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Abstract 
This paper describes an artificial immune system (AIS) ap- 
proach to producing robust schedules for a dynamic job- 
shop scheduling problem in which jobs arrive continually, 
and the environment is subject to change due to practical 
reasons. We investigate whether an AIS can be evolved us- 
ing a genetic algorithm, (GA), and then used to produce sets 
of schedules which together cover a range of contingencies, 
both foreseeable and unforeseeable. We compare the qual- 
ity of the schedules to those produced using a genetic al- 
gorithm specifically designed for tackling job-shop schedul- 
ing problems, and find that the schedules produced from the 
evolved AIS compare favourably to those produced by the 
GA. Furthermore, we find that the AZS schedules are robust 
in that there are large similarities between each schedule in 
the set, indicating that a switch from one schedule to another 
could be performed with minimal disruption if rescheduling 
is required. 

1. Introduction 
The biological immune system is responsible for defend- 
ing the body against pathogens and other toxins that may 
be harmful. It does this by producing antibodies, which re- 
cognise foreign molecules or antigens, and physically bind 
to them, eventually leading to their elimination. There are 
an almost limitless number of possible antigens, yet despite 
having fairly limited genetic resources, the human immune 
system has evolved in a manner that allows it to successfully 
deal with an enormous range of antigens, reacting quickly 
both to those antigens it has encountered before as well as 
to entirely new ones. 

Applying the analogy to a shop-floor environment, it 
would extremely useful to maintain a scheduling system 
which was able to produce schedules which could cope with 
the wide range of potential situations that could occur, both 
predictable and unpredictable. Although in a purely de- 
terministic job-shop, all job-arrival dates and machine pro- 
cessing times are known, it is easy to envisage many prac- 
tical situations occurring which would require a change in 
the original schedules - for example, a machine breaking 

down, due dates of jobs change due to changing customer 
priorities, or jobs arriving later than planned. 

Much previous work in the job-shop scheduling domain, 
for example [7],[ 11 has concentrated on producing optimal 
schedules that minimise some criterion, for instance turn- 
around time or job tardiness. However, an optimal schedule 
may often be extremely fragile - a slight alteration to one 
or more of the job or machine attributes may drastically af- 
fect the schedule. Thus, given the fluctuating nature of a 
real shop floor, we aim to produce sets of schedules that are 
resilient to changes that may occur, using an AIS. 

To make the analogy between an immune system and the 
job-shop scheduling problem explicit, we consider an anti- 
gen to represent a set of changes that can occur that may 
force a schedule to change. An antibody represents the 
schedule itself, and the function of the immune system is to 
produce a set of antibodies that together cover all the con- 
tingencies defined by a set of antigens. We concentrate on 
a job-shop problem in which we presume that a single plan 
defines (j*m) operations of j jobs on m machines. Each 
operation has a fixed processing time, and each job has a 
due-date by which time it must complete which remains 
constant throughout all experiments. A machine can only 
process one job at a time, and preemption of any operation 
on any machine is not allowed. Each job has an associated 
arrival-date. We consider situations in which the contin- 
gencies the schedules must cover represent changes in the 
expected arrival dates of one or more of the jobs. The qual- 
ity of a schedule is judged by maximum tardiness, Tmaz, 
given the expected job-arrival dates, i.e. the cost of a sched- 
ule is directly related to its latest job that completes after its 
due-date. 

2. Description 
In the natural immune system, the genetic material required 
to produce an antibody molecule is stored in 5 separate com- 
ponent libraries. An antibody is produced by combining a 
randomly selected component from each library, as show 
in figure 1. Thus an immune system containing I libraries, 
each with c components, can be used to format c1 differ- 
ent antibodies. The complete set of antibodies that can be 
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Figure 1 : Expressing an antibody from an artificial 
immune system 

formed is known as the potential antibody repertoire. If 
the components in each library are genetically dissimilar, 
then the scope for producing a set of antibodies that together 
match a wide range of antigens is increased. 

In the artificial immune system, AIS, described, an anti- 
body indirectly represents a schedule. It consists of a string 
“abcd ...” of length jm, which is interpreted as “place the 1st 
untackled task of the ath uncompleted job into the sched- 
ule, then place the first untackled task of the bth uncom- 
pleted job into the schedule etc.”. This representation was 
described by [3] and was found to be very successful in 
tackling a wide range of scheduling problems. Each anti- 
body is produced from an AIS which consists of 1 librar- 
ies, each containing c components, by randomly combining 
components. Each component is a string of s genes. Each 
of the s genes has a value in the range (0 - j )  . The values of 
( I ,  c, s) can be varied, subject to the condition that Zs=jm, 
so that the length of the expressed antibody is equal to the 
number of operations. 

An antigen describes a set of expected arrival dates for 
each job in the shop and hence each antigen represents one 
of the contingencies we wish to deal with. The complete 
set of antigens that an immune system may be exposed to 
is called the antigen universe. An antibody is said to match 
an antigen if the schedule it represents satisfies each of the 
fixed due dates, given the arrival dates defined in the anti- 
gen, and is assigned a match-score of 0. If any of the due- 
dates are exceeded, then the match-score is equivalent to 
T,,,, i:e the maximum number of days a job is late. A dia- 
gram indicating the operation of an AIS is shown in figure 
2. 

3. Evolving an AIS 
We use a genetic algorithm to attempt to evolve an AIS. 

The total number of genes in each individual is thus lcs. 
Each AIS in the initial population is generated by assign- 
ing a random value to each of the I C s  genes. For a defined 

Each individual in the population represents a single AZS, 
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Match Saxe 2 

Figure 2: Operation of an Artificial Immune System 
for Scheduling 

antigen universe, the quality, or fitness, of each AIS in the 
population is calculated b:y the following procedure: 

0 Express N antibodies at random from the AIS, and de- 

0 Select K antigens at random, with replacement, from 

0 For each of the K antigens selected: 

code them into schedlules. 

the antigen universe. 

- Using the arrival-dates defined by antigen k,  cal- 
culate the match-score of each expressed anti- 
body. 

- Assign antigen k an antigen-score, equal to the 
best (i.e. lowest) match-score. 

0 Average the K antigen-scores to give an overall fitness 
for the individual. 

The quantitative fitness, value indicates how well a par- 
ticular immune system is able to cope with the antigen uni- 
verse in which it exists. Note that each chromosome con- 
tains a large amount of redundant information, and its fit- 
ness is based on incomplete sampling of its environment. 
Furthermore, selection pressure operates only on the phen- 
otype, yet it has been shown that this is sufficient to drive 
evolutionary changes in the genotype, for example [SI. 

4. Experiments 
Antigen universes, (AUs), were generated based on a bench- 
mark problem given by MortonLkPentico in 181 - the actual 
problem uaod wita j b l l m .  This problem contains 15 jobs, 
to be processed on 5 machines, and is known to have an 
optimal solution where no job arrives late. Each AU gener- 
ated contained 10 antigens - an antigen was generated by 
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Figure 3: Generation vs Fitness for varying anti- 
gen exposure rates, at a constant antibody expres- 
sion rate N=15 

mutating the original arrival date for each job with probab- 
ility pu to another random date, in the range (0,300), subject 
to the condition that the new arrival date was at least p t  days 
before the due-date of the job, where p t  was the minimum 
processing time required to complete the job. (Note that this 
method does not guarantee that the resulting conditions can 
lead to an optimum schedule where no job is tardy.) 

A population of 100 AISs was generated, with each AIS 
characterised by (I = 5, c = 5 ,  s = 15). A generational re- 
production strategy was employed, with recombination per- 
formed by tournament selection with size 5, and uniform 
crossover. Each experiment was run for 200 generations, 
and repeated 10 times. The antigen universe contained 10 
antigens and was generated by setting pu = 0.2. 

Two series of experiments were performed: 

1. For a fixed antibody expression rate N = 15 (0.005% 

2. For fixed antigen exposure K = 2, vary the antibody 

of e'), vary the antigen exposure rate K .  

expression rate N .  

Figures 3 and 4 show the results of these experiments. 
Performance clearly increases as N is increased, as would 
be expected with greater sampling of the genetic mater- 
ial available in the AIS genotype. Even with only 0.001% 
of the potential antibody repertoire expressed, some evolu- 
tion of the genetic material takes place, though somewhat 
slowly. When 0.05% of the repertoire is expressed, evolu- 
tion is rapid, ana approaches the maximum possible fitness 
of 1.0. 

On the other hand, average fitness decreases as the anti- 
gen exposure rate K is increased. This indicates that there 
is perhaps insufficient diversity within the immune system 
to cope with the number and diversity of antigens in its 
universe. This result conflicts directly with the work by 
Hightower et al., [SI, in which they find that binary immune 
systems evolve faster and end up with higher fitness values 
as the antigen expression rate is increased. Nevertheless, 

n = 156 (0.05%) 
0.7 

O b  ,-- 

ii: 0.4 

Figure 4: Generation vs Fitness for varying anti- 
body expression rates, at a constant antigen ex- 
posure K = 2 

evolution does take pIace at all values of K over 200 gener- 
ations. 

4.1. Somatic Hyper-mutation and the Baldwin 
Effect 

In a real-life immune system, an effect known as somatic 
hyper-mutation is observed in which stimulated antibodies 
produce daughter cells, in which one or more genes be- 
come mutated. The daughter cells thus have varying abil- 
ities to recognise a single antigen. Certain key mutations 
can lead to a significantly increased recognition ability, and 
hence result in an increase in the match-score of the stimu- 
lating antibody. However, these key mutations are not writ- 
ten back to the parent genome and hence cannot directly be 
passed onto future offspring. This phenomenon of passing 
useful characteristics down to a future generation without 
genetic propagation is known as the Baldwin effect, and 
was proposed by Baldwin 100 years ago, [6]. Hightower, 
[4] and Perelson, [9], investigate a modified statement of 
the Baldwin effect, that "learning accelerates evolution", by 
including an element of somatic learning during the evolu- 
tion of binary immune libraries. We investigate whether the 
effect can speed the evolution of non-binary immune sys- 
tems using a similar procedure - after a match-score for 
an antibody has been calculated, the antibody is mutated at 
random in M positions, and the match-score recalculated. If 
the match-score improves, then the original antibody is as- 
signed this new match-score. The mutations are not written 
back to the gene library. Figure 5 shows the effect ofinclud- 
ing somatic mutation during the evolution for values of M 
ranging between 0 and 40. Each experiment was repeated 
10 times for each value of M ,  using an antibody expression 
rate N = 15 and antigen exposure rate K = 4. The graph 
shows that a clear improvement in tardiness is gained by 
including an element of somatic learning during the evolu- 
tionary process, with the greatest gain at low values of M .  
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Figure 5: Effect of increasing somatic mutation 
rate M on tardiness 
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Figure 6: Generation vs Fitness for experiments 
using somatic mutation rates M of 0,5 and 10 

Figure 6, which compares the evolving fitness of the im- 
mune system with increasing generations for experiments 
that do and do not include somatic mutation, shows that in- 
cluding somatic mutation results in a more rapid evolution, 
and results in a higher overall fitness. 

5. Inducing an Immune Response 
Once a satisfactory AIS has been evolved, it should be able 
to recognise antigens in the universe in which it has evolved, 
and produce a response, in this case, a schedule. As in the 
real-world however, new antigens can also appear. We in- 
vestigate whether the AIS produced via evolution can re- 
spond to antigens that exist in the universe in which it 
evolved, and also how successfully it can respond to the ap- 
pearance of new antigens. 

In each experiment described below, we simulate an 
immune-response to a single antigen A from an AIS in the 
following manner, which is loosely based on the response 
in the human immune system: 

1. Express N antibodies at random. 

2. Calculate the match-score for each of these antibodies, 

Figure 7: Effect of changing the number of initial 
antibodies N ,  on immune response. C is fixed at 
1000, and p ,  at 0.2 

3. 

4. 

and select the antibody with the lowest match-score, 
AB*. 
Produce C clones of AB*, by mutating each gene with 
probability p,. 

Calculate the match-score for each clone, and return 
the fittest, C*. 

In order to quantify the success of the AIS, we use the 
genetic algorithm code produced by Fang' and discussed in 
[2] to evolve a schedule for each antigen individually, and 
compare the fitness of the resulting schedule, and the actual 
schedule itself, with those produced from the AIS. Fang's 
genetic algorithm is run for the same number of genera- 
tions and using the same parameters and operators as used 
in evolving the AZSs to enable a direct comparison. 

5.1. Selecting the Cloine rate, Antibody Expres- 
sion rate and Mutation rate 

An initial series of experiments investigated the effect and 
importance of the choice of values for N ,  C and p ,  in pro- 
ducing an response. A response was generated 100 times, 
and the results averaged, using a single antigen produced 
from the antigen universe p ,  = 0.2. These results are 
shown in figures 7, 8 and 9. The fittest schedules are ob- 
tained at low mutation rates, and at high values of both N 
and C. 

As a result of this, in each of the following experiments, 
the values of N and C were each set to 1000, and p ,  to 
0.2. Given that we used 5 libraries, with component size s 
= 15, this is equivalent to expressing approximately 32% of 
the potential repertoire. 

5.2. Recognition of Programmed Antigens 
For each antigen-exposure rate, K ,  tested in section , the 
best AIS produced in the 10 experiments was used to try 

'available by anonymous ftp from ftp://dai.ed.ac.uk/pub/ 
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Figure 8: Effect of changing the clone rate C ,  on 
immune response. N is fixed at 100, and pm at 0.2 

Figure 9: Effect of changing the mutation rate pm, 
on immune response. N is fixed at 100, and C at 
1000 

and produce schedules for each of the 10 antigens in the 
universe (p = 0.2), using the procedure outlined above. 
Each experiment was repeated 100 times, with pm = 0.2. 
Table 1 shows the percentage of the 10 antigens for which 
the tardiness of the best schedule found by the AIS was su- 
perior to that found by Fang. The figures in brackets give 
the corresponding percentage values for the average tardi- 
ness. We find that the AISs evolved using a high rate of an- 
tigen exposure are generally most successful at producing 
good schedules, despite showing poorer overall fitness in 
the experiments in section 4. The trend is not completely 
clear however. It is also noteworthy that results produced 
using Fang's code required 20000 evaluations of schedules 
(100 individuals over 200 generations) - in the AIS exper- 
iments, at most 2000 evaluations are required (1000 initial 
antibodies + 1000 clones). Furthermore, figure 7 suggests 
that the number of antibodies initially produced could also 
be significantly reduced, perhaps to 400, as increasing the 
number beyond this point does not produce a corresponding 
increase in performance. 

5.3. Response to New Antigens 

Three more antigen universes were generated, with pu = 
0.1, pu = 0.3 and pu = 0.5. As above, experiments were 
performed to produce schedules from the 5 AISs evolved 

Table 1 : Percentage of test-cases where best and 
(average) tardiness of AIS schedule was equal to 
or less than result found by Fang 

in section at antigen exposure rates 2, 4, 6, 8, 10. The 
results are given in table 1. In general, AISs evolved at a low 
antigen exposure (K=2) perform badly. The AISs evolved at 
K=4 and K=8 performed well. Again there is no clear trend 
in the results as K is increased. 

The ability of the AIS to match the results produced by 
Fang decreases as pu increases. Even at pu = 0.5 however, 
using the AIS from K = 8 we are able to match the Fang 
results in 40% of cases, which is surprising, considering the 
wide diversity of arrival-dates amongst the antigens. 

6. Robustness of Schedules 
Ideally, we would like one schedule to cover more than one 
contingency, at the same time as maximising throughput 
through the workshop and minimising idle time. Table 1 
shows that we can generate a schedule for each new set of 
circumstances - however, this may result in schedules that 
are significantly different from the original ones and cause 
much disruption if they were to be put into practice. 

We introduce a measure of similarity of two schedules, 
notionally based on Hamming Distance. Given a schedule 
which describes the operation of j jobs on m machines, then 
we can write the schedule as a single string of length jm, 
where the first j alleles indicate the order in which jobs are 
to be processed on machine 1, the next j alleles indicate the 
order that jobs are processed on machine 2 etc. In the sense 
that two schedules are similar if jobs are processed on a ma- 
chine in the same order in each schedule, regardless of the 
time that the jobs start or finish, we can then directly com- 
pare the similarity of two schedules by counting the number 
of places in each string that the two schedules differ. In this 
case, we have 15 jobs to be scheduled on 5 machines - the 
probability that two loci contain the same allele is 1/15 and 
hence on average we would expect 0.067% of the positions 
to be the same if the schedules were generated completely 
at random. 

A pairwise comparison of each of the 10 schedules gener- 
ated for each value pu was performed, first using 10 sched- 
ules generated from an AIS, and then using 10 schedules 
produced using the Fang code. The average of the calcu- 
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Table 2: Hamming Separations of Schedules in 
Different Antigen Universes 

lated Hamming Separations in each case is given in table 
2. 

Apart from the anomalous case of p ,  = 0.2, we see an 
improvement gained by producing schedules from the AIS, 
in that the average Hamming separation is lower and there- 
fore the schedules more similar. This is more apparent on 
actually examining the schedules themselves. The differ- 
ence in Hamming Separation between the AIS schedules and 
the Fang schedules decreases as p ,  increases, and is also 
very high for high values of p,.  This is probably due to the 
increased diversity in antigens that is obtained by mutating 
each arrival-date with high probability, and the resulting low 
probability of producing a single schedule that can cover all 
cases effectively. 

7. Conclusion 

An immune-system analogy has been applied to the real- 
world problem of job shop scheduling and has produced 
promising results. We have shown that using a genetic al- 
gorithm, we can evolve an artificial immune system start- 
ing from an initially random state, in an antigen universe 
that consists of a set of circumstances that could occur in 
a real job-shop. From an evolved AIS, we have success- 
fully retrieved schedules corresponding to antigens existing 
in the universe that the AIS evolved in, and also shown that 
we can produce schedules corresponding to new antigens, 
previously unseen by the immune system. As the diversity 
of antigens within a universe increases, performance of the 
immune-system decreases - this can perhaps be counter- 
acted by introducing more diversity into the AIS, perhaps 
by increasing the number of gene libraries or components 
within those libraries. This is the subject of further invest- 
igation. 

In the human immune-system, a single antibody can suc- 
cessfully bind to more than one antigen, i.e. only a partial 
matching of antibody to antigen is required for the two to 
bind. The number of antigens that a single antibody can 
bind to is a measure of the coverage of the antibody, and is 
part of the reason why the immune system is so successful, 
despite containing a relatively small number of genes. Sim- 
ilarly, one schedule may cover more than one scenario, and 
hence current work is investigating how effectively a single 

schedule represented by an antibody is at covering several 
or all of the sets of conditions defined by the antigen. Whilst 
it is unlikely that every set of conditions can be covered by 
the same schedule at no cost, a satisfactory schedule may 
be found within a given error tolerance. Future work should 
also apply these techniques to a much wider range of prob- 
lems, both benchmark and real-world if possible, to invest- 
igate how it scales up to larger and more difficult problems. 
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