
A Refinement Calculus for the Development of Real-time Systems

Zhiqiang Chen, Antonio Cau, Hussein Zedan
Xiaodong Liu and Hongji Yang

Software Technology Research Laboratory
De Montfort University
Leicester LE1 9BH, UK

fzqc,cau,zedan,xdl,hjyg@dmu.ac.uk

Abstract

We present a calculus which can transfer specifications
to objects for the development of real-time systems. The
object model is based on a practical OO development
technique—HRT-HOOD. A real-time logic is specified by
extending a sound formal method for real-time systems—
TAM, to formalise the object model. With integration of
HRT-HOOD and TAM, the advantages of object-oriented
structured methods with the stepwise refinement techniques
are combined. The result is illustrated on a case study.

1. Introduction

HRT-HOOD [1] is an object-oriented development tech-
nique that extends the structured methodology HOOD [2] to
provide objects with both functional and temporal require-
ments of real-time systems. Classification of objects in the
HRT-HOOD characterises temporal properties of real-time
systems. This domain-specific style, with the graphic repre-
sentation and the object description skeleton, makes HRT-
HOOD a concise, cohesive, and powerful set of capabilities.
Moreover, HRT-HOOD provides a technique that systemat-
ically transforms the design to Ada code which presents a
unifying support to the development of real-time systems.

We note that most practical structured and OO software
development techniques follow the software engineering
principles that can help developers toavoid errors occur
in the development process (especially at early stages) as
much as possible, but fail toeliminate them completely.
However, complete elimination of errors in the development
process has been one of the major aims in software engi-
neering.

Formal methods are believed the most important means
which probably achieve that aim (and others) of software
engineering with their capabilities of precise descriptions

and mathematical verifications. In the development of real-
time systems, formal methods can ensure correctness of
both functional and temporal requirements. By now, a large
number of formal methods for the development of real-time
systems have been put forward, including those based on
logics, (process) algebra, net/graphics or model (for a more
detail review, we refer the readers to [3]).

One of underlying formal models of our present work
is TAM (Temporal Agent Model) [4,5,6,7] which is a re-
alistic formal software development method for real-time
systems. In TAM, the stepwise refinement development
method is employed by means of executable constructs to-
gether with a specification statement. The TAM theory
views a real-time system as a collection of concurrently exe-
cuting agents. These agents communicate viashuntswhich
are time-stamped with the time of the most recent write.
The TAM real-time logic consists of first order predicate
logic with a few extensions. A timing function is used to
represent the value found in variables and shunts at a spe-
cific time and the projection functions are also used to refer
to the time-stamp and value found in a shunt respectively.
Specifications are therefore constraints on the relationship
between time-stamps and values found in shunts during the
lifetime of the system. A mechanism for specifying dura-
tion is provided by the release and termination times of the
system or agents which may be predicated over in the usual
way. TAM has a set of refinement laws which are a set
of syntactic rewrite rules. These rules enable the software
developers to transform a requirement specification into an
executable program.

We also note that although immense benefits which may
be brought by formal methods, turning them into sound
practice has proved to be extremely difficult. Some “pure”
formal methods may keep practically-oriented software en-
gineers from employing their benefits. It has been believed
that combining formal methods with practical development
techniques, such as SSADM and OO approaches, can be

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on July 20,2010 at 13:40:22 UTC from IEEE Xplore. Restrictions apply.

a fruitful approach when modelling and developing large-
scaled and complex software systems. On the one hand, by
formalising the constructs of a practical development tech-
nique, formal methods can force the meaning of each sys-
tem component to be more rigorous. On the other hand,
using practical structured and OO techniques with formal
methods can make formal methods more acceptable for use
by a large community. Much work has been undertaken in
extending formal notations such as Z and VDM to include
the SSADM and OO paradigms, such as [8,9,10].

In this paper, we present the work on combination of a
practical OO development technique and a formal method
mentioned above by formalising HRT-HOOD [1] with TAM
[5] in which a refinement calculus is provided to transform
requirements/specifications to objects for real-time systems
mathematically. We extended TAM with the capability of
describing behaviours of objects (a computational object
model) and method invocations. The computational model
is defined based on HRT-HOOD, which focuses on speci-
fication and may be refined by corresponding HRT-HOOD
objects. HRT-HOOD is used to decompose the system’s re-
quirements. Each sub-requirement is formalised, using the
TAM specification statement which is subsequently refined
into objects by using a set of refinement laws.

In the next Section, we introduce the computational ob-
ject model and its syntax. A corresponding real-time logic
is given briefly in Section 3, which is used to describe ab-
stract specification and define the semantics. Based on the
real-time logic, a refinement calculus is specified in Section
4. We demonstrate the application of the calculus with a
case study in Section 5. Some conclusions are presented in
the final section.

2. Computational Object Model

The computational model we used is an extension of that
adapted in TAM [5], by introducing objects defined in HRT-
HOOD [1]. In the model, a real-time system is viewed as
a collection of concurrent activities which are initiated ei-
ther periodically or sporadically with services which can be
requested by the execution of the activities. The operations
of the activities and services, asthreadsandmethods, are
allocated to the correspondingobjects(an encapsulated op-
eration environment for the thread or methods) according to
their functional and temporal requirements and the relation-
ships between them.

Like HRT-HOOD, five types of objects are defined in
our model:sporadic objects, cyclic objects, protected ob-
jects, passive objectsandactive objects. Threads are de-
fined in both sporadic and cyclic objects which activate and
terminate with the corresponding objects and are concur-
rent with each other. Methods are defined in protected, pas-
sive, or active objects, and they are activated by invocations

and their executions may be either concurrent or sequen-
tial. Invocations of methods can be either asynchronous or
synchronous. Recursive invocations between methods are
prohibited, neither directly nor indirectly.

An object consists of a declaration and method(s) in a
structure. The declaration presents the definitions of at-
tributes and/or an execution environment for methods de-
fined in the object. The attributes of an object include: (1)
object type — We useA, S, C, P andPr to represent, re-
spectively, that the object is either active, sporadic, cyclic,
passive, or protected; (2)provided methods — We use
ProvidedMethods(o) to denote the provided method set of
an objecto. They are declared in the form ofm(in; out),
where m is a method name which is free in the object.
in and out are sets which present parameters transfered
betweenm and its clients; (3)used methods— We use
UsedMethods(o) to denote the used method set of an ob-
ject o. The elements of the setUsedMethods(o) take the
form of (o0; m0), wherem0 is a method to be invoked by
o and is defined ino0. UsedMethods(o) definesuserela-
tionships betweeno and objects inUsedMethods(o). Such
relationships specify control flows between objects and to-
gether within(m) andout(m), data flows are also specified.
Other attributes vary with the type of objects: (1) the ac-
tivation interval of the thread for a cyclic object; (2) the
minimum activation interval of the thread for a sporadic ob-
ject; (3) the child object set for an active object. We use
ChildObjects(o) to denote the child object set ofo if o is
an active object.ChildObjects(o) specifies anincluderela-
tionship betweeno and its child objects based on which the
decomposition process is achieved; (4) the environment of a
non-active object is a set of data over which the methods of
the object execute for computations and communications.
The data include constants, variables and shunts. For cyclic
and sporadic objects, an activation period and a minimum
activation interval are specified in the environment declara-
tion respectively. We useObjEnv(o) to denote the environ-
ment set of an objecto.

A method consists of a head and a body. The head spec-
ifies a method name and a local environment (if necessary)
of the method. The body specifies operations over either the
object environment or the method environment, or both. We
useMethods(o) to denote the set of method defined by the
objecto.

The operations are described by means of agents which
may be either abstract or concrete. A method can define
its local execution environment. We useMthEnv(m) to de-
note the local environment of the methodm. If in(m) 6= ;
and/orout(m) 6= ;, then they are defined inMthEnv(m). A
methodm is defined in the form of

m([in; out]) =def [MthEnv(m)] A end

whereA is an agent, called the body of the methodm. We
useAm to denote the body of a methodm.

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on July 20,2010 at 13:40:22 UTC from IEEE Xplore. Restrictions apply.

An active object defines a system or subsystem which
consists of a number of related objects as its child ob-
jects, optionally with a number of methods which are im-
plemented by its child objects. An active objecto with
child objectso1, o2, ..., on and methodsm01(in1; out1), ...,
m0k(ink; outk) which are defined in its child objectsoi1 , ...,
oik can be represented as:

Object o A
include fo1, o2 , ...,ong
provide fm01(in1; out1), ...,m0k(ink; outk)g
methods

m01(in1; out1) : oi1 :m1(in1; out1)
.
.
.
m0k(ink; outk) : oik :mk(ink; outk)

end o

A cyclic or sporadic object defines a unique thread that op-
erates periodically or sporadically:

Object o C
used pair list
period P
constants constant list
variables variable list
shunts shunt list
thread
A

end o

Object o S
used pair list
interval T
constants constant list
variables variable list
shunts shunt list
thread
A

end o

wherePandT are the activation period and the minimum
activation interval of the corresponding objects.

Both protected and passive objects are used to define
methods which can be requested by other objects. The dif-
ference between them is that the methods defined in a pro-
tected object can be executed exclusively while those de-
fined in a passive object can be executed immediately when
being requested:

Object o Pr
provide
fm1(in1; out1); :::;mn(inn; outn)g
used pair list
constants constant list
variables variable list
shunts shunt list
methods

m1(in1; out1)
variables variable list
A1

end
.
.
.
mn(inn; outn)
An

end
end o

Object o P
provide
fm1(in1; out1); :::;mn(inn; outn)g
used pair list
constants constant list
variables variable list
shunts shunt list
methods

m1(in1; out1)
variables variable list
A1

end
.
.
.
mn(inn; outn)
An

end
end o

An agent describes a set of operations with explicit or
implicit timing constraints. We directly use agents defined
in [5] in the context of our object model. Two new agents
are introduced:

1. o0:m0([in; out]) (Invocation)—o0 is the name of an
object,m0 is the method provided byo0 and in, out
are optional parameters to be passed to the method
m0 as a substitution. This agent causes that an invo-
cation to the methodm0 optionally within and/orout.

2. m([in; out]) : o0:m0([in0; out0]) (Encapsulation)—o0

is a child object of the objecto andm0 is a method
provided byo0. The definition ofin, out must be in
accordance with that ofm0. This agent serves as the
body of a method of an active object. It transfers the
invocation ofm to that ofm.

3. The Real-Time Logic

Like TAM, a discrete, linear time domain is used which
is modelled by the natural numbers and denoted byTime.
The current time is denoted by the free time variablenow
which is global and can be referred to by any agent.

Variablesare used for computation and shared by the
methods within an object or the agents within a method.
Their values can be referred to with times.Shuntsare used
for communication withexternalenvironments, such as a
sensor in hardware or an object in software. A shunt con-
sists of two fields: one holds a (set of) value(s) and another
holds a time at which the value(s) is (are) written. Shunts
are also referred to with times. The difference between vari-
ables and shunts is that shunts aretime-stamped. Shunts are
assumed to be non-blocking on reading and writing. An
event occurrence can be modelled by one or more shunts:
it occurs if and only if the shunt is written. To restrict the
complexity, we do not classify the domains of values found
in variables and shunts while they are simply defined by
Value.

An invocation is viewed as a special shunt whose value
and timestamp represent its status and occurrence time. The
invocation status includes: (1)Request—an invocation is
in Requeststatus if and only if it occurs but has not yet
been served; (2)Activation—an invocation is inActivation
status if and only if it has been served, i.e., the requested
method is being executed for it, but has not yet terminated;
(3) Termination—an invocation is inTerminationstatus if
and only if the execution of the method for it has termi-
nated.

We define
InvStatus = fREQ;ACT;TERg

to represent the domain of the values found in an invocation.
Like a shunt, an invocation is assumed to be non-blocking
on reading and writing. We useInvm to denote the sequence
of all occurring invocations of a methodm. The order of
elements inInvm is that of requests to the methodm and an
element uniquely identifies an invocation. It is assumed that

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on July 20,2010 at 13:40:22 UTC from IEEE Xplore. Restrictions apply.

an invocation of the methodm is put into toInvm if and only
if it occurs.

The logic is basically first-order logic with conservative
extension to deal with objects, methods and invocations,
with which temporal and functional requirements of the sys-
tem and objects can be described succinctly.

A free time variable pairt� and t! is defined to repre-
sent the activation and termination times of agents, objects
and systems. The activation and termination times of ob-
jects, methods and agents must be within those of the sys-
tem defining the objects, the objects defining the methods
and the method defining the agents respectively. However,
the activation and termination times of threads are viewed
as those of the sporadic and cyclic objects which define the
threads respectively.

The timing functionsa , b andc are defined over
pairs(x; t), wherex is a variable, shunt, or invocation, and
t is a time, resulting in the value of the variable, the value
and the timestamp of the shunt, or an invocation status and
its occurrence time at the given time respectively:

a : Var� Time! Value

b : Shunts� Time! Value� Time

c :
S

all m
Invm� Time! InvStatuses� Time

whereVar andShuntsare sets of variables and shunts re-
spectively.

Projection functions ofb ,c for shunts and invocations
are also defined:

1. :vb and:tsb result in the value and the timestamp
of the shunt respectively.

2. :vc and :tsc result in an invocation status and its
occurrence time respectively.

These functions are used as infix functions.
We define that req time(q), act time(q) and

ter time(q) represent the request, activation and termi-
nation times of an invocationq to a methodm respectively,
and

1. 8 i 2 [1; j Invm j]; t : Time�Invm(i)c t = (REQ; t))
req time(Invm(i)) = t

2. 8 i 2 [1; j Invm j]; t : Time�Invm(i)c t = (ACT; t))
act time(Invm(i)) = t

3. 8 i 2 [1; j Invm j]; t : Time�Invm(i)c t = (TER; t))
ter time(Invm(i)) = t

It is clear that a normal invocation begins with request,
activation and then termination. However, in some cases,
such as that in passive objects, an invocation starts with ac-
tivation and ends with termination. Moreover, the null oper-
ation in some implementation may have zero duration. This
is a useful mechanism, specially in fault-tolerant systems
in which a fail-stop mechanism is adopted. In such case, a
request may terminate immediately.

A sporadic activity in which whenever a shunts1 is writ-
ten to, another shunts2 must be written to within 5 time

units can be described by the formula:

8 t 2 [t�; t!] � s1 :tsb t = t) 9 t0 2 [t; t + 5] � t0 � t! ^ s2 :tsb t0 = t0

A predicate can be defined to describe that shunts, vari-
ables or constants remain stable during a range of time:

stable(X; [t1; t2]) =def

8><
>:

8 v 2 X; t0; t00 2 [t1; t2] � va t0 = va t00

if X is a variable set
8 s2 X; t0 2 [t1; t2] � s :tsb t0 � t1

if X is a shunt set
true if X is a constant set

A shunt is written to exactly once during a range of time
can be specified:
write sh(x; s; [t1; t2]) =def

9 t 2 [t1; t2] � sb t = (x; t)^ stable(fsg; [t1; t�1])^ stable(fsg; [t; t2])

If M is a set of methods provided by a protected object
o, then the following predicate must be held for the object
o:
exclusive(M) =def 8m; n 2 M; i1 2 [1; j Invm j]; i2 2 [1; j Invn j]�

9 t 2 [t�; t!] � t � Invm(i1) :reqc t)

Invm(i1):actc t � Invn(i2):actc t � Invm(i1):terc t, m= n^ i1 = i2

This predicate asserts that executions of all methods in a
protected object must be mutually exclusive.

Thus specification-oriented semantics of TAM in object
context can be derived. We defineF is a semantic function,
such thatF [[X]] gives the semantics of a componentX, such
as an object, method, or agent. For example, if a method
invocationo0:m0(in; out) is used in a methodm in an object
o, and
9 o1 2 Ancestor(o); o2 2 ChildObjects(o1);

m2 2 ProvidedMethods(o2) � o
0 = o2 ^ m0 = m2

whereAncestor(o) is the set of ancestors of the object
o, and the methodm0 is defined as in the objecto0:
m0(in; out) =def A end

then the semantics of the invocation is defined as:
F [[o0:m0(in; out)]] =def
stable((ObjEnv(o) [MthEnv(m))nout; [t�; t!]) ^ 9 t0 2 [t�; t!]; i 2 [1; j Inv0m j]�

Inv0m(i)c t0 = (REQ; t0)^9 t1; t2 � t0 � t1 � t2 ^F [[A[t1=t�; t2=t!; in=in; out=out]]]^

(t! = t0 , out(Inv0m(i)) = ;) _ (t! = t2 , out(Inv0m(i)) 6= ;)

If oC is a cyclic object in the form defined in the last section,
then the semantics ofoC can be described by:
F [[oC]] =def ChildObjects(oC) = ; ^ ProvidedMethods(oC) = ; ^

8 o0 2 �; (o00;m00) 2 UsedMethods(o0); m 2 Methods(oC) � oC 6= o00 ^ m 6= m00 ^
8 n 2 N ; 9 t1 2 [t�; t!] � t1 = T � n) 9 t2 2 [t�; t!] �
t1 � t2 � t1 + T ^ F [[A[t1=t�; t2=t!]]]

4. Refinement Calculus

The refinement relationv is defined on a component
(agent, method and object) in a similar fashion to that of
TAM. A componentX is refinedby the corresponding com-
ponentY (X v Y) if and only ifF [[Y]]) F [[X]].

A set of refinement laws are specified, based on the real-
time logic specified in the last Section, to transform an
abstract specification into concrete objects. Here we give
some useful refinement laws.

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on July 20,2010 at 13:40:22 UTC from IEEE Xplore. Restrictions apply.

Law. 1 (Cyclic object)
If 8 t 2 [0;1);9 n 2 N ; T 2 Time � t = T� n^�0) �, then there is
an objecto with type ofC, such thatw : � v o, whereo is in
the form shown as below (left).

Object o C
used pair list
period P
constants constant list
variables variable list
shunts shunt list
thread

w : �0

end o

Object o S
used pair list
interval T
constants constant list
variables variable list
shunts shunt list
thread

w : �0

end o

Law. 2 (Sporadic object)
If 8 t 2 [0;1); 9 s1; s2; :::; sn 2 E�, such that8 i 2 [1::n]; t0 < t � t �

si :tsb t0 � T^si :tsb t = t^�0)�, then there is an objecto with
type ofS, such thatw : � v o, whereo is in the form shown
as above (right).

Law. 3 (Passive object)
If m1(in1; out1) =def �1;m2(in2; out2) =def �2; :::;mn(inn; outn) =def �n,
and8 t 2 [0;1)�(9 d : Time�stable(E; [t; t+d]))_

W
i2[1::n]

mi(ini ; outi))�,

then there is an objecto with type ofP, such thatw : � v o,
whereo is in the form as shown below (left).

Object o P
provide
fm1(in1; out1); :::;mn(inn; outn)g

used pair list
constants constant list
variables variable list
shunts shunt list
methods

m1(in1; out1)
variables variable list
w : �1

end
.
.
.
mn(inn; outn)

w : �n

end
end o

Object o Pr
provide
fm1(in1; out1); :::;mn(inn; outn)g

used pair list
constants constant list
variables variable list
shunts shunt list
methods

m1(in1; out1)
variables variable list
w : �1

end
.
.
.
mn(inn; outn)

w : �n

end
end o

Law. 4 (Protected object)
If m1(in1; out1) =def �1;m2(in2; out2) =def �2; :::;mn(inn; outn) =def �n,
and8 t 2 [0;1);9 d : Time, such that

stable(E; [t; t + d]) _ (8 t0 2 [t; t + d]; i 2 [1::n] � mi(ini ; outi)a t)

:
V

j2[1::n];j 6=i

mj(inj ; outj))) �

then there is an objecto with type ofPr, such thatw : � v o,
whereo is in the form as shown above (right).

Law. 5 (Active object)
If o1, o2, ..., oi1 , ..., oik, ..., on are related objects, then an
objecto can be defined to include them in the form given in
Section 2, and(o1; o2; :::; on)v o.

Law. 6 (Method)
Supposeo1, o2 are two objects with the same type.
If 8m0 2 ProvidedMethods(o1);9m00 2 ProvidedMethods(o2)�Am0vAm00 ,
theno1 v o2:

Law. 7 (Invocation)
If a methodm0(in; out) =def MthEnv(m) A end is de-
fined in an objecto0, B is an agent in an objecto, and B v
A[in=in; out=out] , then Bvo0:m0(in; out) and ifwB �wo0 ,
thenwo = wonwB , wherewB , wo andwo0 are frames ofB, o
ando0 respectively, andUsedMethods(o) = UsedMethods(o)[
f(o0; m0(in; out)g

Law. 8 (Child Objects)
Supposeo1, o2 are two active objects.
If 8 o0 2 ChildObjects(o1);9 o00 2 ChildObjects(o2) � o0 v o00, then
o1 v o2

5. A Case Study

In this section we illustrate the formal development of a
real-time system using our model by a case study. The case
study is designed based on “The Mine Control System” [1],
as depicted in Fig.1.

Motor Control System

operator_console motor_interfacegas_sensor

ctrl: {ON,OFF}

level: N

cmd: {START,STOP}

Figure 1: Motor Control System

5.1. Requirements of the Motor Control System

We can express the system requirements (denoted byREQ)
as:

REQ(Motor Control System):

Wheneverreceiving a command from the operator and 10 time units have elapsed
since the last command:if the command is “START”, the motor is off, and the
gas level is not higher than 40, then the motor is switched on within 5 time units.
if the command is “STOP”, the motor is on, then the motor is switched off within
5 time units.

Every 20 time units, the gas level is checked, and if the gas level is higher than 40
and the motor is on, then the motor is switched off within 5 time units.

REQis decomposed into three sub-requirementsreq1 , req2
andreq

3
corresponding to gas monitor, operator, and motor

respectively:

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on July 20,2010 at 13:40:22 UTC from IEEE Xplore. Restrictions apply.

req
1

(Operator):

Whenever a command is received and at least 10 time units have elapsed
since the last:
1. if the command is “START”, the motor is not in operation and the gas
level is not higher than40, then switch the motor on within5 time units.
2. if the command is “STOP” and the motor is in operation, then switch the
motor off within5 time units.

req
2

(Gas Check):

Check the gas level every 20 time
units:
if the level is higher than40 and
the motor is in operation, then
switch the motor off within5 time
units.

req
3

(Motor):

Switch the motor on or off if

requested. Only one operation

can be done at the same time.

In general, ifREQ is inconsistent, then further require-
ment analysis is needed and if there is somei, such thatreqi

is not proper, then the decomposition must be redone.

5.2. Specification of the System

In this Section, we define specifications of the subsys-
tems and objects to represent corresponding requirements.
This is achieved by identifying the system observables. The
system operates the motor according to commands from the
operator console and gas level sampled by the gas sensor.
We use shuntscmd, levelandctrl to model command, gas
level and motor control interface respectively:

cmd: fSTART;STOPg
level: N
ctrl: fON;OFFg

Sub-specificationsspec
1
, spec

2
andspec

3
corresponding to

req
1
, req

2
andreq

3
can be specified by means of the real-

time logic:
� Operator

spec
1
=def

fctrlg :
8 t 2 [0;1) � t � cmd:tsb t � 10 ^
((cmdb t = (START; t) ^ level:vb t � 40 ^ ctrl :vb t = OFF)
9 d : Time � write sh(ON; ctrl; [t; t + d]) ^ d � 5) _
(cmdb t = (STOP; t) ^ ctrl :vb t = ON)
9 d : Time � write sh(OFF; ctrl; [t; t + d]) ^ d � 5))

� Gas Check
spec2 =def

fctrlg :
8 t 2 [0;1) � 9 n 2 N � t = 20 � n^ level:vb t > 40)
(ctrl:vb t = ON) 9 d : Time�write sh(OFF; ctrl; [t; t+d])^d� 5)

� Motor
spec3 =def

fctrlg :
8 t 2 [0;1) �
:((ctrl :vb t1 = OFF) write sh(ON; ctrl; [t; t + d]) ^ d � 5) ^
(ctrl :vb t1 = ON) write sh(OFF; ctrl; [t; t + d]) ^ d � 5)) _
9 d : Time � stable(ctrl; [t; t + d])

Because the gas level is also accessed by the objectMotor
to check if the gas is safe, a corresponding method should
be provided. However, because the level is sampled period-
ically, it can not be accessed sporadically. We introduce an
operationGas Statusto maintain a gas status according to
the gas level. A variable is introduced to represent the gas
status:

gas st: fSAFE; UNSAFEg
A corresponding specificationspec4 is defined as:

� Gas Status
spec4 =def

fgas st; sg :
8 t 2 [0;1) � :((9 t0 2 [t; t + d] � sa t0 = gassta t) ^ (9 t0 2
[t; t + d] � gas sta t0 = sa t)) _
9 d : Time � stable(fgasst; sg; [t; t + d])

Correspondingly,spec
2

is adapted, denoted byspec0
2
:

� Gas Check
spec0

2
=def

fctrl; gas stg :
8 t 2 [0;1) � 9 n 2 N � t = 20 � n^
(level:vb t� > 40) (ctrl :vb t� = ON)
9 d : Time � write sh(OFF; ctrl; [t�; t!]) ^ d � 5) ^
(gas sta t� = SAFE)
9 d0 : Time � gas sta (t� + d0) = UNSAFE)) _
(level:vb t� � 40 ^ gas sta t� = UNSAFE)
9 d0 : Time � gas sta (t� + d0) = SAFE)

Thus we have
SPEC=def spec

1
^ spec0

2
^ spec

3
^ spec

4

At this stage, if there is somei, such thatspeci = false, then
reqi must be re-formalised.

5.3. Refinement

In this Section, we use refinement laws listed in the Ap-
pendix A to refine sub-specifications derived in the last Sec-
tion. At the concrete level, some time parameters are re-
moved.

5.3.1 From specifications to Objects

The sub-specificationspec
1

can be refined by a sporadic ob-
jectOperator(Law. 2) producing:

Object OperatorS
interval 10
shunts

cmd : fSTART;STOPg � Time
ctrl : fON;OFFg � Time

level : N � Time
thread
fctrlg :
cmd:vb t� = START̂ level:vb t � 40 ^ ctrl :vb t = OFF)
write sh(ON; ctrl; [t�; t!]) ^ t! � t� � 5_
cmd:vb t� = STOP^ ctrl :vb t = ON)
write sh(OFF; ctrl; [t�; t!]) ^ t! � t� � 5

end Operator

spec0
2

can be refined by a cyclic objectGas Check(Law. 1)
producing:

Object Gas CheckC
period 20
shunts

ctrl : fON;OFFg � Time

level : N � Time
variables

gas st : fSAFE;UNSAFEg
thread
fctrl; gas stg :
(level:vb t� > 40) (ctrl :vb t� = ON)
9 d : Time � write sh(OFF; ctrl; [t�; t!]) ^ d � 5)^
(gas sta t� = SAFE)
9 d0 : Time � gas sta (t� + d0) = UNSAFE))_
(level:vb t� � 40 ^ gas sta t� = UNSAFE)
9 d0 : Time � gas sta (t� + d0) = SAFE)

end Gas Check

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on July 20,2010 at 13:40:22 UTC from IEEE Xplore. Restrictions apply.

spec
3

andspec
4

can be refined by protected objectsMotor
andGas Status(Law. 4) producing respectively:

Object Motor Pr Object Gas StatusPr
provide set on(d); set off(d) provide read(s;d);write(s; d)
shunts variables

ctrl : fON;OFFg � Time gas st : fSAFE;UNSAFEg
methods methods

set on(d) read(s;d)
variables d : Time variables
fctrlg : s : fSAFE;UNSAFEg
ctrl :vb t� = OFF) d : Time

write sh(ON; ctrl; [t�; t!])^ fsg :
t! � t� � d sa t! = gas sta t�^

end t! � t� � d
set off(d) end

variables d : Time write(s; d)
fctrlg : variables
ctrl :vb t� = ON) s : fSAFE;UNSAFEg
write sh(OFF; ctrl; [t�; t!])^ d : Time

t! � t� � d fgas stg :
end gas sta t! = sa t�^

end Motor t! � t� � d
end

end Gas Status

5.3.2 From Objects to the Final System

1. Motor(Law. 6 and laws on agents defined in TAM
[5]), shown in Fig.2.

2. Gas Status(Law. 6 and laws on agents), shown in
Fig.3.

Object Motor Pr
provide set on(); set off()
shunts

ctrl : fON;OFFg � Time

variables
x : fON;OFFg
t : Time

methods
set on()
(x; t) ctrl;
if x = OFF then

(ON; now)! ctrl
endif

end
set off()
(x; t) ctrl;
if x = ON then
(OFF; now)! ctrl

endif
end

end Motor

Figure 2: ObjectMotor

Object Gas StatusPr
provide fread(s);write(s)g
variables

gas st : fSAFE;UNSAFEg
methods

read(s)
s : fSAFE;UNSAFEg
s := gas st

end
write(s)
s : fSAFE;UNSAFEg
gas st := s

end
end Gas Status

Figure 3: Object
Gas Status

3. Gas Check(Law. 6, Law. 7 and laws on agents),
shown in Fig.4.

4. We can encapsulateGas CheckandGas Statuswith
a new objectGas Monitor which refines them (Law.
5), shown in Fig.5.

5. Operator(Law. 6, Law. 7 and laws on agents), shown
in Fig.6.

6. Fig.7 shows the final system.

We omit time obligations because of their observative-
ness.

Object Gas CheckC
used
(Gas Status;write(s));
(Gas Status; read(s)

period 20
shunts
level : N � Time

variables
x : N
t : Time
s : fSAFE;UNSAFEg

thread
(x; t) level;
if x > 40 then
duration d
Motor:set off();
Gas Status:read(s);
if s = SAFEthen
Gas Status:write(UNSAFE);

endif
end
orif x � 40 then

duration d
Motor:set on();
Gas Status:read(s);
if s = UNSAFEthen
Gas Status:write(SAFE);

endif
end

endif
end Gas Check

Figure 4: Object
Gas Check

Object OperatorS
used
(Gas Monitor; check(s));
(Motor:set on())

interval 10
shunts
cmd : fSTART;STOPg � Time

variables
x : fSTART; STOPg
t : Time
s : fSAFE;UNSAFEg

thread
duration 5
(x; t) cmd;
Gas Monitor:check(s);
if x = START̂ s = SAFEthen
Motor:set on()
orif x = STOPthen
Motor:set on()

endif
endif

endif Operator

Figure 6: ObjectOperator

Object Gas Monitor A
include

Gas Check;Gas Status
provide check(s)
methods

check(s) : Gas Status:read(s)
end Gas Monitor

Figure 5: ObjectGas Monitor

Object Motor Control SystemA
include

Operator;Gas Monitor;Motor
end Motor Control System

Figure 7: Design of the System

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on July 20,2010 at 13:40:22 UTC from IEEE Xplore. Restrictions apply.

6. Conclusions

In this paper, we present an approach to integrate a prac-
tical OO development technique, HRT-HOOD, and a sound
formal method, TAM, in which a refinement calculus is
provided to transform requirements/specifications to objects
for real-time systems. We extended TAM with the capa-
bility of describing behaviours of objects (a computational
object model) and method invocations. The computational
model is defined based on HRT-HOOD, which focuses on
specification and may be refined by corresponding HRT-
HOOD objects. HRT-HOOD is used to decompose the sys-
tem’s requirements. Each sub-requirement is formalised,
using the TAM specification statement which is subsequently
refined into objects by using a set of refinement laws.

With the combination, a framework is specified which
supports the development of real-time systems from infor-
mal requirements to formal specification, concrete design,
possibly until executable code. Based on the refinement cal-
culus, a development method is suggested:

1. Use HRT-HOOD to decompose the system require-
ment, namelyREQ, to produce sub-requirements:req1,
req2, ...,reqn.

2. Formalise each sub-requirementreqi using the spec-
ification statement of TAM to producespec1, spec2,
..., specn. Note that the formal specification,SPEC,
which corresponds toREQ, is given by

SPEC=def

^
i2[1;n]

speci

3. Use the refinement calculus to refinespeci into a con-
crete objectobji, i.e.,

speci v obji

4. The collection of resulting objects are then composed
to produce the final concrete system.

5. Use HRT-HOOD to map the resulting concrete code
to an equivalent Ada code.

A characteristic of our approach is that during the refine-
ment stages, all necessary timing information may be gath-
ered in the form of ‘proof-obligations’. These obligations
are obviously proved correct (as a result of the soundness
of the refinement laws) and are vital to scheduling theo-
rists. Once these obligations are available, various schedul-
ing tests and analysis may be applied. In fact these tests
could also be applied after each refinement step; if the test
is not valid then the step is repeated until the obligation is
satisfied.

It is clear that some of the timing characteristics may be
left as ‘variables’ to be determined at a later stage of devel-
opment. These variables are constraints by the obligations
themselves. For example, in the case study presented, the
duration and worst case execution time of the operations of
concrete thread in the objectGas Checkmay be left as a
variabled which can be determined at the implementation
phase.

Reference

[1]. Burns, A. and Wellings, A., HRT-HOOD: A Struc-
tured Design Method for Hard Real-Time Systems,
Elsevier, 1995.

[2]. European Space Agency, HOOD Reference Manual
Issue 3.0, WME/89-353/JB, December 1989.

[3]. Chen, Z., Formal Methods for Object-Oriented Paradi-
gm Applied to the Engineering of Real-Time Sys-
tems: A Review, TechReport, De Montfort Univer-
sity, 1997.

[4]. Scholefield, D. and Zedan, H., TAM: A Formal Frame-
work for the Development of Distributed Real-Time
Systems. Symposiums on Formal Techniques in Real-
Time and Fault Tolerant Systems, Nijmegen, Nether-
lands, January 1992.

[5]. Scholefield, D. and Zedan, H., A Collection of Papers
on Temporal Agent Model, FSR Group, University of
York, 1993.

[6]. Scholefield, D., Zedan, H. and He, J., ‘A Specification
Oriented Semantics for the Refinement of Real-Time
Systems’ , Journal of Theoretical Computer Science,
Vol. 129, No. 1, pp. 219-241 (1994).

[7]. Lowe, G. and Zedan, H., ”Refinement of Complex
Systems: A Case Study”, The Computer Journal, Vol.
38, No. 10 (1995).

[8]. Lano, K., Distributed System Specification in VDM++,
FORTE’95 Proceedings, Chapman and Hall, 1995.

[9]. Polack, F., Whiston, M. and Mander, C., The SAZ
Method, TechReport, YCS207, University of York,
1993.

[10]. Semmens, L. and Allen, P., Using Yourdon and Z:
an Approach to Formal Specification, Proceedings of
5th Annual Z User Meeting, Oxford, Springer-Verlag,
1991.

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on July 20,2010 at 13:40:22 UTC from IEEE Xplore. Restrictions apply.

