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Abstract and mathematical verifications. In the development of real-
time systems, formal methods can ensure correctness of
We present a calculus which can transfer specifications both functional and temporal requirements. By now, a large
to objects for the development of real-time systems. Thenumber of formal methods for the development of real-time
object model is based on a practical OO development systems have been put forward, including those based on
technigue—HRT-HOOD. A real-time logic is specified by logics, (process) algebra, net/graphics or model (for a more
extending a sound formal method for real-time systems—detail review, we refer the readers to [3]).
TAM, to formalise the object model. With integration of  One of underlying formal models of our present work
HRT-HOOD and TAM, the advantages of object-oriented is TAM (Temporal Agent Model) [4,5,6,7] which is a re-
structured methods with the stepwise refinement techniquealistic formal software development method for real-time
are combined. The result is illustrated on a case study. systems. In TAM, the stepwise refinement development
method is employed by means of executable constructs to-
) gether with a specification statement. The TAM theory
1. Introduction views a real-time system as a collection of concurrently exe-
cuting agents. These agents communicatekiantswhich
HRT-HOOD [1] is an object-oriented development tech- are time-stamped with the time of the most recent write.
nique that extends the structured methodology HOOD [2] to The TAM real-time logic consists of first order predicate
provide objects with both functional and temporal require- logic with a few extensions. A timing function is used to
ments of real-time systems. Classification of objects in the represent the value found in variables and shunts at a spe-
HRT-HOOD characterises temporal properties of real-time cific time and the projection functions are also used to refer
systems. This domain-specific style, with the graphic repre-to the time-stamp and value found in a shunt respectively.
sentation and the object description skeleton, makes HRT-Specifications are therefore constraints on the relationship
HOOD a concise, cohesive, and powerful set of capabilities. between time-stamps and values found in shunts during the
Moreover, HRT-HOOD provides a technique that systemat- lifetime of the system. A mechanism for specifying dura-
ically transforms the design to Ada code which presents ation is provided by the release and termination times of the
unifying support to the development of real-time systems. system or agents which may be predicated over in the usual
We note that most practical structured and OO softwareway. TAM has a set of refinement laws which are a set
development techniques follow the software engineering of syntactic rewrite rules. These rules enable the software
principles that can help developers dwoid errors occur  developers to transform a requirement specification into an
in the development process (especially at early stages) agxecutable program.
much as possible, but fail teliminatethem completely. We also note that although immense benefits which may
However, complete elimination of errors in the development be brought by formal methods, turning them into sound
process has been one of the major aims in software engipractice has proved to be extremely difficult. Some “pure”
neering. formal methods may keep practically-oriented software en-
Formal methods are believed the most important meansgineers from employing their benefits. It has been believed
which probably achieve that aim (and others) of software that combining formal methods with practical development
engineering with their capabilities of precise descriptions techniques, such as SSADM and OO approaches, can be
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a fruitful approach when modelling and developing large- and their executions may be either concurrent or sequen-
scaled and complex software systems. On the one hand, byial. Invocations of methods can be either asynchronous or
formalising the constructs of a practical development tech-synchronous. Recursive invocations between methods are
nigue, formal methods can force the meaning of each sys-rohibited, neither directly nor indirectly.

tem component to be more rigorous. On the other hand,  An object consists of a declaration and method(s) in a
using practical structured and OO techniques with formal strycture. The declaration presents the definitions of at-
methods can make formal methods more acceptable for usgriputes and/or an execution environment for methods de-
by a large community. Much work has been undertaken in fined in the object. The attributes of an object include: (1)
extending formal notations such as Z and VDM to include gpject type — We useA, S, C, P andPr to represent, re-
the SSADM and OO paradigms, such as [8,9,10]. spectively, that the object is either active, sporadic, cyclic,
In this paper, we present the work on combination of a passive, or protected; (rovided methods — We use
practical OO development technique and a formal methodpyoyidedMethods(0) to denote the provided method set of
mentioned above by formalising HRT-HOOD [1] with TAM  an objecto. They are declared in the form of(in, out),
[5] in which a refinement calculus is provided to transform \where m is a method name which is free in the object.
requirements/specifications to objects for real-time systemsin and out are sets which present parameters transfered
mathematica”y. We extended TAM with the Capablllty of betweenm and its C"ents; (Spsed methods— We use
describing behaviours of objects (a computational object ysedMethods(0) to denote the used method set of an ob-
model) and method invocations. The computational modelject 0. The elements of the sétsedMethods(0) take the
is defined based on HRT-HOOD, which focuses on speci- form of (o, m'), wherem' is a method to be invoked by
fication and may be refined by corresponding HRT-HOOD g and is defined iro’. UsedMethods(0) definesuserela-
objects. HRT-HOOD is used to decompose the system’s retjonships between and objects ifJsedMethods(0). Such
quirements. Each sub-requirement is formalised, using there|ationships specify control flows between objects and to-
TAM specification statement which is subsequently refined gether within(m) andout(m), data flows are also specified.
into objects by using a set of refinement laws. Other attributes vary with the type of objects: (1) the ac-
In the next Section, we introduce the computational ob- tivation interval of the thread for a cyclic object; (2) the
ject model and its syntax. A corresponding real-time logic minimum activation interval of the thread for a sporadic ob-
is given briefly in Section 3, which is used to describe ab- ject; (3) the child object set for an active object. We use
stract specification and define the semantics. Based on th€hildObjects(o) to denote the child object set ofif o is
real-time logic, a refinement calculus is specified in Section gn active objectChildObjects(o) specifies arincluderela-
4. We demonstrate the application of the calculus with a tionship betweew and its child objects based on which the
case study in Section 5. Some conclusions are presented idecomposition process is achieved; (4) the environment of a

the final section. non-active object is a set of data over which the methods of
the object execute for computations and communications.
2. Computational Object Model The data include constants, variables and shunts. For cyclic

and sporadic objects, an activation period and a minimum

The computational model we used is an extension of thatactivation interval are specified in the environment declara-

adapted in TAM [5], by introducing objects defined in HRT- tion respectively. We us@bjEnv(0) to denote the environ-

HOOD [1]. In the model, a real-time system is viewed as ment set of an object

a collection of concurrent activities which are initiated ei- A method consists of a head and a body. The head spec-

ther periodically or sporadically with services which can be ifies @ method name and a local environment (if necessary)

requested by the execution of the activities. The operationsof the method. The body specifies operations over either the

of the activities and services, #weadsand methodsare object environment or the method environment, or both. We

allocated to the correspondinpjects(an encapsulated op-  UseMethods(0) to denote the set of method defined by the

eration environment for the thread or methods) according toobjecto.

their functional and temporal requirements and the relation-  The operations are described by means of agents which

ships between them. may be either abstract or concrete. A method can define
Like HRT-HOOD, five types of objects are defined in its local execution environment. We ul&hEnv(m) to de-

our model: sporadic objectscyclic objects protected ob-  note the local environment of the method If in(m) # ()

jects passive objectandactive objects Threads are de-  and/orout(m) # 0, then they are defined MthEnv(m). A

fined in both sporadic and cyclic objects which activate and methodmis defined in the form of

terminate with the corresponding objects and are concur- m([in, out]) =ger [MthEnv(m)] A end

rent with each other. Methods are defined in protected, paswhereA is an agent, called the body of the methradWe

sive, or active objects, and they are activated by invocationsuse. A, to denote the body of a method
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An active object defines a system or subsystem which
consists of a number of related objects as its child ob-
jects, optionally with a number of methods which are im-
plemented by its child objects. An active objextwith
child objectso;, 0, ..., 0, and methodsr, (in;,out,), ...,

m (ink, out) which are defined in its child objects,, ...,
0;, can be represented as:

Objecto A
include {01, 02, ...,0n}
provide {m, (in1, outy ), ...,my(ink, out) }
methods
m (iny, outy) : o, .my (iny, out; )

m (ink, ouk) : G, .Mk (ink, out)
end o

A cyclic or sporadic object defines a unique thread that op-
erates periodically or sporadically:

Objecto C Objecto S
used pair_list used pair_list
period P interval T

constants constantlist
variables variable_list
shunts shunt.list
thread

A
end o

constants constantlist
variables variable_list
shunts shunt.list
thread

A
end o

whereP andT are the activation period and the minimum

activation interval of the corresponding objects.
Both protected and passive objects are used to defin

ference between them is that the methods defined in a pro

1. o’.m/([in,ouf) (Invocation)—o' is the name of an
object, ' is the method provided by’ andin, out
are optional parameters to be passed to the method
m’ as a substitution. This agent causes that an invo-
cation to the method optionally within and/orout

. m([in,out]) : o’.mM([in’, out]) (Encapsulation)—o’
is a child object of the objeat andm' is a method
provided byo'. The definition ofin, out must be in
accordance with that aff. This agent serves as the
body of a method of an active object. It transfers the
invocation ofmto that ofm.

3. The Real-Time Logic

Like TAM, a discrete, linear time domain is used which
is modelled by the natural numbers and denoted’ipye.
The current time is denoted by the free time variatdev
which is global and can be referred to by any agent.

Variablesare used for computation and shared by the
methods within an object or the agents within a method.
Their values can be referred to with time&shuntsare used
for communication withexternalenvironments, such as a
sensor in hardware or an object in software. A shunt con-
sists of two fields: one holds a (set of) value(s) and another
holds a time at which the value(s) is (are) written. Shunts
are also referred to with times. The difference between vari-
ables and shunts is that shunts imee-stampedShunts are

methods which can be requested by other objects. The dif‘?assumed to be non-blocking on reading and writing. An

event occurrence can be modelled by one or more shunts:

tected object can be executed exclusively while those de-it occurs if and only if the shunt is written. To restrict the
fined in a passive object can be executed immediately whencomplexity, we do not classify the domains of values found

being requested:

Object o Pr Objecto P

provide provide

{my (iny,outy), ..., m(iny, outy) } {my (iny,outy), ..., m(iny, outy) }
used pair_list used pair_list

constants constantlist
variables variable_list
shunts shuntlist
methods
my (in1 5 OUtl)
variables variable_list

constants constantlist
variables variable_list
shunts shunt.list
methods
my (in1 5 OUtl)
variables variable_list

.A1 Al
end end
My (inn, outy) My (inn, outy)
An -An
end end
end o end o

An agent describes a set of operations with explicit or
implicit timing constraints. We directly use agents defined
in [5] in the context of our object model. Two new agents
are introduced:

in variables and shunts while they are simply defined by
Value.

An invocation is viewed as a special shunt whose value
and timestamp represent its status and occurrence time. The
invocation status includes: (Bequest-an invocation is
in Requesstatus if and only if it occurs but has not yet
been served; (2Activation—an invocation is inActivation
status if and only if it has been served, i.e., the requested
method is being executed for it, but has not yet terminated,;
(3) Terminatior—an invocation is inTerminationstatus if
and only if the execution of the method for it has termi-
nated.

We define

InvStatus = {REQ,ACT, TER}
to represent the domain of the values found in an invocation.
Like a shunt, an invocation is assumed to be non-blocking
on reading and writing. We udev, to denote the sequence
of all occurring invocations of a methad. The order of
elements iflnvy, is that of requests to the methodand an
element uniquely identifies an invocation. Itis assumed that
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an invocation of the methaais put into tolnv, if and only
if it occurs.
The logic is basically first-order logic with conservative

extension to deal with objects, methods and invocations,
with which temporal and functional requirements of the sys-

tem and objects can be described succinctly.
A free time variable pait, andt, is defined to repre-

sent the activation and termination times of agents, objects
and systems. The activation and termination times of ob-

units can be described by the formula:
VtE [ta,tu] st ts® t=t=3t €[t,t+5] -t <t, A ts® t' =t

A predicate can be defined to describe that shunts, vari-
ables or constants remain stable during a range of time:

vve Xttt et,]-vdt =ve t’
if X is a variable set

vse X,t' € t1,tz] -s.ts® ' <ty

if X is a shunt set

if X is a constant set

stable(X, [t1,t2]) =def

true

jects, methods and agents must be within those of the sys, shynt is written to exactly once during a range of time
tem defining the objects, the objects defining the methods g, pe specified:

and the method defining the agents respectively. However
the activation and termination times of threads are viewed

’vvrite_sh(x, S, [tl s tz]) =def

Jte [t t2]-s® t= (x,t) Astable({s}, [t;, t <1]) A stable({s}, [t, t2])

as those of the sporadic and cyclic objects which define the

threads respectively.
The timing functions@, @ and© are defined over
pairs(x, t), wherex is a variable, shunt, or invocation, and

t is a time, resulting in the value of the variable, the value
and the timestamp of the shunt, or an invocation status and

its occurrence time at the given time respectively:
@: Var x Time — Value
Shuntsx Time — Value x Time

®:
J Invm x Time — InvStatuses x Time

©:
all m

whereVar and Shuntsare sets of variables and shunts re-
spectively.

Projection functions o) , © for shunts and invocations
are also defined:

1. v@® and.ts® result in the value and the timestamp

of the shunt respectively.
2. v@© and.ts© result in an invocation status and its

occurrence time respectively.

These functions are used as infix functions.

We define that req_time(q), act_time(q) and
ter_time(q) represent the request, activation and termi-
nation times of an invocatiogto a methodn respectively,
and

1. Vie[l,]Invy|],t: Time-Invm(i)© t = (REQ,t) =

req_time(Invy(i)) =t

2. Vie[1,]Invy |],t: Time-Invyn(i)© t = (ACT,t) =
act_time(lnvm(i)) =t
Vie[l,]Invm|],t: Time-Invy(i)© t = (TER,t) =
ter_time(lnvm(i)) =t

It is clear that a normal invocation begins with request,

3.

activation and then termination. However, in some cases,
such as that in passive objects, an invocation starts with ac-

tivation and ends with termination. Moreover, the null oper-

ation in some implementation may have zero duration. This

If M is a set of methods provided by a protected object
o, then the following predicate must be held for the object
o:
exclusive (M) =gef VM, n € M, i1 € [1,] Invy |],i2 € [1, ] Invy []-
3t € [ta,tw] -t > Invm(i1) .req®© t =
Invp(i1).act© t < Invp(iz).act©t < Invy(iy) .ter©t < m= nAip =iz

This predicate asserts that executions of all methods in a
protected object must be mutually exclusive.

Thus specification-oriented semantics of TAM in object
context can be derived. We defifteis a semantic function,
such thatF [ X] gives the semantics of a compon&nsuch
as an object, method, or agent. For example, if a method
invocationo’.n (in, out) is used in a methochin an object
o, and

301 € Ancestor(0),02 € ChildObjects(01),

my € ProvidedMethods(02) - 0' = 02 A M = my
where Ancestor(0) is the set of ancestors of the object
0, and the methodY is defined as in the objeot:
m' (in, out) =gef A end

then the semantics of the invocation is defined as:

F Lo (in, oW)]] =gef

stable( (ObjEnv(0) U MthEnv(m))\OW, [tar, tw]) A 3t € [ta, twl,i € [1, ] Invy [1-

vy () © ' = (REQ, ) A3ty ty >t -ty <ty AF [Alt1/ta, t2/tw, in/in, 001/ ouf | A
(o =t o oul(lnvrrn(i)) =0)V (ty =ty & out(lnv{n(i)) #0)

If oc is a cyclic object in the form defined in the last section,
then the semantics ok can be described by:

F [[oc]l =def ChildObjects(0c) = 0 A ProvidedMethods(oc) = 0 A

vo € =, (0", m) € UsedMethods(o’ ), m € Methods(oc ) - oc # o Am#M A
VneE N,y € [ta,tw]-t1 =T xn= 3ty € [ta,tw] -
tp Stp St +TAF LAY /ta, t2/tw]]]

4. Refinement Calculus
The refinement relatio is defined on a component

(agent, method and object) in a similar fashion to that of
TAM. A componentY’ is refinedby the corresponding com-

is a useful mechanism, specially in fault-tolerant systems ponenty (X' C V) ifand only if 7 [ V] = F [ A].

in which a fail-stop mechanism is adopted. In such case, a

request may terminate immediately.
A sporadic activity in which whenever a shutis writ-
ten to, another shurg, must be written to within 5 time

A set of refinement laws are specified, based on the real-
time logic specified in the last Section, to transform an
abstract specification into concrete objects. Here we give
some useful refinement laws.
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Law. 1 (Cyclic object)

If vte[0,00),aneN,T € Time-t =T xna ¢’ = ¢, then there is
an objecto with type of C, such thatv: ¢ C o, whereo is in
the form shown as below (left).

Objecto C Objecto S
used pair_list used pair_list
period P interval T

constants constantlist
variables variable_list
shunts shunt.list

constants constantlist
variables variable_list
shunts shunt.list

thread thread
w: &’ w: &’
end o end o

Law. 2 (Sporadic object)

If vt € [0,00),351,8,....,5 € E-, SUCh thati e [1.n,t' <t-te
sts@t >TAs ts®t=tArd =, then there is an objeotwith
type of S, such thatv: @ C o, whereo is in the form shown
as above (right).

Law. 3 (Passive object)

If m (iny,0ut;) =det ®1,Ma(iN2,0Utz) =det P2, ..., M(iNn, OUL) =det Pn,

andvt € [0,00)-(3d : Time-stable(E, [t, t+d]))V \/  mgini,out) =,
ie[l..n]

then there is an objectwith type of P, such thatv: @ C o,

whereo is in the form as shown below (left).

Law. 6 (Method)

Suppos®;, 0, are two objects with the same type.

If vm' € ProvidedMethods(0;), 3m" € ProvidedMethods(0z2)- Ay C. Ay
theno, C o,.

Law. 7 (Invocation)

If a methodn?(in,out) =gef MthEnv(m) A end is de-
fined in an object’, B is an agent in an object and 5 C
Alin/in,out/out , then B C o'.m (in, out) and ifw, C wy,
thenw, = wo\w,, wherew,,, w, andw, are frames o83, o
ando’ respectively, antdsedMethods(0) = UsedMethods(0)U
{(0/, m(in, out)}

Law. 8 (Child Objects)

Suppos®;, 0, are two active objects.

If vo e ChildObjects(0;),30" € ChildObjects(oz) - o' C o', then
0; C O

5. A Case Study

In this section we illustrate the formal development of a
real-time system using our model by a case study. The case
study is designed based on “The Mine Control System” [1],
as depicted in Fig.1.

constants constantlist
variables variable_list

Objecto P Object o Pr
provide provide

{my (iny,outy), ..., My(inn, outy) } {my(iny,outy), ..., My(inn, outy) }
used pair_list used pair_list

constants constantlist
variables variable_list

Motor Control System

shunts shuntlist
methods
my (in1 5 OUtl)
variables variable_list

shunts shunt.list
methods
my (in1 5 OUtl)
variables variable_list

w: @, w: @,
end end
My (inn, outy) My (inn, outy)
w: @, w: @,
end end
end o end o

Law. 4 (Protected object)
If m (iny,0ut;) =det ®1,Ma(in2,0Utz) =det P2, ..., M(iNn, OUL) =det Pn,
andvt e [0,00),3d: Time, SUCh that
stable(E, [t,t+d]) vV (Vt' € [t,t+d],i € [1..n] - m(in;, out) @ t=
- A min,ou)) =@

je[1..n],j#

then there is an objectwith type of Pr, such thatv: ¢ C o,
whereo is in the form as shown above (right).

Law. 5 (Active object)

cmd: {START,STOP}

level: N

Wﬂz)

operator_console gas_sensor motor_interface

Figure 1: Motor Control System

5.1. Requirements of the Motor Control System

We can express the system requirements (denot&dey

REQ(Motor_ControL.System):

Wheneverreceiving a command from the operator and 10 time units have elapsed
since the last command:if the command is “START", the motor is off, and the
gas level is not higher than 40, then the motor is switched on within 5 time units |
if the command is “STOP”, the motor is on, then the motor is switched off within
5 time units.

Every 20 time units, the gas level is checked, and if the gas level is higher than 40
and the motor is on, then the motor is switched off within 5 time units.

REQis decomposed into three sub-requiremeets, req,

If o1, 03, ..., Gy, .., Oy, ..., On @re related objects, then an  andreq, corresponding to gas monitor, operator, and motor
objecto can be defined to include them in the form givenin respectively:

Section 2, ando,, 02, ...,0n) C 0.
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reqy (Operator): e Gas Status
SPEG =def
Whenever a command is received and at least 10 time units have elapsed {gas_st, S} :
since the last: - ! . ! = !
1. if the command isSTART, the motor is not in operation and the gas \itte [dO, oo) t ((Htrt 76 [Ltt-i_ d] s ® t gast @ t) A (EH €
level is not higher thart0, then switch the motor on withif time units. [ U+ ] ‘gasst@ t =s@ )) v
2. if the command isSTOP and the motor is in operation, then switch the 3d: Time - stable({gast, s}, [t,t + d])
motor offwithin5 time units. Correspondinglyspeg is adapted, denoted tspeg:
e Gas Check
spet.‘é =def
req,, (GasCheck): redg (Motor): {Ctl’|7 gaS-St} :
- Vte[0,00)-INEN -t =20%nA
heck th el ] e i (level.v® t, > 40 = (ctrl .v® t, = ON =
Eni(te; the gas level every 20 time Switch the motor on or off i 3d: Time - write_sh(OFF, ctrl, [ta, tu]) A d < 5) A
if the level is higher thart0 and requested. Only one operation (gaS$t® to = SAFE=
the motor is in operation, then 3d' : Time - gasst@ (ta + d’) = UNSAFB) \Vi
i\xgh the motor off withirs time can be done at the same time. (Ievel.v@ t, S 40 A gas_st@ t, = UNSAFE=
3d’ : Time - gasst@ (ta + d') = SAFE

Thus we have

SPEC=g¢et SPEG A SPEC A SPEG A Speg
At this stage, if there is somesuch thaspe¢ = false, then
req must be re-formalised.

In general, ifREQis inconsistent, then further require-
ment analysis is needed and if there is sonseich thateq
is not proper, then the decomposition must be redone.

5.2. Specification of the System 5.3. Refinement

In this Section, we define specifications of the subsys- In _th's Sectl_on, we use rgflne_ment Iaws I'S_ted in the Ap-
tems and objects to represent Corresponding requirement§end|XAt0 refine Sub-SpeCIflcatlonS derived in the last Sec-
This is achieved by identifying the system observables. Thetion. At the concrete level, some time parameters are re-
system operates the motor according to commands from thenoved.
operator console and gas level sampled by the gas sensor.

We use shuntsmd levelandctrl to model command, gas

level and motor control interface respectively: 5.3.1 From specifications to Objects
d  {STARTSTO e . .
Vet ){v TSTOR The sub-specificatiospe¢ can be refined by a sporadic ob-
ctrl:  {ON,OFF} jectOperator(Law. 2) producing:
Sub-specificationspeg, speg andspeg corresponding to
req,, req, andreq, can be specified by means of the real- Object OperatorS
time logic: interval 10
e Operator shunts i
SPeg =def cmd: {STARTSTOR x Time
{ctri} : ctrl : {ON, OFF} x Time
Vi€ [0,00) - t ecmd.ts® t > 10 A level: A x Time
((cmd® t = (STARTY) A level.v® t < 40 A ctrl .v@® t = OFF = thread
3d : Time - write_sh(ON, ctrl, [t,t + d]) Ad < 5) v {otrl} :
(cmd® t= (STORt) Actrl .v@® t= ON = cmd.v® t, = STARTA level.v@® t < 40 A ctrl .v® t = OFF=
3d : Time - write_sh(OFF, ctrl, [t,t + d]) Ad < 5)) write_sh(ON, ctrl, [ta, tu]) At &ta < 5V
Gas. Check cmd.v® t, = STOPA ctrl .v® t = ON=
¢ Sasthec write_sh(OFF, ctrl, [ta, t,]) A t, <ty <5
?Eﬁ%} def end Operator

Vte [0,00)-INEN -t =20 =xnAlevel.v® t > 40 =
(ctrl.v@® t = ON = 3d : Time-write_sh(OFF, ctrl, [t, t4+d]) Ad < 5)

e Motor spe¢ can be refined by a cyclic objeGas Check(Law. 1)
SPeG —def i .
(ot - producing:
Vte|[0,00) -
=((ctrl .v® t; = OFF = write_sh(ON, ctrl, [t,t +d]) Ad < 5) A f
(cifl V® & = ON = write_sh(OFF, ctl, [t.t+ d]) A d < 5)) Oblect Gas CheckC
3d : Time - stable(ctrl, [t, t + d]) RS
Because the gas level is also accessed by the dégsor ctrl : {ON, OFF} x Time
to check if the gas is safe, a corresponding method should Va'ﬁ‘;f)'lesj‘/ x Time
be provided. However, because the level is sampled period- gasst: {SAFE UNSAFE
ically, it can not be accessed sporadically. We introduce an ‘hf{ecf’t‘r‘f gasst) -
operationGas Statusto maintain a gas status according to (level v® to > 40 = (ctrl .v® to = ON =
; o 3d: Time - write_sh(OFF, ctrl, [ta, t,]) A d < 5)A
the gas level. A variable is introduced to represent the gas (038.5L@ o — SAFE=
status: 3d : Time - gasst@ (to + d’) = UNSAFB)V
(level.v® t, < 40 A gasst@ t, = UNSAFE=
gasst {SAFEUNSAFE ) i 3d : Time - gasst@ (t, + d') = SAFB
A corresponding specificatiapeg is defined as: end Gas Check
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speg andspeg can be refined by protected objebtstor

andGas_Statug(Law. 4) producing respectively:

Object Motor Pr
provide set.on(d), setoff(d)

Object Gas_StatusPr
provide read(s, d), write(s, d)

4. We can encapsulatgas CheckandGas Statuswith
a new objectsas_Monitor which refines themL@w.
5), shown in Fig.5.

5. OperatoLaw. 6, Law. 7 and laws on agents), shown
in Fig.6.

6. Fig.7 shows the final system.

We omit time obligations because of their observative-

shunts variables ness
ctrl : {ON, OFF} x Time gasst: {SAFE UNSAFE ’
methods methods
set.on(d) read(s, d)
variables d : Time variables Object Gas_CheckC Object OperatorS
{ctrl} : s: {SAFE UNSAFB used used
ctrl .v® t, = OFF = d: Time (Gas_Status write(s)), (Gas_Monitor, checKs)),
write_sh(ON, ctrl, [ty , tw])A {s}: (Gas_Status read(s) (Motor.seton())
t, ©te < d S@ t, = gasst@ ta A period 20 interval 10
end t, ©te < d shunts shunts
set.off(d) end level: N x Time cmd: {STARTSTOP x Time
variables d : Time write(s, d) variables variables
{ctrl} : variables x: N x: {START STOR
ctrl .v@® to = ON = s: {SAFE UNSAFE t: Time t: Time
write_sh(OFF, ctrl, [ta, tw]) A d: Time s: {SAFE UNSAFE s: {SAFE UNSAFE
t, ot < d {gasst} : thread thread
end gasst@ te = S@ ta A (x,t) « levet duration 5
end Motor t, &t, <d if X > 40 then (x,t) « cmd
end duration d Gas_Monitor.checKs);
end Gas_Status Motor.set.off(); if x = STARTA s = SAFEthen
Gas_Statusread(s); Motor.set.on()
if s = SAFEthen orif x = STOPthen
Gas Statuswrite(UNSAFB; Motor.set.on()
endif endif
end endif
5.3.2 From Objects to the Final System orf X < 40 then endif Operator
. . Motor.set.on();
1. Motor(Law. 6 and laws on agents defined in TAM Gas Statusread(s);
; ; if s= UNSAFEthen
[5])’ shown in FIg.Z. . Gas_ Statuswrite(SAFB);
2. Gas StatugLaw. 6 and laws on agents), shown in endif
Fig.3. end
endif
end Gas_Check
Object Motor Pr Object Gas StatusPr i - i i . i
provide seton(), setoff() provide {read(s), write(s) } FlgGure 4C-.h0b|j(eCt Figure 6: ObjecDperator
shunts variables as-thec
ctrl : {ON, OFF} x Time gasst: {SAFE UNSAFE
variables methods
x: {ON, OFF} read(s)
t: Time s: {SAFE UNSAFEB Object Gas_Monitor A
methods s:= gasst include
seton() end Gas_Check Gas_Status
(x,t) « ctrl; write(s) provide checKs)
if x = OFF then s: {SAFE UNSAFE methods
(ON, now) — ctrl gasst:=s checKs) : Gas Statusread(s)
endif end end Gas_Monitor
end end Gas Status
setoff()
(x,t) « ctrl; ; . ; ;
L ON then Figure 5: ObjecGas_Monitor
(OFF, now) — ctrl
endif
end
end Motor
Object Motor_Control_Systenf

Figure 2: ObjecMotor

3. Gas ChecKLaw. 6, Law. 7 and laws on agents),

shown in Fig.4.

Figure 3: Object
Gas Status

include
Operator, Gas_-Monitor, Motor
end Motor_ControL_System

Figure 7: Design of the System
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6. Conclusions Itis clear that some of the timing characteristics may be
left as ‘variables’ to be determined at a later stage of devel-

In this paper, we present an approach to integrate a prachment. These variables are constraints by the obligations
tical OO development technique, HRT-HOOD, and a sound themselves. For example, in the case study presented, the
formal method, TAM, in which a refinement calculus is duration and worst case execution time of the operations of
provided to transform requirements/specifications to objectsconcrete thread in the objeGas Checkmay be left as a
for real-time systems. We extended TAM with the capa- Variabled which can be determined at the implementation
bility of describing behaviours of objects (a computational Phase.
object model) and method invocations. The computational
model is defined based on HRT-HOOD, which focuses on
specification and may be refined by corresponding HRT-
HOOD objects. HRT-HOOD is used to decompose the sys-
tem’s requirements. Each sub-requirement is formalised,
using the TAM specification statement which is subsequently
refined into objects by using a set of refinement laws.

With the combination, a framework is specified which
supports the development of real-time systems from infor-
mal r_equirer_nents to formal specification, concrete design, [2]. European Space Agency, HOOD Reference Manual
possibly until executable code._ Based on the refinement cal- Issue 3.0, WME/89-353/JB, December 1989.
culus, a development method is suggested:
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