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Abstract 4

Nature-inspired computing (NIC) has been widely studied for many optimization scenarios. However, miscellaneous solution 5

space of real-world problem causes it is challenging to guarantee the global optimum. Besides, cumbersome structure and complex 6

parameters setting-up make the existed algorithms hard for most users who are not specializing in NIC, to understand and use. 7

To alleviate these limitations, this paper devises a succinct and efficient optimization algorithm called Nomad Algorithm (NA). 8

It is inspired by the migratory behaviour of nomadic tribes on the prairie. Extensive experiments are implemented with respects 9

to accuracy, rate, stability, and cost of optimization. Mathematical proof is given to guarantee the global convergence, and the 10

nonparametric tests are conducted to confirm the significance of experiment results. The statistical results of optimization accuracy 11

denote NA outperforms its rivals for most cases (23/28) by orders of magnitude significantly. It is considered as a promising 12

optimizer with excellent efficiency and adaptability. 13

Index Terms 14

Nomad algorithm, Nature-inspired algorithm, Optimizer, Function optimization, Global search 15

I. INTRODUCTION 16

The natural world has gone through a long evolution and shown strong adaptability. According to the observation of natural 17

systems, many ingenious mechanisms are learned which help human beings construct models to solve complex real-world 18

problems. This promotes great success in the recent invention of nature-inspired optimization algorithms which mimic natural 19

phenomena or biological behaviors to solve the function optimization problem. Recently, it has been widely utilized in many 20

real-world applications including intelligent transportation, automated manufacturing, feature selection, pattern classification, 21

etc [1], [2]. 22

In general, for a target problem to be solved, an evaluation function could be formulated to calculate the profit or cost 23

of a scheme (i.e., a potential solution). The goal of optimization is to locate the best solution of the evaluation function, 24

which leads to the maximum profit or minimum loss. Faced with the vast number of variables and operations, conventional 25

deterministic optimization techniques only guarantee the local optimum and become extremely time-consuming with the 26

increasing complexity of problems [3]. However, the best solution calling for global optimum and time-efficiency is actually 27

the most essential for an optimization algorithm. 28

Since the proposal of Genetic Algorithms (GA) [4], the above shortcomings have been alleviated by the stochastic algorithms. 29

As a typical case of NIC algorithm, GA mathematically imitates the natural evolution process to seek the global optimum 30

by heuristic information. The optimization mechanism described by gene behaviors of selection, reproduction, and mutation 31

are stochastic and determined by probability. Moreover, there is no requirement for the derivation or gradient information of 32

the problem. This property makes the algorithm efficient in solving complicated problems with an unknown high-dimensional 33

search space. These novel techniques attracted more researchers devoting to the developments of the stochastic algorithm. 34

Subsequently, inspired by the social behaviors of bird swarms, the most famous Particle Swarm Optimization (PSO) was 35

proposed [5]. It has evolved from its initial design into substantial variations taking various forms [6]. Since a great success 36

achieved by PSO, the number of newly proposed nature-inspired algorithms simulating natural behaviors have seen substantial 37

growth over recent years. 38

Although these existing algorithms show a promising development, it is neglected that the users of algorithms are usually 39

in diverse fields rather than specializing in Computational Intelligence (CI). Most users just employ the algorithm as a black 40
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box to optimize their particular application. As a result, it is hard to fully exploit the performance of a NIC optimizer because41

of the following two hinders:42

• Improper parameter setting: the efficiency of an optimization algorithm significantly relies on the parameters setting which43

directly influences the balance of local exploiting and global exploring. The complicated computation with an ambiguous44

setting of parameters results in that many excellent algorithms only be perfectly performed by CI researchers, while the45

real users (such as engineers, economists) can not make full use of these algorithms.46

• Redundant operation: some algorithms over-imitate the natural phenomena or biological behaviors [7], [8], that introduce47

unnecessary parameters and operations. It complicates the computation but makes little improvement to an algorithm.48

In the light of above discussion, this work aim to develop a succinct and efficient NIC algorithm for global optimization of49

complex functions. The main contributions are summarized below.50

• To address the aforementioned deficiencies, we firstly propose a novel light-weight nature-inspired optimization algorithm,51

named Nomad Algorithm (NA), which is inspired by the migration of the nomadic tribe. NA leverages a succinct52

mechanism to achieve an adaptive balance of local exploitation and global exploration. Compared with the existing53

algorithms, NA is easy to understand which could avoid improper setting and keep reliably high accuracy.54

• To analyze the technical aspects of NA, 1) the mathematical proof is presented to guarantee the global convergence;55

2) benchmark tests are implemented to confirm the parameters setting; 3) comparative experiments with five rivals are56

implemented to verify the superiority of NA; 4) nonparametric test are conducted to analyze the significance of statistical57

results. The experiment results demonstrate that this light-weight algorithm has significant advantages over its rivals in58

both convergence accuracy and rate.59

The rest of this paper is organized as follows. Section II reviews the related work of NIC algorithms studied in the field of60

function optimization. Section I outlines the proposed Nomad Algorithm and gives the proof of convergence. In Section IV,61

adequate experiments and tests have been taken to evaluate NA. Finally, we conclude our work and suggest some directions62

of future research in Section V.63

II. LITERATURE REVIEW64

Based on the inspiration sources, these nature-inspired optimizers are commonly classified into three categories: natural65

phenomena (evolution)-based, biology-based, and physics-based algorithms.66

Natural phenomena-based algorithms simulate the evolutionary process in nature. The GA is the earliest and most famous one67

among many [4]. For more instances, Invasive Weed Optimization (IWO) mimics the weed colonizing in a new environment68

[9]; Water Cycle Algorithm (WCA) is based on the natural cycle process that rivers and streams flow to the sea [10]. Other69

well-known natural phenomena-based algorithms are Slime Mould Algorithm (SMA) [11], Flower Pollination Algorithm (FPA)70

[12], Differential Evolution (DE) [13], and Gaining-Sharing Knowledge algorithm(GSK) [14].71

Among these nature-inspired optimizers, some algorithms are inspired by the biological behaviors. For example, by imitating72

the bee colony seeking for honey, Artificial Bee Colony (ABC) algorithm was proposed to global optimization of search space73

[15]. Inspired by the bubble-net feeding method of humpback whales, Whale Optimization Algorithm (WOA) was presented74

[7]. In conclusion of the recent study of biology-based algorithms, the predation and movement behaviors of animal population75

are the main inspiration source. The most representative ones are Horse herd Optimization Algorithm (HOA) [16], Salp Swarm76

Algorithm (SSA) [17], and Manta Ray Foraging Optimization (MRFO) [18], Falcon Optimization Algorithm (FOA) [19].77

Other heuristics are inspired by physics. The Simulated Annealing (SA) derives from the principle of solid annealing [20],78

which is the most cited physics-based algorithm. For another typical instance, Gravitational Search Algorithm (GSA) is proposed79

on the law of universal gravity [21]. Other well-known algorithms of this category includes Fireworks Algorithm (FWA) [8],80

Archimedes Optimization Algorithm (AOA) [22], Water Wave Optimization (WWO) [23], and Chemical Reaction Optimization81

(CRO) [24].82

The features of the mentioned algorithms are listed in TABLE I. More algorithms denoting state of the art in the field of83

NIC are outlined by literature [1], it also identifies open challenges in detail.84

The growing interest on optimization promotes a vast number of optimizers including the variations and hybrids of existing85

algorithms [27]. However, according to the ‘No Free Lunch (NFL)’ theory, when an algorithm shows perfect effectiveness86

on some problems, poor effectiveness is bound to happen on some other problems. In other words, a ‘good’ algorithm (i.e.,87

be able to obtain the global optimum with the highest accuracy and minimal consumption of time and space) is just good88

at some specific problems; algorithms are problem-oriented. Therefore, it is still necessary to develop new algorithms. The89

purposes of new algorithms are: handling the specific problems which are unsolvable for previous algorithms, and optimizing90

most problems with better performance.91

III. METHODOLOGY OF NOMAD ALGORITHM (NA)92

Nomadic tribes are known for their migration, who always search for and migrate to a better area with lush pasture. Fig.93

1 demonstrates how a nomadic tribe works. As shown, a nomadic tribe consists of many members which are divided into94

herdsmen or rangers. Once the tribe arrives at a new region: 1) herdsmen work and search around the tribe within a range,95
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TABLE I
THE FEATURES OF RELATED ALGORITHMS

Algorithm Inspiration source Proposal year

SA [20] Solid annealing 1983
GA [4] Gene evolution 1992
PSO [5] Bird flock 1995
IWO [9] Weed colonization 2006

ABC [15] Honey bee 2007
GSA [21] Law of gravity 2009
WCA [10] Water cycling 2012
FPA [12] Flower Pollination 2014

WWO [23] Shallow water wave 2015
WOA [7] Whale predation 2016
SHO [25] Predatory interactions 2017
CRO [24] Chemical reaction 2017
DE [13] Biological evolution 2018
FWA [8] Fireworks explosions 2018
SOA [26] Migration of seagull 2019
SMA [11] Ocillation of slime mould 2020

MRFO [18] Manta rays 2020
FOA [19] Hunt behavior of falcons 2020
GSK [14] knowledge acquisition of human 2021
SSA [17] Salp swarm 2021
AOA [22] Principle of buoyant force 2021
HOA [16] Horses’ herding 2021

Ranger 1

Ranger 2

Ranger 3

Ranger n

Herdsman 1

Herdsman 2

Herdsman 3
Herdsman n

Tribe

Fig. 1. The working of a nomadic tribe.

which is determined by the fitness of the environment; 2) For avoiding stagnation and exhaustion of resources, some individuals 96

are selected as Rangers to quickly explore a farther area for a better environment. The purpose of a tribe and its members is 97

to find a better region with more resource and migrate to here. These simple mechanisms performing efficient searching will 98

be mathematically modelled to devise an intelligent optimizer, NA. 99

A. Design of NA 100

In the design of NA, the migrating of a nomad tribe can be considered as the searching and optimizing process. The most 101

livable place represents the best solution, and the vast prairie is viewed as a search space. Each member of the tribe will 102

work as either Herdsmen or Rangers. The former are responsible for local exploiting and the latter are responsible for global 103

exploring. Based on the description above, the NA consists of Herdsmen grazing, Rangers exploring, and tribe updating. 104
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A tribe is always located at the most livable position found, i.e., the current optimal solution. The tribe’s coordinates are105

defined as a d-dimensional vector Xtribe = {x1, x2, ..., xd} where each element indicates a variable to be optimized of an106

objective function. Xtribe is randomly generated at initialization of NA and updated with iteration. The Herdsmen graze around107

the tribe with a dynamic radius. The grazing radius is calculated as follows:108

Ra(n) =

 Xup −Xlow n = 1 or 2
Ra(n− 1)× α fn−1 < fn−2

Ra(n− 1)× β fn−1 = fn−2

(1)

where Ra(n) is the grazing radius at iteration n. The lower and upper bounds of the searching space are represented as Xlow109

and Xup. α is an enlarging factor greater than 1, while β is a reducing factor in the range of (0, 1). Too big or too small values110

will result in dramatic fluctuations and break the stability of searching. Through experimental verification, it is found when α111

is 1.1 and β is 0.9 could guarantee reliable efficiency for most problems. fn represents the fitness of Xtribe at iteration n, i.e.112

the value of the current optimum.113

Eq. 1 means that the exploiting scale should be as big as the whole search space in initialization. If the tribe finds a better114

territory where is more livable, and Herdsmen are supported to graze on broader space; the graze radius should be enlarged in115

subsequent iteration to further exploit a wider space. In contrast, if the NA cannot find a better solution in the current iteration,116

Herdsmen have to reduce their live range to make the search more detailed in the next iteration. These strategies provide more117

probability to find a better solution and accelerate convergence.118

The Herdsmen grazing behavior, representing local exploiting of NA, as mentioned above is given by Algorithm 1.

Algorithm 1: Herdsmen grazing
Input: The current iteration times n, coordinate of tribe Xtribe and its fitness fn;
Output: New coordinates of Herdsmen;

1 Calculate the grazing radius Ra(n) by Eq. 1;
2 for each Herdsmen do
3 for each dimension do
4 Xk = Xtribe

k+Rand(−Ra(n), Ra(n))
//Avoid searching beyond boundaries;

5 if Xk < Xlow
k or Xk > Xup

k then
6 Xk=Rand(Xlow

k, Xup
k);

7 end
8 end
9 end

119

Once the current grazing radiu is obtained by step 1 of algorithm, each herdsman updates its coordinate by step 3 to step 8.120

Specifically, step 4 determines the coordinate of each dimension, and step 5 to step 7 could recall herdsmen who are beyond121

the boundaries. Xlow
k and Xup

k represent the lower bound and upper bounds of k-th dimension in potential space. Function122

Rand(A,B) is used to generate a random number uniformly distributed between A and B. Herdsmen will exploit a vicinity123

of tribe Xtribe randomly within a corresponding radius Ra(n).124

Herdsmen grazing process enables flexible exploitability of the NA at the vicinity of the present best solution. However, it is125

not enough to make the tribe find the most livable place. Somewhere better than other adjoining areas but is not the optimum126

in whole research space, which is called local optimum. To prevent the tribe from stagnating at local optimum, Rangers are127

dispatched to explore remoter areas. The Rangers have global search capability and move in the entire space depending on the128

current coordinate and migration result of the tribe. This behaviour of Rangers can be briefly represented as follows:129

XRangers ∼ N(Xtribe, σ
2(n)) (2)

The coordinates XRangers to be explored by Rangers accord with a Gaussian distribution N(Xtribe, σ
2(n)) with mean value130

Xtribe and standard deviation σ(n). While σ(n) determines the amplitude of Rangers exploring at iteration n. This parameter131

is calculated by the following equation:132

σ(n) =

 Xup −Xlow n = 1 or 2
σ(n− 1)× 0.5 fn−1 = fn−2

Xup −Xlow fn−1 < fn−2

(3)

This process can be abstracted as a Gaussian probability sampling. At the beginning, exploring amplitude σ fills the whole133

search space. During the computation process, this parameter will rapidly reduce if no better solution found at the previous134

searching. Once the ranger finds somewhere with better fitness, the exploring amplitude σ returns to the original range. Diverse135
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from exploitation employs the uniform distribution within a certain range, Gaussian distribution has more focus on the closer 136

region, while also keep probability to search anywhere in the search space. 137

The above process is represented by the pseudocode in Algorithm 2. Functin N(A,B) could generate a random number 138

based on Gaussian distribution whose mean value is A and variance is B.

Algorithm 2: Rangers exploring
Input: The current iteration times n, coordinate of tribe Xtribe and its fitness fn;
Output: New coordinates of Rangers;

1 Calculate the exploring amplitude σ(n) by Eq. 3;
2 for each Ranger do
3 for each dimension do
4 Xk = Xtribe

k+N(0, σ2(n));
//Avoid searching beyond boundaries;

5 if Xk < Xlow
k or Xk > Xup

k then
6 Xk=Rand(Xlow

k, Xup
k);

7 end
8 end
9 end

139

Once the exploring amplitude of the current iteration is obtained by step 1, each Ranger updates its coordinate by step 3 to 140

step 8. Leveraging Gaussian sampling, a series of new positions are explored by step 4. Step 5 to step 7 are responsible for 141

mapping the out-of-bounds nodes back to potential space. This strategy makes full use of the heuristic information. The range 142

and intensity of exploration are dynamically determined by the current optimum and search process. 143

The proportion of the two types of searching will determine the tradeoff between local exploitation and global exploration. 144

Under a fixed population size, the nomadic tribe should select more Rangers for exploring to avoid local optimum. In contrast, 145

if they find a promising area, more Herdsmen should be employed for local intensification. We assume the nomadic tribe can 146

learn helpful information from their previous migration to balance the proportion of Herdsmen and Rangers adaptively. 147

When the nomadic tribe has stagnated for γ iterations, the probability P of increasing Rangers in the next iteration is defined 148

as below: 149

P = 1− exp

(
−
(

γ

λImax

)2
)

(4)

where Imax is the maximum iterations. λ is a sensitivity coefficient in range of [0, 1) to determine the changing rate of 150

probability, in which a smaller value corresponds to a sharper change. A tribe consists of total M members is adaptively 151

organized as Algorithm 3. Hmin and Hmax represent the minimum and maximum proportion of Herdsmen in the tribe, 152

respectively. MH denotes the number of Herdsmen while MR is the number of Rangers.

Algorithm 3: Population balancing
Input: The maximum iterations Imax, current stagnation iterations γ, current best fitness fn;
Output: The number of Herdsmen MH and Rangers MR;

1 if fn = fn−1 then
2 γ = γ + 1;
3 Calculate the probability P by Eq. 4;
4 if Rand(0, 1) < P and MH > MHmin then
5 MH = MH − 1;
6 γ = 0;
7 end
8 else
9 γ = 0;

10 if MH < MHmax then
11 MH = MH + 1;
12 end
13 end
14 MR = M −MH ;
15 return MH and MR;

153
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Algorithm 4: Nomad Algorithm
Input: Bound of search space, objective function, population size, dimensions, maximum iterations;
Output: The best solution and its fitness;

1 Randomly initialize Xtribe of NA;
2 repeat
3 for each tribe do
4 Herdsmen grazing by Algorithm 1;
5 Rangers exploring by Algorithm 2;
6 Evaluate each member’s fitness;
7 Update Xtribe and fn by the best member;
8 Update MH and MR by Algorithm 3;
9 end

10 until Achieve the expected precision or maximum iterations;
11 return Xtribe and its fitness fn ;

In Algorithm 3, the stagnation iteration γ is set to 0 at the beginning and increased by 1 once the current iteration of154

searching did not find a better solution (shown as step 1 to step 2). Then a Herdsman turns into Ranger by probability P155

which is calculated by γ and Eq. 4 (shown as step 3 to step 7). Once a better solution is found, γ is reset to 0 and a Ranger156

turns into Herdsman (shown as step 8 to step 13). Given the population size and the current number of herdsmen, the number157

of Rangers could be calculated accordingly (shown as step 14). Note that the switching of Herdsmen Rangers should satisfy158

the pre-defined proportion bound (judge by step 4 and step 10).159

B. Summary of NA160

Based on the above definitions, the architecture of NA is established. It consists of Herdsmen grazing, Rangers exploring161

and tribe updating, which correspond to local search, global search, and updating of solution and search strategy. The complete162

workflow is defined as Algorithm 4. Following the algorithm, the tribe moves to the best position Xtribe in each iteration;163

they ultimately migrate to the most livable position with the best fitness, i.e. the best solution and optimum.164

The computational complexity of the proposed NA can be defined as O (Imax × (M × (Ceva + Ccompare + Cupdate))),165

where M denotes the population size of the tribe in which all members are evaluated during each generation, given the166

algorithm ends at the Imax-th generation. Ceva denotes the time complexity of evaluating a solution by objective function,167

which is correlated to the dimensions d. Ccompare denotes the time complexity of comparing the fitness of a solution168

with the present best solution. This complexity is a constant. Cupdate denotes the time complexity of updating a member169

(search agent) of tribe, which is correlated to the dimensions d. Therefore, the time complexity of NA can be transformed to170

O (Imax × (M × (O(d) +O(d) +O(1)))), and further simplified to O(Imax ×M × d).171

The proposed NA employs two kinds of search agents, Herdsmen and Rangers, to implement the local exploitation and172

global exploration, respectively. The superiorities and differences between NA and other similar algorithms are summarized173

below.174

(1) Some algorithms update agents according to other agents’ locations [5], [7]. In the later execution, the population will175

converge and lose the diversity while each agent can never escape from the local optimum. However, the migration of NA176

enables the population to move dramatically to the global optimum all the time.177

(2) Some algorithms have specific strategies or agents for global search, but only with a mutation according to a potential178

location and a pre-defined distribution [8], [12]. These mutation strategies do not provide strong logic where they do not make179

more sense than a random selection in search space. In NA, the mutation strategy relies on the state of search, which can180

adaptively adjust the distribution of mutation.181

(3) Some algorithms employ agents specifically for exploration but too simple without any heuristic information or showing182

intelligence [15]. In contrast, the global agents of NA leverage much useful information include the location of the current183

optimum, stagnation iterations, and change of search result, to seek the global optimum sensibly.184

(4) Both Rangers and Herdsmen of NA work with a very simple searching strategy. The adaptive tuning of parameters185

further simplifies the algorithm initialization as well as makes search fit to solution space. Employing these two types of agents186

and adaptive transferring of them, NA performs a great efficiency without cumbersome computation and setting.187

C. Analyses and Proof of Global Convergence188

For a new algorithm, the proof of global convergence must be discussed. As we know, the ultimate convergence cannot be189

guaranteed by many algorithms, although they have global mechanisms. Some exploration strategies rely on the locations of190

search agents, which have only minor mutations and risk to stagnate in the later iterations because the search agents usually191

converge to a narrow area at the end. Thus, this section will analyze the search process and prove the convergence of NA.192
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In the stochastic model of NA, the essential infimum α of f on space S is defined as the following equation: 193

α = inf(n : ν [x ∈ s|f(x) < t] > 0) (5)

that ν[A] is the Lebesgue measure of the potential space A. The stochastic processes of NA are represented by a discrete 194

sequence of solution as {xn}∞n=0, where xn is the optimum maintained in the n-th iteration. Since the optimum is difficult to 195

be exactly located by a stochastic algorithm in practice, the vicinity of the optimum within an acceptable range is generally 196

considered as the global optimum. In this way, the continuous problems with their infinite size search space can be viewed 197

as a finite number of discrete spaces. Also, the optimization process can be model as a discrete sequence with finite states. 198

Referring to convergence theorem of global search [28], the definition of convergence about NA is given as below. 199

Condition 1: For an absorbing Markov process {xn}∞n=0 and an optimal state space Y ∗ ⊂ Y , φ(n) = P{xn ∈ Y ∗} indicates 200

the probability of reaching the optimal state at the time of n. If limn→∞ φ(n) = 1, {xn}∞n=0 converges to global optimum. 201

Theorem 1: Stochastic process of NA is an absorbing Markov process. 202

Proof of Theorem 1: {xn}∞n=0 is a discrete stochastic process, {xn} is determined by {xn−1}, i.e., P{xn+1|x1, x2, ...xn} = 203

P{xn+1|xn}. It means that the state of time n+1 is only related to state of time n, therefore, {xn}∞n=0 is a Markov process. 204

If xn located at optimum solution space, there is xn ∈ Y ∗. Since the NA only remain the current best solution as X in
the next generation, xn+1 cannot be worse than xn, there must be xn+1 ∈ Y ∗, i.e. P{xn+1 /∈ Y ∗|nt ∈ Y ∗} = 0. Hence the
stochastic processes of NA, {xn}∞n=0, is an absorbing Markov process.
Theorem 2: For an absorbing Markov process {xn}∞n=0 and an optimal state space Y ∗ ⊂ Y , for ∀n, if 1 ⩾ P{xn ∈ Y ∗|xn−1 /∈
Y ∗} ⩾ d ⩾ 0 and P{xn ∈ Y ∗|xn−1 ∈ Y ∗} = 1, then P{x ∈ Y ∗} ⩾ 1− (1− d)n.
Proof of Theorem 2: Assumed n = 1, there are:

P{x1 ∈ Y ∗}
=P{x1 ∈ Y ∗|x0 ∈ Y ∗}P{x0 ∈ Y ∗}+ P{x1 ∈ Y ∗|x0 /∈
Y ∗}P{x0 /∈ Y ∗}

⩾P{x0 ∈ Y ∗}+ dP{x0 /∈ Y ∗}
=P{x0 ∈ Y ∗}+ d(1− P{x0 ∈ Y ∗})
=d+ (1− d)P{x0 ∈ Y ∗}

Since (1− d) > 0, then d+ (1− d)1P{x0 ∈ Y ∗} ⩾ d, and P{x1 ∈ Y ∗} ⩾ d = 1− (1− d)1. 205

Assumed ∀n < k − 1, P{nt ∈ Y ∗} ⩾ 1− (1− d)n. Then n = k can satisfy follows:

P{xk ∈ Y ∗}
=P{xk ∈ Y ∗|xk−1 ∈ Y ∗}P{xk−1 ∈ Y ∗}+ P{xk ∈ Y ∗|
xk−1 /∈ Y ∗}P{xk−1 /∈ Y ∗}

⩾P{xk−1 ∈ Y ∗}+ dP{xk−1 /∈ Y ∗}
=P{xk−1 ∈ Y ∗}+ d(1− P{xk−1 ∈ Y ∗})
=d+ (1− d)P{xk−1 ∈ Y ∗}
⩾d+ (1− d)(1− (1− d)k−1)

=1− (1− d)k

Based on the above deduction, P{x ∈ Y ∗} ⩾ 1− (1− d)n can be satisfied for any n ⩾ 1. Theorem 2 has been proofed by 206

mathematical induction. 207

Theorem 3: NA will converge to global optimum with probability 1. 208

Proof of Theorem 3: The exploring process of NA is a Gaussian mutation but constrained by bounds of search space. For 209

the sake of simplicity, this process is regarded as a uniform random sampling. PRe(n) indicates the probability of transferring 210

to optimal state space Y ∗ from non-optimal space by Rangers exploring, i.e. 211

PRe(n) =
ν(Y ∗)MR

ν(S)
(6)

where ν(S) represents the Lebesgue measure of the potential space S. It is obviously greater than 0. 212

Due to ν(Y ∗) > 0, there is PRe > 0. 213

The Markov stochastic process of NA, {xn}∞n=0, satisfies following equation: 214

φ(n) = P{xn ∈ Y ∗|xn−1 /∈ Y ∗} ⩾ PRe(n) + PHg(n) (7)

PHg(n) represents the probability of reaching optimal state space Y ∗ from non-optimal space by Herdsmen grazing at n 215

generation. Therefore, P{xn ∈ Y ∗|xn−1 /∈ Y ∗}. According to theorem 1 and theorem 2, there is 216

φ(t) = P{xn ∈ Y ∗} ⩾ 1− (1− PRe(n))
n (8)
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i.e. limn→∞ φ(n) = 1, condition 1 is satisfied. The Markov process of NA, {xn}∞n=0, converges to the global optimum with217

probability 1.218

IV. EXPERIMENTS AND ANALYSES219

This section studies the control parameters and compares NA with other classical optimizers to verify the efficiency of220

Nomad Algorithm (NA). All the experiments are implemented by Matlab R2016b software on the environment of Windows221

10 (64bits), 4GB RAM, and 3.2 GHz CPU (Core I5-3470).222

A. Test Functions Setting223

According to the common evaluation process in this field, CEC 2013 benchmark functions are employed to evaluate NA224

and compares it with several well-known optimizers [29]. There are total 28 functions in CEC 2013 including 5 unimodal225

(f1 − f5), 15 multimodal functions (f6 − f20), and 8 composition functions (f21 − f28).226

For convenience, the same bound [−100, 100]D is set for all cases, in which D represents the function’s dimensions, i.e.,227

the number of variables that determine the result of a problem. The mathematical formulations and other features of these228

functions are given in detail in the literature of problem definitions [29]. For the sake of intuitive comparison, some functions229

are shifted to make the optimal value (i.e. fmin) of all functions are 0. Thus, the optimum found by the algorithm can be230

regarded as the value of error.231

The unimodal functions (f1 − f5) without local optimum examines the exploitability of algorithms, while the multimodal232

functions (f6 − f20) have quite a number of local optima examines the global ability of local optima avoidance. Eventually,233

the remaining 8 composition functions (f21 − f28) are integration of different multimodal functions with rotation and shift.234

Thus, these scenarios are very challenging for optimization algorithms that the capability and balance of the local and global235

search are both significantly considered during the text.236

B. Investigation of Control Parameters237

The performance of an algorithm significantly relies on parameter tuning. Besides the common parameters (population size238

and maximum iterations) determined by the problem, the sensitivity factor λ is the key and specific parameter of the proposed239

NA. A suitable value should be set to make NA adapt to most optimization problems.240

With the maximum iterations Imax, the changes of P (probability of increasing a Ranger) versus continuous stagnation241

iterations γ under the different sensitivity coefficient λ are depicted in Fig. 2. These curves mean that P will grow significantly242

when NA meets stagnations. Furthermore, with the growing number of stagnation iterations, the change rate of P becomes243

smooth and ultimately converges to 1. It is also seen that the larger λ leads to the smoother change of P . Considering the range244

and effect of λ, it is set to 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1, respectively, to select the best one by experiments. With 50245

independent runs of 1000 iterations, TABLE II gives the statistical values of mean and standard deviation (STD) of optimization246

error under different parameters. Due to the randomicity of the stochastic method, multiple independent executions of algorithm247

should be conducted. The average ranking is introduced as an evaluation criterion. Specifically, for each benchmark function,248

6 different λ settings are ordered according to the optimization error and ranks are assigned accordingly. The average ranking249

of a setting on all functions is calculated as its final rank. The best result on each benchmark case is highlighted in bold.250

It is seen that the control parameter is problem-oriented. When a set of parameter values perform excellently on a certain251

problem, it will be mediocre at some other problems. The ‘best parameter’ does not exist, and the parameter should be tuned252

according to a specific problem. Nevertheless, the frequent testing and tuning of parameters are impractical. The parameters253
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TABLE II
STATISTICAL MEAN(STD) AND AVERAGE RANKINGS OF NA WITH DIFFERENT λ

λ = 0.01 λ = 0.02 λ = 0.04 λ = 0.06 λ = 0.08 λ = 0.1
Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD) Mean (STD)

f1 1.60E-13 (4.19E-13) 3.22E-14 (3.66E-14) 9.31E-14 (1.95E-13) 4.33E-14 (7.67E-14) 2.80E-14 (5.30E-14) 4.80E-14 (8.32E-14)
f2 3.23E+06 (1.32E+06) 3.13E+06 (1.87E+06) 2.98E+06 (1.41E+06) 3.35E+06 (1.27E+06) 3.40E+06 (1.48E+06) 3.14E+06 (1.62E+06)
f3 6.17E+08 (8.57E+08) 2.37E+08 (2.64E+08) 6.52E+08 (9.02E+08) 8.49E+08 (1.49E+09) 5.02E+08 (5.37E+08) 3.70E+08 (3.20E+08)
f4 48553.59 (18543.16) 41700.15 (9479.251) 40046.26 (8374.235) 39727.55 (15553.63) 42987.12 (13019.23) 38972.36 (16204.11)
f5 0.000647 (0.000216) 0.000715 (0.000439) 0.000756 (0.000500) 0.000487 (0.000290) 0.000710 (0.000413) 0.000615 (0.000311)
f6 28.98278 (21.89594) 30.99343 (25.50985) 35.73462 (27.92715) 28.85264 (26.39833) 31.68720 (25.29552) 28.92662 (25.12247)
f7 177.1652 (59.74837) 154.3019 (32.20803) 155.8607 (63.28115) 168.8776 (49.86577) 178.9854 (60.65222) 162.9958 (33.12783)
f8 21.06772 (0.087273) 21.02788 (0.079610) 21.01545 (0.094226) 21.05489 (0.065534) 21.02017 (0.094009) 21.02835 (0.062685)
f9 32.40667 (3.229968) 33.40594 (4.574122) 33.10223 (4.258095) 32.34457 (4.065964) 32.80885 (3.861020) 32.21077 (3.841808)
f10 0.073698 (0.039290) 0.063439 (0.038313) 0.068884 (0.043761) 0.067283 (0.032312) 0.061131 (0.035597) 0.071473 (0.036503)
f11 7.090203 (3.308869) 9.719774 (3.675924) 10.56439 (4.924078) 9.51979 (3.118230) 10.19970 (3.420520) 11.153784 (4.521600)
f12 235.7676 (82.92181) 194.7423 (53.44140) 252.2277 (93.47301) 237.1672 (92.24124) 219.2713 (67.06527) 200.5025 (61.31060)
f13 290.0314 (67.08325) 342.4718 (73.62129) 315.1089 (82.73770) 319.7689 (102.7610) 321.2035 (89.95275) 321.0533 (76.77332)
f14 390.9203 (180.6567) 456.2020 (320.2956) 662.8712 (233.6292) 687.3736 (270.0346) 674.2895 (218.9758) 704.6007 (250.6285)
f15 4896.996 (824.6379) 4746.159 (735.8666) 4962.069 (1049.190) 4654.465 (569.5511) 4725.479 (623.2614) 4694.472 (872.4831)
f16 0.903856 (0.350875) 1.012645 (0.449355) 1.367546 (0.728539) 0.940954 (0.441021) 0.888194 (0.370080) 1.054917 (0.615923)
f17 36.15671 (3.803661) 37.42863 (9.196523) 39.78961 (4.822880) 40.07587 (2.811524) 38.27449 (6.708751) 41.66757 (4.812873)
f18 281.7291 (75.87061) 247.1401 (80.92806) 268.4519 (114.6317) 253.1871 (73.52509) 263.2395 (70.21799) 276.9385 (86.62634)
f19 2.469993 (0.775375) 2.749147 (0.530315) 3.047411 (0.710717) 3.028048 (0.754484) 2.805032 (0.631827) 2.904449 (0.513232)
f20 14.66802 (0.475456) 14.56116 (0.828295) 14.87694 (0.218696) 14.57316 (0.846568) 14.52680 (0.631742) 14.64418 (0.592347)
f21 276.5316 (91.99527) 313.7088 (75.62408) 294.3544 (65.12029) 310.8860 (89.04596) 300.8860 (100.7887) 308.7088 (79.77033)
f22 403.5741 (209.8814) 454.1308 (201.9366) 722.4815 (242.9252) 677.4981 (251.2865) 619.8607 (195.5712) 579.2604 (264.1989)
f23 5780.592 (1021.068) 5826.331 (884.5152) 5828.496 (895.7737) 5699.789 (890.0223) 5555.922 (888.6475) 5771.998 (1013.188)
f24 299.9569 (16.03353) 296.9968 (11.00429) 299.6100 (13.66878) 306.6948 (16.60983) 294.1516 (12.73522) 298.3698 (9.972044)
f25 312.2500 (9.409537) 310.5078 (10.34371) 306.9390 (13.23561) 309.2323 (10.93587) 307.9417 (10.64837) 316.5928 (15.90595)
f26 357.4716 (68.65072) 374.1987 (42.22614) 367.1785 (58.16725) 371.9610 (41.26123) 354.8099 (67.11805) 373.6162 (43.20230)
f27 1184.870 (120.6620) 1197.660 (116.7902) 1186.339 (109.1804) 1180.538 (126.6832) 1152.145 (142.8823) 1139.492 (108.4728)
f28 511.3326 (517.2004) 300.0000 (0.000009) 553.4594 (521.0763) 384.8744 (379.5698) 429.8189 (399.8157) 362.0477 (277.4857)

Rank 3.6 3.2 4.2 3.5 3 3.5

TABLE III
PARAMETERS OF NA, PSO, ABC, GSA, FPA, WOA

Algorithm Parameters

NA M = 30 λ = 0.08
PSO M = 25 w = 0.7298 c1 = c2 = 0.9
ABC M = 125 NO = 50% limit = Dimensions
GSA M = 50 G0 = 100 α = 20
FPA M = 25 p = 0.8

WOA M = 30 p = 0.5

with the minimal average ranking are generally considered as performing less error on most problems. Therefore, the sensitivity 254

factor λ is set to 0.08 as the standard parameters of NA. Note that if the objective functions are strongly multimodal or extremely 255

high dimensional, the population size should be appropriately enlarged to boost the optimization capability. 256

C. Comparison and Discussion 257

Based on the above discussion and setting, the final form of NA is determined. In this part, NA is compared with five well- 258

known algorithms: PSO [5], ABC [15], GSA [21], FPA [12], and WOA [7]. PSO and GSA are very famous and highly cited. 259

The FPA, WOA, and ABC are recent popularity which are widely applied in various fields of optimization. The simulation 260

platform is implemented by Matlab and can be found at https://github.com/luwei-fu/Nomad-Algorithm. All these algorithms 261

are used for the application scenario of single-objective numerical optimization. Their constructions and operators are different, 262

whereas their mechanisms are similar. On one hand, their constructions can be abstracted as sampling (searching) and updating 263

(deciding). On the other hand, except the population size and maximum iterations are common operators for most algorithms, 264

other operators have the same purpose which is tuning the local and the global search. Despite the discrepancy of details, these 265

five algorithms with the same purpose and similar operators are compared with our proposal. The parameters are set according 266

to their original literature shown in TABLE III. 267

M represent the population size of the diverse algorithms, where the same value as the dimensions (i.e., 30 for each 268

benchmark function) of the objective problem is set to NA. The w is the inertia factor and c are learning factors of PSO. NO 269

of ABC indicates the percentage of onlooker bees, while if a solution cannot be improved through limit generations, it will 270

https://github.com/luwei-fu/Nomad-Algorithm


XXX, VOL. , NO. , FEB 2022 10

TABLE IV
STATISTICS OF MEAN(STD) ON UNIMODAL FUNCTIONS

NA PSO ABC GSA FPA WOA

f1
3.1E-14

(7.1E-14)
246.833

(119.595)
51134.2

(6835.41)
12679.8

(2995.50)
6961.81

(2744.48)
761.501

(470.082)

f2
3.5E+06

(1.9E+06)
6.2E+07

(2.2E+07)
8.0E+08

(1.7E+08)
1.9E+08

(9.4E+07)
1.4E+07

(7.2E+06)
1.1E+08

(3.8E+07)

f3
2.9E+08

(3.8E+08)
7.2E+09

(3.7E+09)
1.6E+13

(2.7E+13)
6.9E+15

(1.2E+16)
2.6E+10

(6.5E+09)
1.5E+11

(2.9E+11)

f4
4.3E+04

(1.0E+04)
5.3E+04

(1.6E+04)
1.5E+05

(3.3E+04)
7.0E+04

(5.3E+03)
4.8E+04

(1.1E+04)
1.2E+05

(4.5E+04)

f5
6.9E-04

(3.4E-04)
7.0E+01

(2.7E+01)
1.6E+04

(2.9E+03)
4.2E+03

(7.8E+02)
5.4E+02

(2.1E+02)
1.1E+03

(2.9E+02)

TABLE V
P-VALUES OF THE RANK-SUM TEST FOR UNIMODAL FUNCTIONS

NA PSO ABC GSA FPA WOA

f1 N/A 3.02E-11 3.02E-11 1.07E-07 3.02E-11 3.02E-11
f2 N/A 3.02E-11 3.02E-11 5.07E-10 7.11E-09 3.02E-11
f3 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f4 N/A 0.001597 3.02E-11 3.02E-11 0.006097 3.69E-11
f5 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
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Fig. 3. Convergence curves on unimodal benchmark functions f1 − f5.

be replaced by a new position. G0 is the initial gravitation value and α is an unnamed constant of GSA. The parameters p in271

FPA and WOA represent the switching probability, which determines the global search of the algorithm.272

Due to the different population sizes (i.e., search agents) of these 6 algorithms, the same number of iterations does not273

mean the same workload. Hence, the number of evaluations is applied as a criterion instead of the number of iterations. Once274

a member (i.e., a potential solution) of the population is calculated by the objective function, it is recorded as an evaluation.275

The dimensions of all functions are set to 30, meanwhile, the adequate 50 independent runs 30,000 evaluations are utilized276

for each of these algorithms to avoid contingency.277

TABLE IV summarizes the mean errors and standard deviations (STD) of the unimodal functions f1 − f5. The best perfor-278

mance of the distinct functions are highlighted in bold. Considering these two metrics only evaluate the overall performance of279

the algorithm, a Wilcoxon statistical test is conducted to confirm the significance of the experiment results. In TABLE V, the280

p-values between each algorithm and the best results are recorded as metrics of significance. A significant difference between281

two sets of samples could be guaranteed if the p-value less than 0.05. The convergence curves are depicted in Fig. 3 to study282

the optimization process intuitively.283

It is demonstrated that NA highly outperforms other algorithms on all the 5 unimodal functions in terms of optimization284
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TABLE VI
STATISTICS OF MEAN(STD) ON MULTIMODAL FUNCTIONS

NA PSO ABC GSA FPA WOA

f6
34.2993

(26.0086)
192.059

(30.8947)
7238.00

(1384.74)
294.214

(215.277)
411.024

(116.258)
300.583

(77.8251)

f7
172.146

(66.8715)
95.5420

(25.5302)
4210.69

(5804.13)
591895

(571714)
172.460

(31.3911)
4494.36

(12457.2)

f8
21.0213

(0.08166)
21.0598

(0.03408)
21.0436

(0.04975)
21.0694

(0.04076)
21.0310

(0.04843)
21.0561

(0.04000)

f9
32.3287

(3.78377)
32.5353

(3.75555)
41.7355

(1.37428)
40.9172

(2.79008)
35.4161

(1.08368)
38.7293

(2.53089)

f10
0.07822

(0.04085)
221.682

(75.7126)
7240.36

(795.397)
2128.04

(421.011)
488.882

(198.598)
656.620

(190.309)

f11
10.8892

(4.57256)
145.676

(31.6768)
886.584

(81.9583)
556.695

(54.3356)
300.701

(60.6101)
578.039

(70.6390)

f12
214.057

(61.5520)
243.803

(22.4262)
893.732

(82.3379)
638.685

(89.1132)
331.134

(60.9911)
608.074

(122.137)

f13
321.866

(67.3873)
244.141

(15.4904)
862.863

(107.535)
802.363

(83.9000)
401.170

(64.0598)
606.081

(113.671)

f14
682.159

(210.372)
4958.29

(730.080)
8279.69

(312.258)
4259.14

(656.388)
5509.96

(249.749)
5761.95

(880.590)

f15
4228.79

(739.199)
7469.75

(499.136)
8420.23

(385.411)
4430.85

(543.436)
6187.49

(218.123)
6529.23

(844.054)

f16
1.08813

(0.57710)
2.83395

(0.44142)
3.10000

(0.32815)
2.45991

(0.81697)
3.00184

(0.39360)
2.24419

(0.53354)

f17
41.0289

(3.73051)
304.317

(38.4732)
1623.66

(147.851)
423.017

(62.3409)
452.697

(79.8105)
644.679

(111.494)

f18
271.836

(94.8016)
352.716

(35.3014)
1580.91

(202.456)
424.517

(57.9943)
438.177

(64.0039)
695.007

(112.233)

f19
3.22370

(0.88575)
29.9533

(5.17000)
1.7E+06

(4.7E+05)
14306.7

(6250.22)
3344.00

(7326.12)
223.927

(227.170)

f20
14.5159

(0.67311)
14.5018

(0.95362)
15.0000

(2.8E-07)
14.9832

(8.8E-02)
13.8519

(0.38325)
14.8425

(0.22760)

TABLE VII
P-VALUES OF THE RANK-SUM TEST FOR MULTIMODAL FUNCTIONS

NA PSO ABC GSA FPA WOA

f6 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f7 4.80E-07 N/A 3.02E-11 3.02E-11 2.37E-10 3.69E-11
f8 N/A 0.099253 0.420390 0.016285 0.982310 0.145319
f9 N/A 0.935191 3.69E-11 1.78E-10 9.79E-05 2.44E-09
f10 N/A 1.01E-08 3.02E-11 2.39E-08 3.69E-11 3.02E-11
f11 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f12 N/A 0.010313 3.02E-11 3.02E-11 4.69E-08 3.02E-11
f13 3.32E-06 N/A 3.02E-11 3.02E-11 8.99E-11 3.02E-11
f14 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f15 N/A 3.34E-11 3.02E-11 0.19579 2.87E-10 4.62E-10
f16 N/A 3.82E-10 2.61E-10 3.01E-07 2.61E-10 5.46E-09
f17 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f18 N/A 6.36E-05 3.02E-11 1.10E-08 1.56E-08 4.50E-11
f19 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f20 9.77E-07 2.07E-04 2.98E-11 1.98E-11 N/A 3.22E-11

errors, as well as the minimum STDs of NA indicate its advance on stability. Although GSA obtains less STD than NA on 285

f4, it is stable on a terrible solution with the worse error. In TABLE V, the p-values have further verified the optimization 286

results of NA significantly outperform other counterparts on all unimodal scenarios of CEC 2013, which strongly proves the 287

powerful exploitation of NA in statistics. For the convergence process, the curves of others in Fig. 3 are relatively slow or have 288

stagnated. In contrast, the convergence curves of NA demonstrate a decreasing trend and they are promising to converge to the 289

smaller error with further iterations. All these superiorities are explained by the Herdsmen grazing strategy of NA, where a 290

sufficient number of Herdsmen and the adaptive range of search can help the population to operate an intensification of local 291

exploitation. 292

In terms of multimodal functions, f6 − f20, the statistical results are given in TABLE VI and TABLE VII under the same 293

simulation environment. These results denote NA achieves the minimum errors on 12 scenarios of the total 15 multimodal 294

functions, apart from f7, f13, and f20. According to the problem definitions of these particular cases, on the one hand, f7 and 295

f20 are variations of Schaffer function which are extremely multimodal. These huge numbers of local optima are very like 296
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Fig. 4. Convergence curves on multimodal benchmark functions f6 − f20.

each other but different from the global optima, which provides little useful information for NA during the search process.297

However, the search strategies of NA (including adaptive changes of agent proportions, local search range, and global exploring298

amplitude) rely on the heuristic information significantly. It leads to the poor performance of NA on Schaffer functions. On299

the other hand, f13 is a non-continuous function whose solution space has abrupt mutations. However, most search parameters300

of NA change gradually which are limited by the state of the current best solution. Hence, the NA does not address f13 in an301

efficient way.302

Nevertheless, Fig. 4 reveals that NA has notable advantages of both convergence accuracy and speed on the other 12 functions.303

Only a few cases (e.g. PSO on f6, f19, GSA on f15) converge faster than NA temporarily. However, they have the problem304

of premature convergence whose ultimate accuracy is not good as NA. In TABLE VII, the p-values suggest that both the305

superiority and the inferiority of NA are statistically significant in most cases, besides f8, f9, and f15. The NA obtains the best306

accuracy on f8, followed by FPA, ABC, WOA, and PSO whose p-values are greater than 0.05. In other words, the probability307

of the wrong assertion that NA is significantly better than them is greater than 5%. Thus, the NA has no significant difference308

to these 4 algorithms on f8. For the same reason, although NA gets the minimum error on f9 and f15, PSO and GSA show309

the similar performance only inferior to NA, respectively. Besides that, the significant superiorities of NA on other multimodal310

functions are remarkable. It can be considered that NA has a strong capability of global exploration on most problems.311

The results of the rest composition functions f21 − f28 are given in TABLE VIII and TABLE IX. NA shows the best312

performance on 6 functions of the total 8 composition functions. TABLE VIII also provides the competitive results of NA313
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TABLE VIII
STATISTICS OF MEAN(STD) ON COMPOSITION FUNCTIONS

NA PSO ABC GSA FPA WOA

f21
318.450

(80.3945)
569.442

(103.476)
4264.64

(252.984)
1888.82

(42.1282)
1223.15

(287.070)
1020.46

(471.885)

f22
621.618

(332.531)
5011.03

(774.709)
8684.51

(310.501)
7114.14

(691.066)
6303.22

(368.179)
6980.04

(1184.67)

f23
5695.66

(705.824)
7609.00

(527.775)
8764.60

(346.941)
6671.23

(445.633)
6647.93

(329.209)
7653.72

(858.937)

f24
295.496

(8.82772)
300.538

(11.9088)
306.596

(2.87171)
550.927

(60.2002)
310.061

(5.91868)
323.818

(9.48666)

f25
309.630

(12.9470)
314.979

(6.98130)
305.340

(3.60775)
420.196

(12.2462)
323.896

(6.49773)
327.049

(12.2165)

f26
357.018

(63.3964)
364.146

(54.4969)
384.629

(27.6455)
428.174

(38.1113)
215.594

(49.4309)
371.463

(76.3585)

f27
1124.34

(94.0953)
1184.94

(87.8204)
1360.32

(37.0000)
1456.20

(90.8954)
1320.40

(47.8540)
1383.50

(80.0896)

f28
342.224

(231.269)
1114.74

(138.712)
7003.53

(490.761)
4986.53

(477.406)
2562.57

(435.658)
4793.50

(777.446)

TABLE IX
P-VALUES OF THE RANK-SUM TEST FOR COMPOSITION FUNCTIONS

NA PSO ABC GSA FPA WOA

f21 N/A 7.34E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11
f22 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f23 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f24 N/A 0.063533 2.49E-06 3.02E-11 4.31E-08 8.15E-11
f25 0.379030 2.20E-07 N/A 3.02E-11 4.98E-11 1.46E-10
f26 2.96E-05 8.48E-09 4.62E-10 6.70E-11 N/A 3.16E-10
f27 N/A 0.013271 1.33E-10 5.49E-11 1.69E-09 1.78E-10
f28 N/A 5.57E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11

are statistically significant, except only one case that p-value of PSO is greater than 0.05 on f24. Although NA shows the 314

second-best accuracy on f25, it is the only one whose p-value (0.37) is greater than 0.05. It statistically indicates the difference 315

between NA and the best ABC is not significant. As shown in Fig. 5, NA often finds better accuracy than its counterparts 316

rapidly, while almost all these algorithms converge prematurely on composition functions. Even in the poor cases f25 and 317

f26, NA does not show the notable weakness in the searching process. The gap between the optima of NA and the best 318

algorithm is too small to be noticed. These composition functions are extremely complicated and challenging, which have 319

higher requirements for both local exploitation and global exploration. A series of competitive performance of NA has verified 320

that NA is a promising optimizer which handles the two types of search and their trade-off rationally and efficiently. 321

The time cost is also an important criterion and demonstrates the actual time consumed in an optimization process. To fairly 322

compare the real-time cost, we set the same 30,000 evaluations for all algorithms. Keep the other conditions unchanged, 50 323

independent runs are used to obtain the average value of time cost, which reflects the search time of different algorithms in 324

general. TABLE X lists the average runtime of these 6 algorithms on every function. 325

NA, as shown in TABLE X, is the second-fastest one among the six algorithms. Under the same scenarios, the time cost of NA 326

is only inferior to PSO and relatively acceptable. The difference in time cost becomes clearer while handling simple problems, 327

such as the basic unimodal functions. Since the simplicity of the objective functions, the major time consumption of the 328

optimization process is contributed from the algorithms’ search strategies. Although most optimizations are completed around 329

1 second, it is observed that f9 and f24−f27 takes remarkably more time consumption for all algorithms. This phenomenon is 330

explained by the difficulty of the problem, i.e., the complexity of objective functions. According to the problem definitions in 331

CEC 2013, f9 (Rotated Weierstrass function) has a more complex computation which is multimodal, asymmetrical, continuous 332

but differentiable only on a set of points, which costs more time for optimization. introduction, composition functions f21−f28 333

are integration of different basic functions, while only f24 − f27 include f9 which leads to obvious increasing on time cost. 334

By contrast, with the composition of multiple complicated functions, each evaluation consumes non-negligible amount of 335

time that accounts for the major part of total time. Evaluation time of every algorithm is similar, which reduces the gap of 336

total time among these algorithms on complex problems, likes f21 − f28. Although NA is a little slower than PSO, it gets 337

the better optima than PSO on 26 of the total 28 benchmark functions. NA, thus, has been demonstrated a light-weight and 338

effective nature-inspired algorithm for global optimization. 339
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Fig. 5. Convergence curves on composition benchmark functions f21 − f28.

TABLE X
THE TIME COST OF 6 ALGORITHMS (MEASURED IN SECONDS)

Func. NA PSO ABC GSA FPA WOA

f1 0.2201 0.1010 1.3994 2.2421 0.6500 0.3067
f2 0.3536 0.2541 1.5135 3.5666 0.7968 0.4343

Unimodal f3 0.3760 0.2453 1.5427 3.5234 0.8260 0.4609
f4 0.2906 0.1734 1.4312 3.3916 0.7411 0.3796
f5 0.3052 0.1510 1.6328 2.6197 0.7656 0.3937
f6 0.2656 0.1609 1.4401 3.4000 0.6968 0.3479
f7 0.6265 0.5140 1.7354 3.5578 1.0812 0.7208
f8 0.8052 0.4114 1.7739 2.5244 1.0161 0.6208
f9 4.3562 4.2312 5.4734 7.2859 4.8031 4.4343
f10 0.4223 0.3119 1.5609 3.3927 0.9213 0.4890
f11 0.4145 0.3140 1.5026 3.2713 0.8099 0.4880
f12 0.5770 0.4651 1.6708 3.4468 0.9812 0.6328

Multimodal f13 0.7603 0.4868 1.8343 3.7463 1.0661 0.6849
f14 0.4250 0.2843 1.5229 2.2828 0.8302 0.4781
f15 0.4645 0.3307 1.5572 3.3567 0.8770 0.5114
f16 1.6858 1.4729 2.7791 4.6744 2.0609 1.6912
f17 0.3562 0.2531 1.5450 3.5075 0.7812 0.4343
f18 0.4781 0.3606 1.6837 3.6256 0.8943 0.5387
f19 0.3350 0.2181 1.5112 3.5087 0.7512 0.4087
f20 0.7854 0.3015 1.5458 3.3427 0.8557 0.5026
f21 0.6475 0.5181 1.8037 3.6318 1.0718 0.7206
f22 0.7651 0.6458 1.8614 3.6411 1.1953 0.8250
f23 0.9276 0.8000 2.0312 3.7859 1.3760 0.9843

Composition f24 5.1962 5.0625 6.4625 8.0906 5.6000 5.3250
f25 5.1770 4.9755 6.3947 8.3015 5.6536 5.2994
f26 5.4125 5.1515 6.5072 8.2224 5.7312 5.3786
f27 5.3015 5.0468 6.4067 8.2250 5.7671 5.2625
f28 1.2244 1.0869 2.3776 4.1609 1.6500 1.2864

D. Characteristics and Limitations340

Apart from that, NA has also shown the following merits:341

• The introduced Herdsmen grazing mechanism with a dynamic radius guarantees the promising exploitation capability of342

NA. The probability of finding a better solution is increased under the circumstance when no better solution has been343

found in the previous iteration.344

• The perturb strategy of Rangers exploring helps NA jump out of local optima. The adaptively changed proportion of345

Herdsmen and Rangers makes a good trade-off between exploitation and exploration, which maintains the global ability346

during the whole process of algorithm execution.347

• No matter where the Optima is in the search space, NA is fair without partiality. The efficiency of NA only depends on348
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the scale and shape of the objective function. 349

• NA demonstrates excellent efficiency in sampling strategy, which results in better accuracy under the same time con- 350

sumption. It means more reasonable utilization and less waste of computing resources. 351

With the respect of limitations, two issues should be further addressed: 1) The dynamic factors of search radio, which 352

significantly impacts the speed and precision, are set as constants empirically. This setting is not flexible to handle problems 353

with different scales. 2) Although NA takes a self-balancing mechanism, it is adaptive to the maximum iteration and optimization 354

process, rather than the complexity of problem or shape of solution space. A better sensitivity coefficient should be studied 355

for adaptability. 356

V. CONCLUSION 357

This paper proposes an efficient NIC algorithm for global optimization, named Nomad Algorithm (NA). The parameters 358

tuning is studied and the guarantee of global convergence is also proved mathematically. To verify the superiority of NA, 359

it is compared with five well-known algorithms based on CEC 2013 benchmark functions which consist of 5 unimodal, 15 360

multimodal, and 8 composition functions. According to the experimental results depicted by figures, both the optimization 361

error and convergence speed of NA are superior to that of its counterparts in all 5 unimodal cases, 12 of 15 multimodal cases, 362

and 6 of 8 composition cases. In a nutshell, NA could achieve the highest accuracy in most cases (23/28) which is better than 363

its rivals by multiple orders of magnitude. The nonparametric Wilcoxon statistical test is conducted to confirm the superiority 364

of NA with mathematical significance. The complexity and the real time consumption of algorithm are analyzed to denote NA 365

is a light-weight optimizer which could be rapidly performed. This succinct and efficient mechanism is easy to understand and 366

use for an amateur without expertise of CI. 367

By these advances, NA is promising to numerical optimization of the real-world industrial applications with high-dimensional 368

and multimodal solution space, e.g., optimizing the designs of optical buffer, pressure vessel, feature selection, and hyperpa- 369

rameter selection. In future work, two research directions can be considered from the perspective of theoretical analysis. 370

Firstly, further study should focus on the detailed convergence process, especially in big-scale complex problems. Besides, the 371

improvement of NA likes multiple tribes competition and better tuning of agents may be feasible and implemented. 372
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