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Abstract: Reconfigurable and tunable radio frequency (RF) and microwave (MW) components have
become exciting topics for many researchers and design engineers in recent years. Reconfigurable
microstrip filter–antenna combinations have been studied in the literature to handle multifunctional
tasks for wireless communication systems. Using such devices can reduce the need for many RF
components and minimize the cost of the whole wireless system, since the changes in the performance
of these applications are achieved using electronic tuning techniques. However, with the rapid
development of current fourth-generation (4G) and fifth-generation (5G) applications, compact and
reconfigurable structures with a wide tuning range are in high demand. However, meeting these
requirements comes with some challenges, namely the increased design complexity and system
size. Accordingly, this paper aims to discuss these challenges and review the recent developments
in the design techniques used for reconfigurable filters and antennas, as well as their integration.
Various designs for different applications are studied and investigated in terms of their geometrical
structures and operational performance. This paper begins with an introduction to microstrip filters,
antennas, and filtering antennas (filtennas). Then, performance comparisons between the key and
essential structures for these aspects are presented and discussed. Furthermore, a comparison between
several RF reconfiguration techniques, current challenges, and future developments is presented and
discussed in this review. Among several reconfigurable structures, the most efficient designs with
the best attractive features are addressed and highlighted in this paper to improve the performance of
RF and MW front end systems.

Keywords: reconfigurable; tunable; radio frequency; filter; antenna; filter–antenna; filtenna; fourth
generation (4G); fifth-generation (5G)

1. Introduction

The increasing demand for compact, simple, and efficient transceivers continues to impact
the development of microwave (MW) and radio frequency (RF) applications [1–5]. Some of
the essential elements in such devices are the planar antennas and filters [6–9], which significantly
affect the whole performance of the wireless communication systems. Generally, RF interference is
a big issue in the current and future wireless systems, such as the green RF front ends and wideband
applications [10,11]. Microstrip bandpass filters (BPFs) are commonly used in several applications,

Electronics 2020, 9, 1249; doi:10.3390/electronics9081249 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-7859-3550
https://orcid.org/0000-0001-8375-0269
https://orcid.org/0000-0002-6618-0644
https://orcid.org/0000-0003-2972-9965
http://www.mdpi.com/2079-9292/9/8/1249?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9081249
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 1249 2 of 21

mainly in RF and MW wireless communications, due to their effective role in suppressing interference
and noise signals [12–14]. Recently, the office of communications (Ofcom) has identified a low
bandwidth at 700 MHz, mid bandwidth (3.4–3.8 GHz), and an upper millimeter-wave bandwidth
(24.25–27.5 GHz) for possible use with fifth-generation (5G) systems [15]. However, microstrip BPFs
are utilized to attenuate the harmonic signals in fourth-generation (4G) and 5G applications [16–20].
For microstrip BPFs, the number of poles and zeros, input and output external quality factors, coupling
coefficients, and the configuration of the resonators are important parameters that define the filter
performance [21]. Most microstrip filter miniaturization approaches aim to analyze, control, or optimize
these parameters [22]. Additionally, several design techniques have been introduced in the literature,
such as stepped-impedance resonator (SIR), combline, open-ring, coupled-line, and stub impedance
filters [23–27].

On the other hand, reconfigurability can also be utilized using RF electronic components, such as
varactors and PIN diodes, which allow for the current distribution on the patches to be modified and then
for the reflection coefficient and radiation patter characteristics to be adapted. Micro-electro-mechanical
switches (MEMS) can also be considered, however these involve additional costs and extra circuits.
In recent years, several reconfigurable microstrip BPFs have been introduced [28–36]. However, with
the rapid development of current 4G and 5G applications, compact, efficient, and reconfigurable planar
filters with a wide tuning range will be urgently needed [37].

In addition to reconfigurable microstrip filters, frequency-reconfigurable microstrip antennas
have been investigated and developed for many years to provide important features to enhance
the innovation and development of RF systems [38–41]. Another important factor to be considered by
antenna designers and researchers these days, especially when designing antennas for mobile devices,
is the geometrical size and design complexity of the RF elements. Therefore, antenna miniaturization
techniques are continuously under review and study by many researchers and engineers. However,
there are always new developments and updates in the literature related to these aspects. Due to
the high demand for very small structures, the construction of more compact components is required,
while the gain and radiation pattern properties should be maintained at the same time and for
the same configuration [38]. Compact frequency-reconfigurable microstrip antennas have been
introduced for several applications, such as mobile communication devices. Furthermore, these
antennas are also needed for other applications, such as global systems for mobile communication
(GSM), digital communication systems (DCS), personal communication systems (PCS), universal mobile
telecommunication systems (UMTS), Bluetooth, wireless local area networks (LAN), and long-term
evolution (LTE) [42–52].

In recent years, the microstrip filter–antenna integration designs have become some of the most
desired structures because of their low profile, compact size, light weight, and ease of fabrication [53–71].
Microstrip filtering antennas are also beneficial because they can be printed directly onto the dielectric
substrate materials [53]. Filtering antenna designs have many applications, mostly in modern
wireless communication systems, where filtering and efficient radiation pattern responses can be
obtained simultaneously [55]. Furthermore, reconfigurable microstrip filtering antennas have attracted
increasing interest nowadays as they can deliver more efficient and multiple functionalities [72–86].
These designs do not implement microstrip antennas and filters separately, rather the filter is loaded
onto the radiating patch instead, resulting in more compact structures and improving the entire
performance of the RF and MW systems.

Few review papers discuss the reconfigurable filtering antenna designs that have been presented
in the literature [87–89]. In [87,88], the papers focus on passive filtering antenna configurations
with ultra-wideband characteristics. These papers do not present an extensive up-to-date review of
the recent technologies utilized to implement the RF components (filters, antennas, and filtennas).
In [89], a review of various integrated reconfigurable filter and antenna combinations was presented
in 2015. Many design techniques have been investigated in recent years, achieving structures with
compact sizes and simple configurations, which need further study.
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Unlike other review papers, up-to-date reconfigurable microstrip filters and antennas and their
integration are investigated in this paper by focusing on the latest development and design challenges
for these components. According to the literature review carried out in this paper, performance
comparisons between the key and essential reconfigurable structures are also presented and discussed.
We point out the most efficient designs with the most attractive features for researchers and engineers
for reconfigurable microstrip filters, antennas, and filtering antennas (filtennas). Additionally, Figure 1
shows a graphical summary of the reviewed design techniques in this paper. This manuscript is
organized as follows. Section 2 discusses the latest updates in the reconfigurable microstrip filter design.
Section 3 presents and reviews some efficient frequency-reconfigurable microstrip antennas. Section 4
surveys filter–antenna integration, as well as reconfigurable filtering antennas. All these sections
are followed by performance comparisons to summarize the main characteristics and advantages
for each structure. Section 5 provides a comparison between several RF reconfiguration switches.
Section 6 presents the main challenges and recommendation for future research work. Finally, Section 6
summarizes the conclusions of our review.
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2. Reconfigurable Microstrip Filters

In recent years, several reconfigurable BPFs have been introduced [28–37]. A reconfigurable
microstrip BPF using a varactor diode was designed and analyzed to achieve a constant impedance
bandwidth in [29]. Reconfigurability is obtained by tuning the resonance frequencies for both the odd
and even modes, where there is no mutual coupling between these two modes. Figure 2 shows
the proposed tunable BPF with the obtained performance. The practical BPF performance depicts
a good roll-off skirt on the low edge of the transmission band, with an insertion loss of less than 2.2 dB
and a return loss of more than 10 dB. A 2.2–22.0 V reverse bias voltage is applied across the varactor
diode to achieve a tuning rate of 40% for the 0.60–1.0 GHz range, with 91 MHz impedance bandwidth
for all configurations.
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In [30], a reconfigurable microstrip BPF utilizes two varactors to tune two finite transmission
zeros (TZs). The center frequency and the bandwidth are controlled to cover a wide range of about
600 MHz (1.4 GHz to 2.0 GHz) by altering the reverse bias voltage across the varactors (as seen
in Figure 3). The measurement results show that the filter has an insertion loss of less than 4 dB,
a return loss of more than 18 dB, and a fractional bandwidth of about 10%. A stopband rejection level
of more than 25 dB is obtained by using the two transmission zeros. A 0.21–30.02 V bias voltage is
applied across the diodes to tune the resonance frequency. In [31], a compact tunable planar BPF
with a constant fractional bandwidth is introduced. By increasing the reverse bias voltage across
the switches, the center frequency of the filter is tuned from 3.4 GHz to 3.8 GHz, with a fractional
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bandwidth of about 11%. The presented tunable filter has the advantages of having a compact size and
simple structure, using only one varactor diode switch.Electronics 2020, 9, x FOR PEER REVIEW 5 of 21 

 

 
(a) 

(b) 

Figure 3. The reconfigurable filter reproduced from [30]. 2020, IEEE: (a) prototype structure; (b) S-
parameter performance. 

Ebrahimi et al. [32] proposed a notch dual-mode tunable bandstop planar filter using two 
varactor diodes. The proposed filter is implemented by loading inductive and capacitive coupling 
into the input and output transmission lines of the microstrip filter. The inductors were designed by 
using thin inductive strips. As illustrated in Figure 4, the second-order filter has a compact size of 
0.13 λg × 0.17 λg and offers a continuous tuning range for the resonance frequency that ranges from 
0.8 GHz to 1.1 GHz, with a stopband fractional bandwidth of about 17%. The measurement results 
show that the filter has 0.9 dB stopband return loss and 0.6 dB passband insertion loss over the entire 
tuning range. Apart from the other designs, the inductive coupling is achieved using an inductor in 
the bottom layer of the patch filter. This configuration avoids the need for a more complicated three-
layered structure, provides more degrees of freedom in controlling the coupling coefficient factors, 
and maintains the top layer configuration, resulting in a more compact design. 

Moreover, Chen et al. [33] introduced a 2-pole fully tunable planar filter with a small structure, 
continuous frequency tuning range, and constant impedance bandwidth. Two varactors are utilized 
to tune the resonance frequency between the high and low resonating modes. The tunable filter has 
a simple configuration that consists of a pair of reversed biased varactor diodes. Each resonator 
contains two transmission lines, which are connected together via a varactor diode. A 0.4–18 V bias 
voltage is applied to provide 0.3–2.4 pF capacitance. The tuning range for the resonance frequency 
was from 1.2 GHz to 1.9 GHz, with an operational impedance bandwidth of about 39 MHz. The 
proposed filter offers a compact size of 0.06 λg × 0.27 λg, continuous tunability, simple structure, and 
a wide-tuned spectrum, which make the designed BPF suitable for recent and future wireless 
communications. The proposed tunable filter with the achieved insertion and return losses is shown 
in Figure 5. 

Figure 3. The reconfigurable filter reproduced from [30]. 2020, IEEE: (a) prototype structure;
(b) S-parameter performance.

Ebrahimi et al. [32] proposed a notch dual-mode tunable bandstop planar filter using two varactor
diodes. The proposed filter is implemented by loading inductive and capacitive coupling into the input
and output transmission lines of the microstrip filter. The inductors were designed by using thin
inductive strips. As illustrated in Figure 4, the second-order filter has a compact size of 0.13 λg × 0.17 λg
and offers a continuous tuning range for the resonance frequency that ranges from 0.8 GHz to 1.1 GHz,
with a stopband fractional bandwidth of about 17%. The measurement results show that the filter has
0.9 dB stopband return loss and 0.6 dB passband insertion loss over the entire tuning range. Apart
from the other designs, the inductive coupling is achieved using an inductor in the bottom layer of
the patch filter. This configuration avoids the need for a more complicated three-layered structure,
provides more degrees of freedom in controlling the coupling coefficient factors, and maintains the top
layer configuration, resulting in a more compact design.

Moreover, Chen et al. [33] introduced a 2-pole fully tunable planar filter with a small structure,
continuous frequency tuning range, and constant impedance bandwidth. Two varactors are utilized
to tune the resonance frequency between the high and low resonating modes. The tunable filter
has a simple configuration that consists of a pair of reversed biased varactor diodes. Each resonator
contains two transmission lines, which are connected together via a varactor diode. A 0.4–18 V bias
voltage is applied to provide 0.3–2.4 pF capacitance. The tuning range for the resonance frequency was
from 1.2 GHz to 1.9 GHz, with an operational impedance bandwidth of about 39 MHz. The proposed
filter offers a compact size of 0.06 λg× 0.27 λg, continuous tunability, simple structure, and a wide-tuned
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spectrum, which make the designed BPF suitable for recent and future wireless communications.
The proposed tunable filter with the achieved insertion and return losses is shown in Figure 5.Electronics 2020, 9, x FOR PEER REVIEW 6 of 21 
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In [36], a very compact microstrip reconfigurable filter for fourth-generation (4G) and sub-6
GHz fifth-generation (5G) systems using a new hybrid co-simulation method is presented. The basic
microstrip design uses three coupled line resonators with λ/4 open-circuit stubs. The coupling
coefficients between the adjacent and non-adjacent resonators are used to tune the filter at the required
center frequency to cover the frequency range of 2.5 GHz to 3.8 GHz. Figure 6 shows the simulated
insertion and return losses of the proposed reconfigurable filter.
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However, with the rapid development of current 4G and 5G applications, compact and
reconfigurable planar filters with a wide tuning range are needed. To this end, several tunable filters
have offered some attractive features that are essential for current and future wireless communications.
Table 1 shows the comparative performance of the reviewed reconfigurable microstrip BPFs. It is clear
that the proposed filter in [36] has a wider tuning range, wider impedance bandwidth, smaller
insertion losses, and smaller size compared to the designs presented in [29,30,32–35]. The tunable
filters presented in [29,33] have an impedance bandwidth of only 40 MHz. Additionally, the tunable
filter proposed in [35,36] only use two varactor diode switches and a simple basing circuit to achieve
the tunable frequency and efficient characteristics. As a result, the filter presented in [36] has very good
performance in terms of the S-parameter group delay and the phase of S21, along with other attractive
features, such its compact size, relatively few tuning diodes, and simple structure; thus, it is a good
option for many 5G systems.

Table 1. Performance comparison between the surveyed reconfigurable filters.

Ref. Year Topology Tuning Range
(GHz)

BW
(MHz)

No. of
Switches IL * (dB) Filter Size (mm3)

Challenges/
Limitations

[29] 2010 Dual-Mode 0.6–1.0 85–95 3 2.2 30 × 23 × 1.27 Low tuning range
[30] 2011 Coupled lines 1.5–2.0 110 4 4 36 × 30 × 0.80 High loss
[32] 2018 Dual-Mode 0.66–0.99 108 4 0.75 72 × 70 × 1.6 Low tuning range
[33] 2018 Ring-resonator 1.1–2.1 40 7 6 52 × 12 × 1.6 Number of switches
[34] 2018 Dual-Mode 1.7–2.9 40 7 4 36 × 35 × 0.8 Number of switches
[35] 2018 Multimode 0.76–2 75–150 2 1.2 100 × 8 × 0.50 Size
[36] 2019 Coupled lines 2.5–3.8 95–115 2 0.8 13 × 8 × 0.80 Constant bandwidth

* IL: Insertion loss.

3. Frequency-Reconfigurable Microstrip Antennas

This section focuses on the frequency-reconfigurable microstrip antennas. It introduces
reconfigurable antennas with multislots distributed in the patch and ground in order to cover
wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMax)
applications. Positive-intrinsic-negative (PIN) diode switches are used to change the effective electrical
length of the antenna to cover the most important frequency ranges between 2 GHz to 6 GHz.
Peroulis et al. demonstrated a tunable antenna using four PIN diode switches that change the effective
length and S-shaped slot to operate in one of four selectable frequency bands ranges from 530 MHz
to 890 MHz. Reconfiguration over such a wide frequency band is often accompanied by changes to
the input impedance. However, the analyses of the antenna found the best position for the switches and
adjusted the slot geometry such that the four frequency bands were obtained through the switching
process, without a need to update the matching network or feed point position [42].
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Panagamuwa et al. designed and proposed a balanced dipole antenna using a high-resistivity
silicon. This design was equipped with two silicon photoconducting switches. Light from infrared laser
diodes guided with fiber-optic cables was used to control the switches. When both switches are closed
the antenna operates at a lower frequency of 2.16 GHz, while when both switches are open the antenna
operates at 3.15 GHz. The researchers also noticed that the antenna gain changes with different optical
power levels used to activate the switches [43], which is a disadvantage of this configuration.

Yang et al. proposed a U-slot frequency-reconfigurable microstrip antenna with a 50 Ω transmission
line feed. By loading the slot to the radiating layer, flat and linear input impedance is achieved.
Controlling the input impedance affects the operating frequency of the antenna. It has been shown
that a trimmer can also adjust the input impedance of the microstrip antenna, such that the frequency
ratio between the highest and lowest frequency is about 1.32 [45]. The presented reconfigurable
antenna delivers a tuning range from 2.6 GHz to 3.35 GHz. On the other hand, Valkonen et al.
presented a frequency-reconfigurable mobile terminal microstrip antenna using radio-frequency
micro-electro-mechanical system (RF-MEMS) switches. The reconfigurability is obtained using
a capacitive coupling element (CCE) to switch between two separate matching lines and then to adjust
the state of the RF-MEMS switches [46]. The antenna is tunable between two configurations at 0.92 GHz
and 1.8 GHz center frequencies. The design is printed on a PCB with a size of 24 × 20 × 3 mm3.

Moreover, Yu et al. introduced a very compact frequency-reconfigurable microstrip antenna
with a very wide tuning range. Three varactor switches were used to provide tunable impedance.
Using a new feeding technique, the obtained tunable frequency of the prototype design ranges from
458 MHz to 895 MHz, while the tuning bandwidth improvement was analyzed and discussed using
the equivalent circuit parameters [47]. Figure 7 illustrates the prototype of the designed frequency
tunable antenna with the achieved S-parameter performance.
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Majid et al. introduced a compact, reconfigurable, frequency-agile, narrowband patch slot antenna.
Six different center frequencies tunable from 2.1 GHz to 4.8 GHz were obtained in this design using
five RF-PIN diode switches. To obtain the reconfigurability property, all the switches are placed in one
slot, while the DC biasing circuit is built in the ground plane. The transmission line feeding circuit
and the slot are bent to reduce about 35% of the original size of the structure, meaning a compact
size is achieved [48]. In [49], Majid et al. also proposed a frequency-reconfigurable microstrip patch
slot antenna using five RF-PIN diodes for cognitive wireless radio communications. Nine different
operating frequencies covering the bandwidth from 2 GHz to 3.7 GHz are observed. To achieve
the tunability property, the RF switches are also placed in the slot of the ground layer. Figure 8 shows
a prototype of the designed antenna with the measured s-parameters.
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Recently, the new differential-fed technology was applied to design a frequency-reconfigurable
microstrip antenna for sub-6 GHz 5G and WLAN wireless communications [50]. The antenna was
designed based on pairs of vertical transmission lines to form two dipoles. Four RF-PIN diode switches
are used to tune the antenna between 3.5 and 5.5 GHz. As seen in Figure 9, the proposed antenna offers
impedance bandwidths of 2.9–4.2 GHz (fractional bandwidth of about 34%) and 5.0–6.2 GHz (fractional
bandwidth of about 20%) for the two configurations for 5G and WLAN applications. The radiation
pattern results are maintained for both configuration states. Table 2 compares the performance of
this recently proposed technique with other studies from the literature. It should be noted that this
technique offers excellent performance for the frequency-reconfigurable antenna designs, and thus is
a good candidate for current and future wireless applications.
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Table 2. Performance comparison between the surveyed reconfigurable antennas.

Ref. Year Topology Antenna
Size (mm3)

Tuning Range
(GHz)

Type of
Switches/DC

Bias (V)

No. of
Switches

No. of
Achieved

Bands

Constant Radiation
Patterns (Challenges/

Limitations)

[45] 2008 U-Slot 150 × 150 × 1.6 2.6–3.35 Varactor
(10.8–1.5) 1 6 No

[46] 2010 Inverted F 40 × 98 × 5 0.920–1.8 RF-MEMS
(0.5–0.9) 1 2 No

[47] 2011 Capacitive
loaded loop 200 × 200 × 0.5 0.45–0.89 Varactor

(0.6–1.2) 3 5 No

[48] 2012 Patch slot 50 × 46 × 1.6 2.2–4.75 PIN Diode
(0.9) 5 6 No

[49] 2013 Patch slot 50 × 50 × 3.04 1.98–3.59 PIN Diode
(1.2) 5 9 No

[50] 2020 Differentially fed 50 × 50 × 0.81 2.9–6.2 PIN Diode
(0.8) 4 2 Yes

It is shown that the designs presented in [45–49] provide variable radiation pattern characteristics
for each state or band. This issue is one of the main challenges in the design of frequency-reconfigurable
antennas, which has not been tackled yet for these structures. The structure presented in [50] not only
offers a wide tuning range, but also keeps a constant radiation pattern performance over the tuned
frequencies from 2.9 GHz to 6.2 GHz. The design presented in [49] has a smaller size than the antenna
proposed in [50], despite this design using five PIN diodes. Nevertheless, the deigned antenna provides
nine different bands with only five configurations, which makes the structure suitable for a wide range
of wireless applications.

4. Microstrip Filter–Antenna (Filtenna) Integration

Recently many microstrip filter–antenna designs using different types of substrate materials
have been proposed [53–71]. In [56], a co-design of a filter–antenna using a multilayered substrate
is introduced for future wireless applications. The design consists of three-pole open-loop ring
transmission lines and a T-shaped microstrip antenna. The multilayer technology is utilized to achieve
a compact size structure. A Rogers RT5880 substrate with a relative dielectric constant of 2.1 and
a thickness of 0.5 mm is used in this structure. The filter–antenna design operates at 2.6 GHz, with
a fractional bandwidth of around 2.8% and a measured gain of 2.1 dB. While the main advantage of
this structure is the compact size, it has a complex structure due to the use of a multilayer substrate
configuration. The design presented in [57] also used the same design procedures and achieved similar
performance, having a circular polarization characteristic. However, the filter–antenna design can
involve different design techniques based on substrate-integrated waveguide (SIW) technology.

In [58], a dipole microstrip filter–antenna with quasi-elliptic gain performance using parasitic
resonators is presented. The parasitic elements were designed based on the stepped-impedance
resonators and utilized to generate two transmission zeros in the in-band transmission, as well as two
radiation nulls in the out-of-band bandwidth. The design was fabricated using an F4B-2 substrate
with a dielectric constant of 2.4 and a thickness of 1.1 mm. The design also has an air layer located
between the radiator and the ground layers, with a height of 9 mm. The deigned filter–antenna
works at 1.85 GHz and has a fractional bandwidth of 4.2%. The design offers not only good radiation
in the passband region but it also efficiently attenuates the noise signals in the stopband spectrum.
Moreover, a wideband balun filter–antenna design with a high roll-off skirt factor is presented in [61].
The design is composed of a fourth-order quasi-Yagi radiator cascaded with a multilayer balun
microstrip filter. The balun filter is formed by five stepped impedance resonators, which improves
the rejection ratio of the passband. The designed filter–antenna operates at 2.5 GHz with a fractional
bandwidth of 22.9% and generates two transmission zeros at both edges of the passband. The design
has achieved 5.4 dBi realized gain, with a high roll-off rejection level. Although the design has shown
some advantages, such as the wide bandwidth and high suppression level, it also requires the use of
multilayer substrate technology.
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Recently, a very compact wideband microstrip filter antenna design with high gain and high
selectivity was proposed in [71]. The design consists of a rectangular microstrip, four parasitic lines,
two strip lines, and three shorting vias. The design is printed on an 80 × 80 mm2 F-4B substrate
with a dielectric constant of 2.6, loss tangent of 0.003, and a height of 4 mm. The center frequency
of the design is 2.4 GHz, with an impedance bandwidth range of 2.19 GHz to 2.68 GHz (fractional
bandwidth of 20.1%). The filter antenna has a realized gain of 9.5 dBi and flat radiation efficiency of
more than 90%. Figure 10 shows the simulated and measured results with a prototype of the fabricated
filtering antenna.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 21 

 

some advantages, such as the wide bandwidth and high suppression level, it also requires the use of 
multilayer substrate technology.  

Recently, a very compact wideband microstrip filter antenna design with high gain and high 
selectivity was proposed in [71]. The design consists of a rectangular microstrip, four parasitic lines, 
two strip lines, and three shorting vias. The design is printed on an 80 × 80 mm2 F-4B substrate with 
a dielectric constant of 2.6, loss tangent of 0.003, and a height of 4 mm. The center frequency of the 
design is 2.4 GHz, with an impedance bandwidth range of 2.19 GHz to 2.68 GHz (fractional 
bandwidth of 20.1%). The filter antenna has a realized gain of 9.5 dBi and flat radiation efficiency of 
more than 90%. Figure 10 shows the simulated and measured results with a prototype of the 
fabricated filtering antenna. 

  
(a) (b) 

Figure 10. The filtering antenna design reproduced from [71]. 2020, IEEE: (a) S-parameter and gain; 
(b) efficiency and a photograph of the fabricated prototype. 

However, design complexity and system size are other challenges facing designers of filtering 
antenna structures. As explained in the literature, many design approaches have been carried out to 
offer a simple structure and compact size, which can be easily integrated with other RF front end 
systems. The multilayer structures presented in [56,58,59,62] have not managed these requirements. 
Moreover, substrate integrated waveguide (SIW) technology and the balun configuration were other 
notable attempts, as presented in [57] and [61], respectively. To summarize these approaches, Table 
3 shows the performance comparison between the surveyed microstrip filter–antenna designs from 
the literature, which have similar performance. It should be noted that the filter–antenna design 
proposed in [71] has a compact size with a simple structure and offers higher gain, higher selectivity, 
a wider fractional bandwidth, and good reflection coefficient characteristics. In summary, without a 
need for extra filtering circuits, the design presented in [71] offers a new solution for current and 
future filtering antenna designs. 

Table 3. Comparison between the presented filter–antenna designs. 

Ref. Year Topology 
f0 

(GHz) 
FBW 
(%) 

Size  
(λ0 × λ0) 

RL 
(dB) 

Gain 
(dBi) 

Extra structure 
(Challenges/Limitations) 

[56] 2020 Coupled lines 2.6 2.6 0.31 × 0.27 > 13 2.2 Multilayer 

[57] 2019 SIW 11.65 4 2 × 1.1 > 14 5.6 SIW 

[58] 2019 Quasi-elliptic 1.85 5.4 0.74 × 0.74 > 12 6.2 Multilayer 

[59] 2019 Patch slot 3.6 15 0.92 × 0.86 > 14 10 Metasurface 
[61] 2016 Quasi-Yagi 2.5 22.8 1.7 × 1.3 > 20 5 balun 
[62] 2014 Ring slot 2.5 15 0.76 × 0.76 > 15 2 Multilayer 

[63] 2011 Quasi-elliptic 5 2 0.90 × 0.90 > 15 4 None 

[64] 2017 Open-loop 2.45 6.4 0.72 × 0.70 > 15 6 None 

[66] 2011 Coupled lines 2.5 16.3 0.70 × 0.70 > 20 2.4 None 

[67] 2015 Ring slot 2.5 8 0.75 × 0.75 > 14 4.5 None 

[71] 2020 Coupled lines 2.4 20.1 0.60 × 0.60 > 16 9.5 None 

FBW: Fractional bandwidth; RL: Return loss; SIW: substrate integrated waveguide. 

Figure 10. The filtering antenna design reproduced from [71]. 2020, IEEE: (a) S-parameter and gain;
(b) efficiency and a photograph of the fabricated prototype.

However, design complexity and system size are other challenges facing designers of filtering
antenna structures. As explained in the literature, many design approaches have been carried out
to offer a simple structure and compact size, which can be easily integrated with other RF front end
systems. The multilayer structures presented in [56,58,59,62] have not managed these requirements.
Moreover, substrate integrated waveguide (SIW) technology and the balun configuration were other
notable attempts, as presented in [57] and [61], respectively. To summarize these approaches, Table 3
shows the performance comparison between the surveyed microstrip filter–antenna designs from
the literature, which have similar performance. It should be noted that the filter–antenna design
proposed in [71] has a compact size with a simple structure and offers higher gain, higher selectivity,
a wider fractional bandwidth, and good reflection coefficient characteristics. In summary, without
a need for extra filtering circuits, the design presented in [71] offers a new solution for current and
future filtering antenna designs.

Table 3. Comparison between the presented filter–antenna designs.

Ref. Year Topology f0 (GHz) FBW (%) Size
(λ0 × λ0) RL (dB) Gain (dBi) Extra Structure

(Challenges/Limitations)

[56] 2020 Coupled lines 2.6 2.6 0.31 × 0.27 > 13 2.2 Multilayer
[57] 2019 SIW 11.65 4 2 × 1.1 > 14 5.6 SIW
[58] 2019 Quasi-elliptic 1.85 5.4 0.74 × 0.74 > 12 6.2 Multilayer
[59] 2019 Patch slot 3.6 15 0.92 × 0.86 > 14 10 Metasurface
[61] 2016 Quasi-Yagi 2.5 22.8 1.7 × 1.3 > 20 5 balun
[62] 2014 Ring slot 2.5 15 0.76 × 0.76 > 15 2 Multilayer
[63] 2011 Quasi-elliptic 5 2 0.90 × 0.90 > 15 4 None
[64] 2017 Open-loop 2.45 6.4 0.72 × 0.70 > 15 6 None
[66] 2011 Coupled lines 2.5 16.3 0.70 × 0.70 > 20 2.4 None
[67] 2015 Ring slot 2.5 8 0.75 × 0.75 > 14 4.5 None
[71] 2020 Coupled lines 2.4 20.1 0.60 × 0.60 > 16 9.5 None

FBW: Fractional bandwidth; RL: Return loss; SIW: substrate integrated waveguide.

Additionally, many reconfigurable microstrip filter–antenna structures have been presented
and discussed [72–86]. In [79], a multiband tunable filter cascaded with a monopole antenna for
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cognitive radio communications is presented. The reconfigurable design covers four useful applications,
including 1.9 GHz (GSM), 2.5 GHz (Bluetooth), 3.6 GHz (WiMAX), and 5.3 GHz (WLAN). Additionally,
the deigned multiband filter–antenna provides a gain range from 1.2 dBi to 3.5 dBi in the four operating
bands, with small variations of about 0.5 dBi between the adjacent bands, delivering a radiation
efficiency above 60%. Table 4 compares some of the similar reconfigurable filtering antenna designs
in the literature with the design presented in [79]. However, it is shown that the reconfigurable
filtering antenna presented in [79] has a smaller size and wide tuning range, covering four discrete
configurations for four important wireless applications.

Table 4. Comparison between some reconfigurable filter–antenna designs.

Ref. Year Topology Switches
Number/Type Size (mm) Frequency

Range (GHz) Gain (dBi) Advantages/Challenges/
Limitations

[72] 2012 Hexagonal slot 1/Varactor 30 × 59 6.2–6.5 5.7–6.7 Band-limited control
[73] 2016 E-shaped patch 2/PIN diodes 36 × 14 2.1, 2.4 - Dual-band only
[74] 2014 Slot resonator 2/PIN diodes 103 × 120 1.6–6 2.3 Large size
[75] 2017 Open-loop resonator 5/PIN diodes 40 × 45 2.2–11 2.1–2.3 Needs more diodes
[77] 2019 4 Distinct resonators 4/PIN diodes 30 × 60 1.8–5.2 1.1–3.4 Compact, discrete tuning

A filter–antenna design with a reconfigurable frequency and bandwidth using an F-shaped feeding
network is presented in [77]. The new feeding technique generates a multipath coupling scheme
and provides the cross-coupling required to improve the out-of-band characteristics. Additionally,
two varactor diodes are used and designed within the feeding network. The achieved performance
shows that the proposed reconfigurable filter–antenna design has tunable frequency ranges from
2 GHz to 2.52 GHz, a fractional bandwidth that is tunable from 2.2% to 21.3%, a measured maximum
gain of about 7.6 dBi, and a measured peak total efficiency of 85%. Figure 11 shows a photograph
of the implemented reconfigurable filtering antenna design with simulated and measured reflection
coefficients and boresight gain. Table 5 presents the performance comparisons between some recently
published reconfigurable filtering antenna designs.
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Table 5. Performance comparisons between reconfigurable filter–antenna designs.

Ref. Year Topology Size
λ0

Number of
Switches

Frequency
Range
(GHz)

Gain
(dBi)

Pattern
Reconfiguration

(Challenges/
Limitations)

Advantages

[81] 2015 Ring slot 0.7 × 0.3 × 0.1 1 PIN Diodes +
2 varactors 3.7–4.7 3 No Wideband,

tunable bandpass

[82] 2017 Coupled lines 0.4 × 0.2 × 0.01 2 PIN diodes 3–4.5 3.6 No Wideband,
tunable bandpass

[83] 2016 S-shaped
split-ring 0.4 × 0.3 × 0.002 2 PIN diodes 3.1–3.8 1–2 No Tunable bandpass,

tunable bandstop

[84] 2019 Quasi-Yagi–Uda 0.7 × 0.7 × 0.008 2 PIN Diodes +
4 varactors 3.4–5.4 5–9 No Tunable bandpass,

tunable bandstop

[85] 2018 Coupled lines 1.2 × 1.2 × 0.17 4 PIN diodes 1.7–3.7 8–10 Yes Wideband

[86] 2019 Coupled lines 1.2 × 1.6 × 0.007 4 PIN diodes 2.5–6.5 4.8 Yes
Wideband, tunable

bandpass,
tunable bandstop

It should be noted that considering both filter–antenna integration and reconfigurability properties
at the same time will lead to some more advantages. However, this will also pose some challenges for
both the biasing circuit and the structure configuration. In [48], two PIN diodes and four varactors are
utilized in the basing circuit. Despite this configuration adding more complexity to the structure, it also
results in a compact size and good performance in terms of the tuning range and the realized gain.
It is also shown that wideband and tunable bandpass performance can be achieved by using the filter
antenna integration design presented in [86]. This configuration has a high degree of freedom in terms
of controlling the S-parameter characteristics and the radiation pattern behavior using a compact size
structure. Thus, this makes the designed reconfigurable filter antenna a good candidate for current
and future wireless applications.

5. Comparison between Switching Techniques

The common types of reconfiguration techniques that can be utilized to implement reconfigurable
structures are illustrated in Table 6 [90–99]. Structures based on RF-MEMS [91], PIN diodes [92],
and varactors [93] that redirect their surface currents are called “electrically reconfigurable.”
RF structures that use photoconductive configuration switch components are called “optically
reconfigurable” [95]. Electronically reconfigurable or tunable elements are the best option when
size and efficiency are required. However, the power handling capability and the lifetimes of these
reconfiguration techniques cause some essential issues. PIN diodes operate in two configurations.
The “on” state is where the diode is forward biased and the “off” state is where the diode is not biased
or reverse-biased, while RF-MEMS uses mechanical movement to obtain a short circuit or an open
circuit in the surface current path of RF elements. Unlike PIN diodes and RF MEMS, varactors can
provide a continuous tuning range, with typical capacitance values range from tens to hundreds
of picofarads. Moreover, unlike electrical reconfiguration, the photoconductive technique does not
require the use of bias circuits and can be loaded in the RF PCB board without adding a complex
design to modify the radiating elements. Additionally, the activation–deactivation mechanism for
the switch does not create harmonic issues or intermodulation distortion. Conversely, in contrast with
active switches, the optical switches are less common because of lossy characteristics and the need for
complex activation approaches [99]. A description of the operation of the switches and comparisons
between them are summarized in Table 6.
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Table 6. Comparison between switching techniques [90–99].

Properties PIN Diode Varactor RF MEMS Photoconductive

Speed (µsec) 1–100 × 10−6 0.1 1–200 3–9
Quality factor 50–85 25–55 86–165 -

Voltage (V) 3–5 0.1–15 20–100 1.8–1.9
Current (mA) 3–20 1–25 0 0–87
Power (mW) 5–100 10–200 0.05-0.1 0–50

Temperature sensitivity Medium High Low Low
Cost Low Low Medium High

Loss at 1 GHz (dB) 0.3–1.2 0.5–3 0.05–0.2 0.5–1.5

Fabrication complexity Commercially
available

Commercially
available

Low fabrication
complexity Complex

6. Current Challenges and Future Developments

Over the last few years, RF designers, researchers, and engineers have made a huge effort to explore
reconfigurable filters and antennas and their integration as alternatives to the existing approaches and
topologies, along with developing high-RF front end performance. Compared to the classical and
passive filters and antennas, some essential challenges accompany the integrated and reconfigurable
filters and antennas, which are efficient, compact, and multifunctional. Although recent researches
show that microstrip planar configurations are capable of reducing the structure size, having the ability
to produce a wider and flexible tuning range with low power and low loss is currently an important
issue. As can be observed from the previous sections of this review, filter–antenna integration with
reconfigurable characteristics requires a complex configuration, which can be considered as a common
challenge for all reconfigurable transceivers. To overcome this challenge, some reconfigurable or
tunable planar filters employing dual-mode ring resonators were introduced in [29,32,35]. Furthermore,
the reconfigurable filter introduced in [36] has excellent performance in terms of the S-parameter group
delay and S21 phase. Other features were also observed for this design, such as having a compact size,
limited number of tuning diodes, and a simple structure.

Additionally, the realization of reconfiguration approaches in RF and MW components improves
the multifunctional performance of the entire system. In the literature, several studies have stated
the importance of reconfiguration techniques. For instance, an E-shaped microstrip wideband antenna
with polarization diversity was presented in [100] to work in the frequency range of 2.3 GHz to 2.6 GHz.
In a similar way, radiation pattern reconfigurable wideband microstrip antennas are also introduced
in [101,102] to operate in the spectrum ranges of 2.3 GHz to 2.55 GHz and 1.6 GHz to 4 GHz, respectively.
As shown in these papers, the integration of slots, lumped elements, and surface mount components
in the radiating patch penetrates the radiation pattern performance. To overcome these problems,
several papers in the literature utilize the feed line of the antenna to achieve filtering performance
with reconfigurable characteristics. Some of the recent research studies in the literature that apply this
technique to obtain filtering performance include [61–64]. Additionally, a filter–antenna design with
a reconfigurable frequency and bandwidth using an F-shaped feeding network was presented in [103].
This technique generates a multipath coupling scheme and provides the cross-coupling required to
improve the out-of-band characteristics.

Additionally, wideband filtering antenna designs are essential components of future wireless
applications used to tackle high-speed and high data rate transmissions. For these designs, it is
noticed that the size, insertion loss, and differential-mode bandwidth should also be taken into
consideration and carefully investigated by the designers. Most of the introduced wideband and
ultra-wideband filtering antenna configurations are designed based on a single-layer substrate.
Therefore, it should be pointed out that using liquid crystal resonators and low-temperature co-fired
ceramics can enhance the out-of-band rejection, thus improving and enhancing the performance of
the wideband communication systems [104–106].
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Reconfigurable filtering antennas based on substrate-integrated waveguide (SIW) technology can
also be used for mmWave and 5G wireless communications to provide lower losses, higher quality
factors, and more power handling capability when compared with the other surveyed approaches [107].
Additionally, using these techniques offers some advantages, such as enhancing the bandwidth and
reducing the losses and sizes of the configurations. According to what is shown in this review,
the design technique proposed in [86] can also overcome the challenges facing these technologies
by using only one single-layer, half-mode, substrate-integrated waveguide resonator loaded with
four slot lines. Furthermore, and with as any RF or microwave element, reconfigurable filters and
antennas and systems combining both of these can also be designed, analyzed, and optimized
using artificial intelligence, neural networks, and bio-inspired optimization algorithms [108–111].
These approaches can be utilized for future reconfigurable structures, since these designs require
more analysis and parameter studies than classical and passive configuration. Therefore, using these
approaches in the future could lead to overcoming several issues and challenges by processing many
variables at one time. It is anticipated that new design techniques with high efficiency and fully
reconfigurable characteristics will be seen shortly.

7. Conclusions

With the rapid development of 4G and 5G wireless communications in recent years, compact
and reconfigurable or tunable structures with a wide tuning range have attracted more interest.
Reconfigurable microstrip filters, antennas, and filter–antenna integration designs have been surveyed
and discussed in this paper by focusing on the recent developments and challenges facing the researchers
and engineers when dealing with these structures. It has been shown that integrating reconfigurable
filters with the antennas can provide excellent interference suppression and maintain the fundamental
radiation properties for the antennas. Performance comparisons between the main important
reconfigurable designs have also been presented and discussed. The designs with the best performance
were addressed and highlighted for possible future development and further studies to serve RF/MW
front end systems. As seen in this paper, the reconfigurable filter proposed in [36] has a wider tuning
range and a wider impedance bandwidth, smaller insertion losses, and a smaller size compared to
the designs presented in [29,30,32–35]. As a reconfigurable antenna, the design presented in [49]
has a smaller size than the antenna proposed in [50], despite this design using five PIN diodes.
Nevertheless, the deigned antenna provides nine different bands with only five configurations, which
makes the structure suitable for a wide range of wireless applications. It is also noted that wideband
and tunable bandpass performance can be achieved by using the filter antenna integration design
presented in [86]. The RF switches have also been discussed, summarized and compared. Finally,
the paper has presented the current challenges and future developments for the three RF reconfigurable
components, namely filters, antennas, and filtennas.
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