pattern found. This
confirms the assumption that coupling
between objects should be low in order to
avoid inter-class dependencies. However,
from a bad practise detection viewpoint, it
would be more interesting to find out the
methods which are strongly coupled. This
could not be easily shown on the provided
histogram as only a few methods are expected
to send a large number of messages.
Considering the colour coded range bar chart,
an appropriate definition of ranges would
immediately locate such disparate results for
further analysis.
Currently, one of the main problems which
infringes the development and adoption of
OO metrics is a lack of tools for supporting
their development and use in a general sense.
We have developed a prototype which allows
the localisation of suspected defect methods
containing the MDR problem and the
persistent storage metric results with a simple
versioning mechanism.

This research work contributes an important
part towards the improvement of data
interpretation technique for OO metric
results. Statistical analysis techniques provide
solutions but are not easy to manipulate and
not directed to OO design problems. Due to

raw data

Alarmer engine

Specification of conditions

visualiser

statistical
functionfilter

function...
function

Data Transformer

Fig. 8: Data interpretation system

- 11 -

the large data set which metrics can generate,
it is necessary to have some mechanisms to
quickly filter or re-process the data set in
order to facilitate their interpretation.
Detecting if a metric satisfies what it was
aimed at can be blurred by the results if not
interpreted correctly. In particular, this paper
presented a description of many graphical
representations for tackling the problem of
interpretation. Visualisation techniques
constitutes a powerful additional analysis tool
for evaluating OO models. In addition, the
alarmer technique provides an easy way to
detect likely problems for a metric in
detecting suspect values from a set of data
when a triggering condition is satisfied. The
use of the redefinition metric set as a basis
for our case study demonstrated that the
knowledge of redefinition profiles of a OO
class hierarchy gave us insights into this
important behavioural aspect. Precise
detection of anomalies has been possible.
Further tests are needed to explore the
possibility of defining good or bad pattern
profiles for these metrics. This new area of
research seems to be promising and has to be
considered as a whole part of the software
measurement process as well as the software
development life cycle. We believe that
visualisation techniques and the concept of
alarmers for data interpretation are strong and
simple candidates for detecting complex
design problems.

Future work encompasses:

• the creation of new types of possible
representations,

• the classification of typical pattern
profiles,

• the formalism of specification of the
triggering condition for the alarmer, and,

• the integration of our proposed data
interpretation system in a measurement

framework model such as "the application
of metrics to industry (AMI)" program
proposed in [Rowe93].

The overall aim of the project is to propose
an integrated development environment
whereby measurement techniques are used to
assess an OO model at early stage of the
development and also to be able to re-inject
design decisions into the model. Thus, the
design-evaluation cycle can be completed and
repeated. In summary, “measure to
understand, interpret to decide and transform
to improve”.

Acknowledgement: We would like to thank
Mike Jackson (Wolverhampton University)
for his comments on early versions of this
paper.

References

[Abbot94] D H. Abbot, T D. Korson and J D.
McGregor. A Proposed Design Complexity
Metric for Object-Oriented Development.
Department of Computer Science, Clemson
University, Clemson, SC29634-1906, 1994.

[Armstrong94] J M. Armstrong and R J. Mitchell.
Uses and abuses of inheritance. Software
Engineering Journal, Janu. 1994.

[Avotins94] J Avotins. Defining and Designing a
Quality OO Metrics Suite. TOOLS USA ‘94
Conference proceedings, USA, 1994.

[Barnes93] G M Barnes and B R Swin. Inheriting
software metrics. Journal of Object-Oriented
Programming, pp. 27-34, Nov/Dec. 1993.

[Binkley96] A B. Binkley and S R. Schach.
Impediments to the Effective Use of Metrics
Within the Object-Oriented Paradigm.
OOPSLA '96 Workshop on "OO Product
Metrics", Workshop report, 1996.

[Briand94] L Briand, S Morasca and V R. Basili.
Goal-Driven Definition of Product Metrics
Based on Properties. University of Maryland
Institute for Advanced Computer Studies,
Technical Report CS-TR-3346, Sept. 1994

- 12 -

[Bristol96] S R. Bristol. Tools for Object-Oriented
Metrics Collection, OOPSLA '96 Workshop
on OO Product Metrics, 1996.

[Brito95] F Brito e Abreu, M Goulão and R
Esteves. Towards the Design Quality
Evaluation of Object-Oriented Software
Systems. Proceedings of the 5th International
Conference on Software Quality, Austin,
Texas, USA, Octo. 1995.

[Chidamber91] S R. Chidamber and C F. Kemerer.
Towards a Metric Suite for Object-Oriented
Design. OOPSLA'91 Conference proceedings,
pp. 197-211, Octo. 1991.

[Chidamber94] S R. Chidamber and C F. Kemerer.
A Metric Suite for Object Oriented Design.
IEEE Transactions on Software Engineering,
20(6), June 1994.

[Cook92] W R. Cook. Interfaces and
Specifications for the Smalltalk-80 Collection
Classes. OOPSLA '92 Conference
proceedings, Vancouver, Canada, Oct. 18-22,
ACM SIGPLAN 27(10):1-15, 1992.

[Harrison96] R Harrison and R Nithi. An
Empirical Evaluation Of Object-Oriented
Design Metrics. OOPSLA '96 Workshop on
"OO Product Metrics", 1996.

[Henderson96] B Henderson-Sellers. Object-
Oriented Metrics, Measures of Complexity.
Prentice Hall Object-Oriented Series, ISBN 0-
13-239872-9, 1996.

[Kemerer96] C F. Kemerer. Measuring the
Unmeasurable. Bournemouth Metrics
Workshop 1996, Bournemouth University.

[Kolewe93] R Kolewe. Metrics in Object-Oriented
Design and Programming. Software
Development, 1:53-62, Octo. 1993.

[Koskimies92] K Koskimies and J Vihavainen.
The problem of Unexpected Subclasses.
Journal of Object-Oriented Programming, pp.
53-59, Octo. 1992.

[Lewis95] J A. Lewis. Quantified Object-Oriented
Development: Conflict and Resolution. 4th
Software Quality Conference, 1:220-229,
University of Abertay, Dundee, July 1995.

[Li93] W Li and S Henry. Object-Oriented Metrics
Which Predict Maintainability. Journal of
Software Systems, 23(2):117-122, 1993.

[Li96] P Li-Thiao-Té. Integrating Measurement
Techniques in An Object-Oriented Design

Process. Technical Report, Napier University,
Edinburgh, 1996.

[Li97] P Li-Thiao-Té, J Kennedy and J Owens.
Assessing Inheritance for the Multiple
Descendant Redefinition Problem in OO
Systems. To appear in OOIS ’97 Conference
proceedings, 1997.

[Lorenz94] M Lorenz and J Kidd. Object-Oriented
Software Metrics. Prentice Hall Object
Oriented Series, 1994.

[McKim93] J C. McKim, Jr. and D A. Mondou.
Class Interface Design: Designing for
Correctness. Journal of Systems and Software,
(23):85-94, 1993.

[Meyer88] B Meyer. Object-oriented Software
Construction. Prentice Hall International,
C.A.R. Hoare, Series Editor, ISBN 0-13-
629049-3, 1988. http://www.eiffel.com

[Rowe93] A Rowe and R Whitty. Ami: promoting
a quantitative approach to software
management. Software Quality Journal,
(2):291-296, 1993.

[Rumbaugh91] J Rumbaugh, M Blaha, W
Premerlani, F Eddy, and W Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall,
Englewood Cliffs (N.J.), 1991.

[Rumbaugh96] J Rumbaugh. A Matter of Intent:
How to Define Subclasses. Journal of Object-
Oriented Programming, (18):5-9, Sept. 1996.

[Seidewitz96] E Seidewitz. Controlling
Inheritance. Journal of Object-Oriented
Programming, pp. 36-42, Janu. 1996.

[Taivalsaari96] A Taivalsaari. On the Notion of
Inheritance. ACM Computing Surveys,
28(3):439-479, Sept. 1996.

[Tegarden95] D P. Tegarden, S D. Sheetz and D
E. Monarchi. A Sofware Complexity Model of
Object-Oriented Systems. Decision Support
Systems: The International Journal, (13):241-
262, 1995.

[Whitty96] R Whitty. Object-Oriented Metrics: An
Annoted Bibliography. SIGPLAN Notices,
http://www.sbu.ac.uk/~csse/publications/OOM
etrics.html

