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Abstract: Concentrator photovoltaics have several advantages over flat plate systems. However,
the increase in solar concentration usually leads to an increase in the solar cell temperature, which
decreases the performance of the system. Therefore, in this paper, we investigate the performance
and temperature limits of a high concentration photovoltaic Thermal system (HCPVT) based on
a 1 cm2 multi-junction solar cell subjected to a concentration ratio from 500× to 2000× by using three
different types of cooling fluids (water, ethylene glycol and water mixture (60:40), and syltherm oil
800). The results show that, for this configuration, the maximum volumetric temperature of the solar
cell did not exceed the manufacturer’s recommended limit for the tested fluids. At 2000× the lowest
solar cell temperature obtained by using water was 93.5 ◦C, while it reached as high as 109 ◦C by using
syltherm oil 800, which is almost equal to the maximum operating limit provided by the manufacturer
(110 ◦C). Overall, the best performance in terms of temperature distribution, thermal, and electrical
efficiency was achieved by using water, while the highest outlet temperature was obtained by using
syltherm oil 800.

Keywords: multi-junction solar cell; HCPV; minichannel; finite element method

1. Introduction

Concentrator photovoltaics (CPV) has attracted a great deal of attention in the field of electricity
generation due to its competitive cost in comparison with conventional PV systems for areas with high
solar irradiance [1]. The key advantage of the CPV system is the use of high-efficiency concentrator
cells, which can reach as high as 44.4% and 46% for three and four multi-junction (MJ) cells at 25 ◦C,
respectively [2]. A key challenge, however, is the increase in the temperature of the solar cell, which
adversely affects its electrical efficiency. In light of this challenge, the MJ solar cell manufacturer (AZUR
SPACE) has set a maximum operating temperature for the CPV assembly to be 110 ◦C in order to
avoid the damage of the solar cell [3]. Araki et al. [4] indicated that the solar cell temperature increases
rapidly with the concentration ratio and can reach up to 1400 ◦C for 500×when left fully insulated.

Both passive and active cooling mechanisms can be deployed to maintain the solar cell temperature.
However, an active cooling system offers a great advantage over the passive option as it allows the use
of the waste heat from the system in other thermal applications, which increases the total efficiency
of the system as well. Aldossary et al. [5] studied an active cooling system for a high concentrator
photovoltaic (500×) for a 1 cm2 MJ solar cell. Their system considered a rectangular cooling channel.
The maximum solar cell temperature reached 65 ◦C at 0.01 m/s. Alsiyabi et al. [6] investigated the
performance of the CPV system at 500× using a microchannel heat sink. They reported that the
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maximum cell temperature reached 54 ◦C using four layers of a microchannel heat sink, which adds
to the cost of the system. Abo-Zahhad et al. [7] studied a CPV system subjected to a concentration
ratio of 1000× using a water impingement jet. The researchers revealed that the solar cell temperature
fluctuates between 55 and 67 ◦C through the use of water. In another study by the same researchers [8],
a high concentration photovoltaic system (HCPV) under passive cooling conditions was considered.
The maximum temperature of the solar cell reached 160 ◦C at 1500× and convective heat flux of
1600 W/m2K However, there is no reported research about the performance of an HCPV using the active
cooling method for a concentration ratio higher than 500× for a 1 cm2 MJ solar cell with the possibility
of replacing water as a coolant with an ethylene glycol and water mixture or syltherm oil 800 for this
system to avoid the mineral sedimentation issues of water on the fins at high temperatures [9]. Besides,
they offer high boiling temperatures if compared with water, which gives them another advantage.

Therefore, in this paper, we investigate the performance and temperature limits of HCPV using
a mini-channel heat sink under different concentration ratios (500×–2000×). In addition, we present
a comparison of solar cell temperatures when using water, ethylene glycol and water mixture (60:40),
and syltherm oil 800 under a different range of mass flow rates. Performance characteristics are shown,
categorized in terms of maximum solar cell temperature, outlet fluid temperature, and the thermal and
electrical efficiencies of the system.

2. Mathematical Modeling

The 3D computational domain, shown in Figure 1, consists of: (1) 1 cm2 MJ solar cell assembly;
(2) ceramic layer; (3) copper layers; and (4) aluminum mini-channel heat sink. Their thermal properties
and dimensions are presented in Tables 1 and 2. The germanium layer is considered the heat source
of the system [10]. The total input energy (Qin) is converted into electrical power (Psc,elec) and the
remainder is transformed into thermal heat

(
Qsc,heat

)
. The performance of the system is compared

using different working media, water, ethylene glycol and water mixture (60:40), and syltherm oil
800 under different ranges of mass flow rates. The trial and error method is used to evaluate the
temperature of the solar cell (Tsc) using the following relation [11,12]:

ηsc= ηref(1−βref(Tsc − Tref)) (1)

where ηsc and ηref are the solar cell efficiency at a certain temperature and reference cell efficiency at an
ambient temperature of 25 ◦C, respectively. βref is the temperature coefficient of the MJ solar cell and is
equal to 0.0047 %/K as provided by the manufacturer [13] and Tref is the reference temperature of the
solar cell, which is equal to the ambient temperature of 25 ◦C.
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Table 1. Dimensions of different layers of the HCPVT.

Number Layer Length (mm) Width (mm) Thickness (mm)

1 GalnP 10 10 0.07
1 GalnAs 10 10 0.07
1 Ge 10 10 0.07
2 Copper I 27 25 0.25
3 Ceramic 29 27 0.32
2 Copper II 29 27 0.25
4 Aluminum 29 27 6

Table 2. Material thermophysical properties of HCPVT.

Layer Specific Heat,
Cp(J/kg K)

Thermal Conductivity,
k (W/m K)

Density, ρ
(kg/m3)

Emissivity,
ε

GalnP 370 73 4470 0.9
GalnAs 550 65 5316

Ge 320 60 5323
Copper 385 400 8700 0.05
Ceramic 900 27 3900 0.75

Aluminum 900 160 2700

The total input energy on the surface of the solar cell can be represented as:

Qin= DNI CR Acell (2)

The thermal heat and the electrical power produced from the cell are calculated as follows:

Qsc,heat= Qin(1 − ηsc) (3)

Psc,elec= Qinηsc (4)

where DNI, CR, and Acell are the direct solar irradiance (W/m2), concentration ratio, and solar cell area
(m2), respectively. Hence, the thermal energy to be carried by the fluid:

Qth =
·

m cp,f (Tf,out − Tf,in) (5)

where
·

m, and cp,f are the mass flow rate (kg/s) and the specific heat capacity of the working medium
(J/kg K). Tf,in and Tf,out are the inlet and outlet fluid temperatures (◦C), respectively. Therefore,
the thermal efficiency, ηth, can be calculated by the following relation:

ηth =
Qth

Qsc,heat
(6)

Then, the overall efficiency of the HCPVT system can be calculated as:

ηoverall =
Qth+Pelec,net

Qin ηopt
(7)

where Pelec,net and ηopt are the net electrical power (W) and optical efficiency:

Pelec,net= Psc,elec − Ppump (8)
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The pumping power, Ppump, can be calculated by the following relation:

Ppump =
·

V∆P (9)

where
·

V and ∆P are the volume flow rate
(
m3

)
and pressure drop (Pa), respectively.

The thermophysical properties of all the tested fluids are temperature dependent. The properties
of water that were used during the computation were adapted from [14]:

ρf = −0.003 Tf
2 +1.505 Tf+816.781 (10)

cp,f = −0.0000463 Tf
3+0.0552 Tf

2
− 20.86 Tf+6719.637 (11)

kf = −0.000007843 Tf
2+0.0062 Tf − 0.54 (12)

µf= 0.00002414×10
( 247.8

Tf−140 ) (13)

In the case of ethylene glycol and water mixture (60:40), the following equations were used. For
syltherm oil 800, the Loikits data [15] were adapted:

ρf = −0.0024 Tf
2+0.958 Tf+1014.297 (14)

cp,f = −0.00000489 − 0.00475 Tf
2+5.893 Tf+1641.327 (15)

kf = −0.00000302 Tf
2+0.00238 Tf − 0.09 (16)

µf= 0.00001202×10
( 453.4

Tf−122 ) (17)

The computational domain (Figure 2) was discretized and solved using the Finite Element Method
in COMSOL-Multiphysics 5.3 software [16]. Using the Generalized Minimum Residual (GMR) method,
the 3D conjugated heat transfer equations were solved iteratively under steady-state conditions.
The top surface of the solar cell, copper, and ceramic layers are subjected to natural convection and
radiation heat transfer. Therefore, the heat balance equation to describe the heat transfer on the top
surface of the solar cell can be written as:

− kGalnP

(
∂TGalnP

∂y

)
=

(
qconv+qrad

)
GalnP→a

(18)
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The heat balance equations for both copper and ceramic layers are as follows:

− kcopper

(
∂Tcopper

∂y

)
=

(
qconv+qrad

)
copper→a

(19)

− kceramic

(
∂Tceramic

∂y

)
=

(
qconv+qrad

)
ceramic→a

(20)

The convective and radiative heat transfer can be calculated from the following relations [17]:

qconv= h (Ts − T∞) (21)

qrad= ε σ
(
T4

s − T4
∞

)
(22)

where h is the convective heat transfer coefficient (W /
(
m2 K

)
), Ts is the exposed surface temperature

(◦C), T∞ is the ambient temperature and is assumed to be 25 ◦C, ε is the emissivity of the surfaces that
are subjected to radiation, and σ is the Stefan–Boltzmann constant. For radiation heat transfer, the sky
temperature was assumed to be equal to the ambient temperature as introduced in Equation (22) for
simplification, as suggested in the literature [3,17]. For the MJ solar cell domain, the law of energy
conversion for a steady-state with a heat source term

(
·
q
)

can be written as follows:

−∇(k∇T) +
·
q= 0 (23)

Further, for the heat sink, the heat conduction equation should be:

∇.(kh.s∇Th.s)= 0 (24)

For the fluid domain, the continuity equation:

∇.(ρf
→

V)= 0 (25)

The momentum equation:
→

V.∇
(
ρf
→

V
)
= −∇P+∇

(
µf∇

→

V
)

(26)

The energy equation:
→

V.∇
(
ρf cp,fT

)
= ∇.(kf∇T) (27)

The 3D computational domain was solved using the Finite Element Method (FEM) according to
these assumptions:

• The MJ solar cell is subjected to concentration ratios varying from 500× to 2000×.
• The germanium layer is the heat source of the system.
• The top surfaces of the solar cell, copper, and ceramic layers, as presented in Figure 2, are subjected

to natural convection
(
h = 15 W/

(
m2 K

))
[12] and surface to ambient radiation.

• The sides of the module and its back surface are insulated.
• The ambient temperature is fixed at 25 ◦C.
• The flow inside the channel is steady, incompressible, and laminar.
• The effects of the body force and viscous dissipation are ignored.
• The inlet temperature of the fluid is fixed at 25 ◦C and the outlet pressure is atmospheric.

The governing equations were solved using for the following boundary conditions:
At the channel inlet:

Tx=0= Tin (28)
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ux=0= uin (29)

At the channel outlet:
Px=l= Patm (30)

The volumetric heat source in the germanium layer:

·
q =

Qsc,heat

V
(31)

where V is the volume of the germanium layer.

2.1. Grid Independence Study

The first step to ensure the accuracy of the modeling was to carry out a grid independence
study. The software allows the use of unstructured mesh (free tetrahedral) to solve the computational
domain. In Figure 3a, the variation of the volumetric maximum solar cell temperature is plotted against
the grid size. The number of elements was varied from 0.2 to 1.9 million elements. The maximum
temperature has an almost constant value from 1.5 to 1.9 million elements. Therefore, the best number
of elements, 1.5 million, in terms of accuracy and computation time was selected and the generated
mesh is presented in Figure 3b. After generating the mesh and running the simulation, the mass and
energy residuals were calculated using the software to ensure that they have a value lower than the
relative tolerance error set in the software (0.001).
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2.2. Validation Study

To ensure the accuracy of the numerical modeling further, several validation studies were
conducted. The results of the present model were compared with the previously published results of
Al Siyabi et al. [12] and Theristis et al. [17] at the same dimension and operating conditions. A good
agreement was found between the present results and the compared studies in terms of maximum
solar cell temperature with a maximum error of 2.4% with Al Siyabi et al. [12] and 0.7% with Theristis
et al. [17], as presented in Figure 4a,b.
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3. Results and Discussion

This section investigates the impact of the concentration ratio and the mass flow rate of water,
ethylene glycol and water mixture (60:40), and syltherm-oil 800 on the maximum volumetric solar cell
temperature, temperature distribution on the solar cell surface, outlet fluid temperature, and thermal
and electrical efficiency of the system.

3.1. Maximum Solar Cell Temperature and Temperature Distribution over the Surface of the Solar Cell

The impact of using water, ethylene glycol and water mixture (60:40), and syltherm oil 800 on the
performance of the HCPVT system at different concentration ratios is presented in this section. Figure 5
compares the variation of the maximum volumetric solar cell temperature with the mass flow rate for
water, ethylene glycol and water mixture, and syltherm oil. The highest temperature was observed
by using oil (109.1 ◦C), while the lowest was by using water (93.5 ◦C) at the same mass flow rate and
solar concentration ratio of 2000×. Increasing the mass flow rate had a positive effect on reducing the
maximum volumetric solar cell temperature, reaching 34.7 ◦C at a solar concentration ratio of 500×.
In general, all the calculated maximum temperatures were lower than the recommended limit provided
by the manufacturer. In addition, the temperature distribution for the different working media is
presented in Figure 6. Water offered the most uniform temperature distribution followed by ethylene
glycol and water mixture (60:40), the average temperature varying from 82.16 to 88.48 ◦C, respectively.
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and water mixture (60:40); and (c) syltherm oil 800.

3.2. Outlet Fluid Temperature

The variation of the outlet temperatures of the fluids with the concentration ratio and mass flow
rate are presented in Figure 7. The outlet temperature decreased with increasing the mass flow rate,
while it increased with the concentration ratio. The highest outlet temperature was observed in the
case of using the syltherm oil (73.5 ◦C), while the lowest was in the case of using water (58.5 ◦C) at
a solar concentration of 2000× and a mass flow rate of 6.74×10−4 kg/s. Further, the outlet temperature
by using ethylene glycol and water mixture reached as high as 65 ◦C at the lowest tested mass
flow rate at the concentration ratio of 2000× and 34 ◦C at a concentration ratio of 500×. Therefore,
increasing the concentration ratio had a positive impact on the outlet temperature for all the tested
fluids. Syltherm oil 800 offered the highest outlet fluid temperature in comparison with other fluids
especially for a concentration ratio above 1000×. Overall, deciding which fluid to use depends mainly
on the designed concentration ratio and the available heat recovery application.Energies 2020, 13, x FOR PEER REVIEW 8 of 10 
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(a) water; (b) ethylene glycol and water mixture (60:40); and (c) syltherm oil 800.

3.3. Electrical and Thermal Efficiencies

The solar cell temperature and the electrical efficiency were calculated by equation (1) using the
trial and error method [11,12] by inputting the reference efficiency as provided by the manufacturer.
Therefore, the electrical efficiency depends on the concentration ratio as well as the solar cell temperature.
The electrical efficiency of the HCPVT system increased significantly with an increase in the mass
flow rate of the working media, as presented in Figure 8. Using syltherm oil decreased the electrical
efficiency if compared with water by 2.2% at 6.74×10−4 kg/s, especially at a concentration ratio of
2000×. This can be attributed to the high surface temperature of the solar cell that is detected in
the case of using the syltherm oil if compared with the other fluids at the same mass flow rates.
The highest electrical efficiency was 40.8% in the case of using water and a concentration ratio of 500×
and mass flow rate of 0.006 kg/s, while the lowest efficiency was 31.2% in the case of using syltherm
oil and a concentration ratio of 2000× and mass flow rate of 6.74×10−4 kg/s. Further, increasing the
concentration ratio had a negative impact on the calculated electrical efficiency as a large portion of the
concentrated solar irradiance converted into heat. In total, among the tested fluids water showed the
highest performance in terms of electrical efficiency especially at concentration ratios above 1000×.
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Figure 9 shows the effect of increasing the mass flow rate on the thermal efficiency of the HCPVT
system at different concentration ratios. The thermal efficiency of the HCPVT system increased with
an increase in the mass flow rate and concentration ratio. The thermal efficiency varied from 42% to
65.4% for the concentration ratio between 500× and 2000×. The lowest values are observed in the case
of using syltherm oil 800 due to its lower specific heat at constant pressure if compared with the other
fluids. The thermal efficiency increased from 23.97% to 57.45% when using syltherm oil 800, while it
varied from 34.65% to 62.8% when using the ethylene glycol and water mixture. In the case of thermal
efficiency, increasing the concentration ratio had a positive impact as shown in the results.
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4. Conclusions 

This study explored the performance of an HCPVT system using  MJ solar cell under active 
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4. Conclusions

This study explored the performance of an HCPVT system using MJ solar cell under active cooling
conditions and solar concentration ratios varying from 500× to 2000×. In addition, we investigated
the possibility of replacing water with ethylene glycol and water mixture (60:40) and syltherm oil
800. In terms of solar cell temperature, water offered the most uniform temperature distribution
and the lowest volumetric temperature at the examined flow rates and concentration ratios. Further,
in terms of the outlet temperature, syltherm oil 800 showed the highest fluid temperature, especially for
a concentration ratio above 1000×, which would be suitable for thermal applications that require a high
temperature. At concentration ratios above 1000×, using syltherm oil reduced the electrical efficiency
by more than 1% when compared with water, while at lower concentration ratios the reduction was
insignificant. Water achieved the highest thermal efficiency due to its high specific heat followed by
ethylene glycol and water mixture and lastly syltherm oil 800. Overall, deciding which fluid to be used
depends mainly on the designed concentration ratio, the required outlet temperature, and thermal
energy to be recovered. For future implementation, to reflect the outdoor conditions, a transient
simulation would be better than the steady-state case. For more precise calculations, a coupled electrical
and thermal simulation would be of importance.
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