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Abstract: This paper investigates the randomness assignment problem for a class of continuous-time
stochastic nonlinear systems, where variance and entropy are employed to describe the investigated
systems. In particular, the system model is formulated by a stochastic differential equation. Due to
the nonlinearities of the systems, the probability density functions of the system state and system
output cannot be characterised as Gaussian even if the system is subjected to Brownian motion. To
deal with the non-Gaussian randomness, we present a novel backstepping-based design approach to
convert the stochastic nonlinear system to a linear stochastic process, thus the variance and entropy
of the system variables can be formulated analytically by the solving Fokker–Planck–Kolmogorov
equation. In this way, the design parameter of the backstepping procedure can be then obtained
to achieve the variance and entropy assignment. In addition, the stability of the proposed design
scheme can be guaranteed and the multi-variate case is also discussed. In order to validate the design
approach, the simulation results are provided to show the effectiveness of the proposed algorithm.

Keywords: stochastic differential equation; Fokker–Planck–Kolmogorov equation; variance and
entropy assignment

1. Introduction

Stochastic systems, which are usually subjected to high levels of uncertainties and
randomness, have become one of the major research fields due to their presence in the real-
life systems. The randomness existing in the stochastic systems will result in bad control
behaviour and lead to the instability of the controlled systems. Therefore, to enhance
the performance of such systems, the influence of randomness has to be well controlled.
To characterise the randomness of systems, variance has always been adopted as a statistical
index when the randomness can be characterised as a Gaussian process, thus showing
that the variance control method is regarded as an important design for stochastic systems
analysis and implementation [1–3].

However, for the systems that cannot meet the Gaussian assumptions due to the
nonlinearities, these results from the variance control method cannot be applied directly. It
has been shown that the distributions of system variables can be twisted to non-Gaussian
even if the noises in nonlinear systems are Gaussian noises. Based on the probability
theory, variance is only the second moment which cannot reflect the full property of
the non-Gaussian randomness [4]. To address that, the probability density function (PDF)
control [5] becomes the solution for the stochastic nonlinear systems as PDF contains the full
stochastic properties of random variables. The existing PDF control methods mostly focus
on discrete-time systems. For the continuous-time stochastic nonlinear systems, it is difficult
to find a solution analytically for the Fokker–Planck–Kolmogorov (FPK) equation [6]. Even
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though, entropy control [7] has been developed to overcome the non-Gaussian property
and high-order moment problem of variance control, the analytical formulation of entropy
for continuous-time dynamic system remains challenge since the FPK equation is hard to
solve. Therefore, randomness control for continuous-time stochastic nonlinear systems is
still regarded as a challenging topic.

We notice that the key factor for the randomness control is the system nonlinearity
as the linear stochastic system can be handled by variance control. For linear stochastic
systems, the entropy value is equivalent to variance. Motivated by Brownian motion [8,9],
the randomness control for the stochastic nonlinear system can be achieved if the nonlin-
ear process is able to be converted to linear process via the control design. Furthermore,
the variance and entropy assignment can be achieved analytically to reflect the randomness.
Following this idea, we consider a class of continuous-time stochastic nonlinear systems
in this paper, where the backstepping design is adopted to stabilise the system variables.
At the same time, the investigated nonlinear systems can be converted to linear format
with designed parameter. The converted linear system structure can be analysed as an
Ornstein–Uhlenbeck process [6], where the associated Fokker–Planck–Kolmogorov equa-
tion is solvable. In particular, the variance and entropy can be formulated analytically.
Based on the formula, the designed parameters can be further obtained to achieve the
randomness assignment.

Different from the stochastic distribution control [10], the randomness is investigated
in a simplified approach and the analytical solution is obtained. Furthermore, the block
backstepping design [11] and covariance assignment method [12] can be applied for multi-
variate systems. In practice, the randomness assignment can also be used for filtering
design [13], system identification and applications [14].

The rest of the paper is organised as follows. In Section 2, the formulation is given
in terms of problem description and preliminaries related to the main results. Section 3
and Section 4 are the main contents of this paper, where the backstepping-based control
law is proposed to stabilise the investigated stochastic system and the design parameter is
analysed for variance assignment using Fokker–Planck–Kolmogorov equation. To validate
the proposed control design, a numerical example is given in Section 5, where the results
show that the variance can be assigned using the proposed control algorithm. The multi-
variate system extension is discussed in Section 6 and the conclusions are given in Section 7
as the last part of this paper.

2. Formulation

In this paper, we first consider a univariate continuous-time stochastic affine nonlinear
system which can be modelled by the following Itô process:

dxt = ( f (xt) + vt)dt + σdWt (1)

where Wt stands for the Wiener process, f (·) stands for a smooth non-linear function, σ > 0
denotes a real constant, xt and vt denote the system state and control input, respectively.

We can further re-write the investigated system model (1) by introducing an integrator
while the following model can be obtained,

dxt = ( f (xt) + vt)dt + σdWt

dvt = utdt (2)

where ut denotes the new control signal while the control signal vt is the integral of ut.
Then control objective can be described as designing ut such that xt is bounded in

probability sense, then the variance and entropy of xt track the given desired values.
To achieve the system design, the preliminaries [15] are recalled as follows:
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Definition 1. For any given V(xt, t) ∈ C 1,2(Rn ×R+;R+) associated with the stochastic differ-
ential Equation (1), the differential operator L is defined as follows:

L V =
∂V
∂t

+
∂V
∂xt

f (xt) +
∂V
∂xt

vt +
1
2

Tr
{

∂2V
∂x2

t
σ2
}

(3)

Lemma 1. Consider the stochastic non-linear system model (1) and assume that f (xt) is C 1 in the
arguments and f (0) is bounded uniformly in t. If there exist functions V(xt, t) ∈ C 1,2(Rn ×R+;R+),
µ1(·), µ2(·)∈ K∞, constants c1 > 0, c2 ≥ 0, and a nonnegative function V̄(xt, t), such that

µ1(|xt|) ≤ V(xt, t) ≤ µ2(|xt|)
L V ≤ −c1V̄(xt, t) + c2 (4)

3. System Stabilisation

Based on the backstepping procedure [16], the virtual input signal can be designed as

φ(xt) = − f (xt)− θxt (5)

where θ > 0 denotes the designed parameter for the controller.
In order to stabilise Equation (1), the virtual tracking error is formulated as

zt = vt − φ(xt)

= vt + f (xt) + θxt (6)

Substituting the error signal zt into Equation (32), we have

dxt = (−θxt + zt)dt + σdWt (7)

Based upon Itô’s lemma, the following result is produced.

dzt = dvt − dφ(xt)

=

(
ut − (−θxt + zt)

∂φ(xt)

∂x
− σ2

2
∂2φ(xt)

∂x2

)
dt

− σ
∂φ(xt)

∂x
dWt (8)

One Lyapunov function candidate is selected to stabilise the investigated system
model (32), which is given as follows.

Vt = Vx + Vz =
1
2

x2
t +

1
4

z4
t (9)

which results in

L Vt = L Vx +L Vz (10)
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Using Definition 1, Lemma 1 and Young’s inequality, the following results can be
evaluated as,

L Vx = xt(−θxt + zt) +
σ2

2

= −θx2
t + xtzt +

σ2

2

≤ −θx2
t +

1
2

x2
t +

1
2

z2
t +

σ2

2

=

(
−θ +

1
2

)
x2

t + z2
t +

σ2

2

≤
(
−θ +

1
2

)
x2

t +
1
2

z4
t +

σ2 + 1
2

(11)

and

L Vz = z3
t

(
ut − (−θxt + zt)

∂φ(xt)

∂x
− σ2

2
∂2φ(xt)

∂x2

)
+

3σ2

2

(
∂φ(xt)

∂x

)2
z2

t

≤ z3
t

(
ut + θxt

∂φ(xt)

∂x
− zt

∂φ(xt)

∂x
− σ2

2
∂2φ(xt)

∂x2

)
+

1
2
+

9σ4

8

(
∂φ(xt)

∂x

)4
z4

t

= z3
t

(
ut + θxt

∂φ(xt)

∂x
− σ2

2
∂2φ(xt)

∂x2

)
+

(
9σ4

8

(
∂φ(xt)

∂x

)4
− ∂φ(xt)

∂x

)
z4

t +
1
2

(12)

The control signal can be further developed as

ut = −θxt
∂φ(xt)

∂x
+

σ2

2
∂2φ(xt)

∂x2 − Czt (13)

where C stands for a designed real function.
Substituting the control signal into L Vz, Equation (10) can be written as

L Vt ≤
(
−θ +

1
2

)
x2

t +
1
2

z4
t +

σ2 + 2
2
− Cz4

t

+

(
9σ4

8

(
∂φ(xt)

∂x

)4
− ∂φ(xt)

∂x

)
z4

t

=

(
−θ +

1
2

)
x2

t +
σ2 + 2

2

+

(
1
2
− C +

9σ4

8

(
∂φ(xt)

∂x

)4
− ∂φ(xt)

∂x

)
z4

t (14)

The system state xt using ut is bounded in probability sense based on Lemma 1.
Moreover, C can be further selected as follows to eliminate the z4 nonlinear term.

C =
1
2
− 9σ4

8

(
∂φ(xt)

∂x

)4
+

∂φ(xt)

∂x
− κ (15)
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where κ ≥ 0 denotes a free designed parameter.
As a result, we have

∂φ(xt)

∂x
= −∂ f (xt)

∂x
− θ (16)

and

∂2φ(xt)

∂x2 = −∂2 f (xt)

∂x2 (17)

Substituting Equations (15)–(17) into the controller design (13), the complete control
scheme can then be formulated as follows:

ut = θxt

(
∂ f (xt)

∂x
+ θ

)
− σ2

2
∂2 f (xt)

∂x2

−
(

1
2
− 9σ4

8

(
∂φ(xt)

∂x

)4
+

∂φ(xt)

∂x
− κ

)
× (vt + f (xt) + θxt) (18)

which leads to

L Vt ≤
(
−θ +

1
2

)
x2

t − κz4
t +

σ2 + 2
2

(19)

Thus, the closed-loop system with the designed parameter θ ≥ 1
2 is bounded in probabil-

ity sense.

4. Variance and Entropy Assignment

Substituting the control signal into L Vz shows that the error signal zt is also bounded
in the probability sense once the free parameter meets κ > 0. Thus, the closed-loop system
with the given control scheme can be further considered as the Ornstein–Uhlenbeck process.

dxt = −θxtdt + σdWt (20)

while the Fokker–Planck–Kolmogorov equation can be formulated as follows:

∂p(x, t)
∂t

= θ
∂

∂x
(xp(x, t)) +

σ2

2
∂2 p(x, t)

∂x2 (21)

where p(x, t) denotes the PDF and x denotes the random variable of xt.
Note that the associated FPK equation is a linear partial differential equation; the ana-

lytical solution can be formulated analytically as follows:

p(x, t) =

√
θ

πσ2
(
1− e−2tθ

) exp

(
− θ

σ2

(
x− x0e−tθ)2

1− e−2tθ)

)
(22)

where x0 stands for the initial value of xt at t0.
Since the solution of this FPK equation is a Gaussian distribution, the mean value

and variance can be obtained analytically. It implies that the presented control scheme
governs the non-Gaussian PDF of xt to re-shape as a Gaussian distribution. In particular,
the formula of mean value and variance can be obtained as follows:

E(xt) = x0e−tθ (23)

Var(xt) =
σ2

2θ

(
1− e−2tθ

)
(24)
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where E(·) and Var(·) stand for the operators of the mean value and the variance value.
It has been shown that both mean value and variable can be adjusted via the designed
parameter turning in the presented control scheme θ. In addition, the mean value reaches
zero with θ > 0 is considered as the convergence rate.

Denoting a desired variance function as r(t), θ can then be further developed as a
function of t such that the following equation holds.

σ2

2θ

(
1− e−2tθ

)
= r(t) (25)

Note that this equation can be rewritten as the following form,

e−2tθ = −2r(t)
σ2 θ + 1 (26)

Using the Lambert W function [17], the equation can be solved and the solution is
given as follows:

θ =

W0

(
− tσ2

r(t) e−
tσ2
r(t)

)
2t

+
σ2

2r(t)
(27)

where W0(·) is the Lambert W function. Note that W0(·) can be adopted when 2rcθ ≥ σ2.
To ensure the W0(·) function can be used above, the stationary solution can be practi-

cally implemented if r(t) = rc is a real positive constant.

θs = lim
t→∞

θ =
σ2

2rc
(28)

Note that the solution meets the condition of W0(·) where 2rcθs ≥ σ2.
We can achieve the entropy assignment for the random variable xt as the variance

value is correlated to Shannon’s entropy subjected to the linear stochastic process. Based
on the definition, we have

H(xt) =
1
2
(log (2πVar(xt)) + 1) (29)

where H(·) stands for the Shannon’s entropy.
Based on the equation above, we can establish the link between the desired variance

function and the pre-specified entropy function.

r(t) =
1

2π
e2Hr(t)−1 (30)

where Hr(t) stands for the pre-specified desired entropy function.
Substituting Equation (30) into Equation (28), the parameter θ can be confirmed.

Similar to the variance assignment, the stationary solution for entropy assignment is
achieved if Hr(t) = Hc is a real constant.

θs = πσ2e1−2Hc (31)

As Shannon’s entropy is regarded as a special case of Rényi’s entropy, the presented
control scheme can be extended to various entropies. As a result, the entropy optimi-
sation can be further achieved for non-Gaussian filtering designs [13] and performance
enhancement [18].
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5. Simulation

The following numerical example is designed for validating the presented scheme.
Matching the investigated system model, the parameters are confirmed as follows:

dxt =
(

x3
t + vt

)
dt + 0.2dWt

dvt = utdt (32)

To show the assignment procedure, the reference variance value of xt is given as 0.02
while it leads to the parameter selection θ = 1. In particular, θ = 1 > 1

2 implies that the
designed system should be bounded in the probability sense. To start up the backstepping
design, the virtual tracking error can be described by the following dynamic model:

dzt =

(
ut + (zt − xt)

(
3x3

t + 1
)
+

0.04
3

xt

)
dt

+ 0.2
(

3x2
t − 1

)
dWt (33)

Thus, the procedure can be implemented for achieving the proposed control objective.
To show the simulation results, we first discretise the given model using with the

sampling time 0.1. Then the computational results are demonstrated in Figures 1–8. In par-
ticular, the trajectory of the system state xt is shown in Figure 1, where the system variable
stabilisation is achieved, while the control input signal with integrator vt and the signal
without integrator ut are given in Figures 2 and 3, respectively. Figure 4 shows the ran-
domness attenuation where the virtual tracking error zt reaches zero. The variance values
of xt and zt are indicted in Figures 5 and 6, in which the variance value of xt converges
to the assigned reference value and the transient error comes from the virtual tracking
error stabilisation progress. The mean values of xt and zt are also given in Figures 7 and 8,
respectively. Note that both mean values are approaching zero. However, Lemma 2 im-
plies that the error of the mean value of zt still exists due to the Lyapunov theorem-based
analysis, where an arbitrary small non-zero error exists. As a result, the mean value and
variance value of xt may be affected by the non-zero virtual tracking error, although it is
arbitrarily small.

0 50 100 150 200

Time(s)

-0.5

0

0.5

Figure 1. The trajectory of the system state xt.
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0 50 100 150 200

Time(s)

-0.5

0

0.5

Figure 2. The control input with integrator vt.

0 50 100 150 200

Time(s)

-4

-3

-2

-1

0

1

2

3

Figure 3. The control input without integrator ut.
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0 50 100 150 200

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 4. The trajectory of the virtual error zt.

0 50 100 150 200

Time(s)

0

0.005

0.01

0.015

0.02

0.025

Figure 5. The variance value curve of the system state xt.
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0 50 100 150 200

Time(s)

0

1

2

3

4

5
10

-3

Figure 6. The variance value curve of the virtual error zt.

0 50 100 150 200

Time(s)

-0.2

-0.15

-0.1

-0.05

0

0.05

Figure 7. The mean value curve of the system state xt.
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0 50 100 150 200

Time(s)

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

Figure 8. The mean value curve of the virtual error zt.

6. Discussion

In the system design above, only the univariate system was investigated to indicate
the framework via backstepping. To extend this result, the main challenge comes from
the multivariate backstepping design. As a solution, the block backstepping design is
an implementable solution similar to the design procedure in [11]. In particular, we can
consider the following extended system model with multi-dimensional system variables.

dx̄t = f̄ (x̄t + v̄t)dt + ΣdW̄t

yt = Cxt (34)

where f̄ (·) stands for a known smooth non-linear function f̄ : Rn×1 → Rn, W̄t denotes
n-dimensional Wiener process, Σ denotes a given as a real positive square matrix with n
dimensions. x̄t ∈ Rn and yt ∈ R1 stand for the system state vector and system output,
respectively. v̄t ∈ Rn denotes the control input. C ∈ Rn denotes a vector-valued coefficient.

Following the presented design approach, the candidate of Lyapunov functions can be
re-used where the vector-value variables will be used. Since Lemma 1 holds for multivariate
system, the developed result in this paper can be extended directly following the block
backstepping design. Notice that the linear Ornstein–Uhlenbeck process will be in the
multi-dimensional form which leads to the difficulty of solving the FPK equation, as the
joint probability density function has to be involved into the multivariate case. To avoid
this problem, the design parameter θ should be selected as the positive diagonal matrix.
Then a set of FPK equations can be obtained where the vector state can be decomposed as
single variables. Therefore, the presented parameter selection scheme can also be re-used
for multivariate systems. Alternatively, the converted linear multivariate systems can be
further adjusted by covariance assignment which means an additional control signal will
be introduced into the system design.

7. Conclusions and Perspectives

In this paper, a new randomness assignment framework is proposed for continuous-
time stochastic nonlinear systems which are described by stochastic differential equations.
The core idea is to convert the nonlinear system via control design, then the randomness
can be fully characterised by variance. In particular, the backstepping procedure is first
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used to stabilise the variables of the investigated system with designed parameters. In this
way, the converted linear system can be further described by the Ornstein–Uhlenbeck
process. Thus, the associated Fokker–Planck–Kolmogorov equation is then analytically
solvable which leads to the formula of variance and entropy value. Then, the assignment
can be achieved by selecting designed parameter of backstepping. A numerical example
is given as a validation of the presented method and a discussion is further given for
the multivariate systems. In the future, the covariance control theory can be further
merged into the presented framework to enhance the flexibility of the assignment for the
multivariate cases.
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