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1 INTRODUCTIONThe debate about the use and relevance of formal methods in the development of computingsystems has always attracted a considerable attention and is continually doing so. One schoolof thought (the protagonists) claims that formal techniques o�er a complete solution to theproblems of system development. Another school claims that formal methods have little, or no,use in the development process (at least due to the cost involved). There is a third view point,that we share, which states that formal methods is both over-sold and under-used.Nonetheless, whatever school of thought one prescribes to, it is important to realise that as thecomplexity of building computing systems is continually growing, makes a disciplined, systematicand rigorous methodology essential for attaining a \reasonable" level of dependability and trustin these systems. The need for such a methodology increases as \fatal" accidents are attributableto software errors.In response to this, an intense research activity has developed resulting in the production offormal development techniques together with their associated veri�cation tools that have beensuccessfully applied in forward engineering such systems. For example, assertional methods,temporal logic, process algebra and automata, have all been used with some degree of success.In the area of reverse engineering, formal methods have also been put forward as a means to1. formally specify and verify existing systems in particular those already operating in safety-critical applications;2. introduce new functionalities and/or3. take advantage of the improvement in systems design techniques.In this paper we attempt to review a large class of formal methods that have suggested inthe re-engineering process of computing systems. We shall also discuss some of their bene�tsand limitations. But �rst, it is necessary to lay some terminological groundwork and to considercurrent practices.Formal Methods The term formal methods is used to refer to methods with sound basis inmathematics. These should be distinguished from structured methods which are well de�ned butdo not have sound mathematical basis to describe system functionalities. Formal methods allowssystem functionalities to be precisely speci�ed whilst structured methods permit the precisespeci�cation of systems structure. However, recently, there has been a substantial researchactivities to� integrate formal and structured methods, for example the formal speci�cation language Z[1] [60]has been integrated with the structured method known as SSADM and� extend some formal methods allowing the treatment of non-functional requirements suchas timing and probability [10,11,27,46,47,58].We take the view that a formal method should consist of some essential components: asemantic model, a speci�cation language (notation), a veri�cation system/re�nement calculus,development guidelines and supporting tools:1. The semantic model is a sound mathematical/logical structure within which all terms,formulas and rules used have a precise meaning. The semantic model should re
ect theunderlying computational model of the intended application.2



2. The Speci�cation language is a set of notations which are used to describe the intendedbehaviour of the system. This language must have a proper semantics within the semanticmodel.3. Veri�cation system/re�nement calculi are sound rules that allow the veri�cation of prop-erties and/or the re�nement between speci�cations.4. Development Guidelines are steps showing the use of the method.5. Supporting tools involving proof assistant, syntax and type checker, animator, and proto-typer.Formal methods can be applied in two di�erent ways.1. The production of speci�cations which are then the basis for a conventional system devel-opment. In this case, speci�cations are used as a precise documentation medium whichhas the advantages of manipulability, abstraction and conciseness. Consistency checks andautomatic generation of prototypes could be performed at this stage with the aid of theassociated supporting tools.2. The production of formal speci�cation, as above, can then be used as a basis against whichthe correctness of the system is veri�ed or as a basis to derive the veri�ed system throughcorrectness preserving re�nement rules. This will give the developed system a degree ofcertainty and trustworthiness.Re-engineering The process of re-engineering computing systems involves three main steps:restructuring, reverse engineering and forward engineering. In the present survey, we take thefollowing view:� Restructuring. It is the process of creating a logically equivalent system from the given one.This process is performed at the same level of abstraction and does not involve semanticunderstanding of the original system.� Reverse Engineering. It is the process of analysing a system in order to obtain and identifymajor system components and their inter-relationships and behaviours. It involves theextraction of higher level speci�cations from the original system.� Forward engineering. The process of developing a system starting from the requirementspeci�cation and moving down towards implementation and deployment.In essence the re-engineering model takes the following form:Re-engineering = Restructuring + Reverse engineering + Forward engineering .Our objective in this paper is to discuss, analyse and review what role of formal methods canplay within this model.The paper is organised as follows. Section 2 deals with major classi�cation of existing formalmethods. In each class, some example formalisms are chosen as candidates. Each formalism isbrie
y described, together with its major references and pointers in the literature. Section 3summarises the criteria of the review and produces our results in form of a comparative tables.Section 4 concludes our review.
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2 CLASSIFICATION OF FORMAL METHODSFormal methods can be classi�ed into the following �ve classes or types, i.e., Model-based, Logic-based, Algebraic, Process Algebra and Net-based (Graphical) methods. In the following subsec-tions we will brie
y discuss each of these approaches.2.1 Model-based ApproachGeneral A system is modelled by explicitly giving de�nition of states and operations thattransform the system from a state to another. In this approach, there is no explicit representationof concurrency. Non-functional requirements (such as temporal requirement) could be expressedin some cases.Examples� Z [1] [60]. With the �rst version proposed in 1979, the Z notion is based on predicatecalculus and Zermelo Fraenkel set theory. A Z speci�cation is written in terms of \schemas",each of which contains a signature part which declares items of interest and a predicatepart which places a logical constraint on them.� VDM [35] [9] [34]. VDM (the Vienna Development Method) is a formal method forrigorous computing system development. It is similar to Z in most aspects, although notas popular as Z. VDM support model composition and decomposition, which facilitate boththe forward and reverse engineering a lot.Although the semantics and proofs in predicate calculus are complete and rather completein set theory, the functions, operations, compositions and decompositions in VDM makesits semantic and proof system much more complicated to be \accomplished". Therefore,similar problems happen with Z and VDM: a complete formal semantics does not exist yet,and as the consequence, the automated support tools, such automated prover, do not existyet. Moreover, lacking of formal semantics will also limit the potentials for automation inthe re-engineering approach which adopts Z or VDM as its formal foundation.Time is not a part of VDM notation. When trying to apply VDM to real-time domain,novel features have to be added to VDM. VDM also keeps developing: VDM++, as a newversion of VDM integrated with object-oriented idea, is a rather mature product now.� B-Method [36] [37] [62]. The B-method uses the Abstract Machine Notation to supportthe description of the target systems. The most eminent success of B method is thatit already has a strong and quite mature tool B Toolkit, to support and automate thedevelopment of application systems. The B-Method is \complete" in the sense that itprovides abstract machine speci�cation and their proofs, re�nements and their proofs, andcomposition and their proofs. The development method of B matches the typical top-down forward engineering well. A complete development may be performed and recorded.Changes may be accommodated using the replay tools. Re�nement, implementation andcomposition steps have precise notions of correctness and mechanical generation of proofobligations. By animator, test may be performed. The �nal implementation step may bemechanised for common languages (e.g. C and Ada) and for some speci�cation constructs.In B-Method, no guidance is provided regarding (i) design decisions or their recording,(ii) testing or inspection methodology, (iii) presentation of speci�cations. B toolkit is still4



evolving, not `very' mature now. B method has no time feature. Novel feature has to beadded when using B for real-time systems. The main users of B are found in UK.Sample Description Z is described as a sample here.� Syntax and Semantics. The conceptual basis of Z is typed set theory, and the methodsis oriented to constructing models. Text and graphical representation are used.The basic elements of Z are types, sets, tuples and bindings. There is no universal set towhich all elements belong, but a universe of disjoint sets called types (which contain basictypes and composite types). A set in Z is an unordered collection of di�erent elements ofthe same type, and there is a concept of in�nite sets supported in Z. A tuple is an orderedcollection of elements that are not necessarily the same type. A binding is a �nite mappingfrom names to elements, not necessarily of the same type.The main representational form is the \schema" which is a set of bindings depicted in aspecial \axiomatic box" syntactical form including a signature(or Schema Name) and aproperty (made up of two parts|the declaration and axiomatic constraints).The semantics of Z is based on a version of Zermelo-Fraenkel set theory that does notinclude the replacement and choice axioms.� System Speci�cation. Operations can be speci�ed in several ways in Z. One way isthrough the use of \axiomatic descriptions", which are unnamed schemas that introduceone or more global variables, and constraints on those variables. Theses speci�cations arecalled \loose speci�cations" by Z practitioners, who stress the use of schemas to specify. Aspeci�er uses these to indicate a function or constant has certain properties without givingit a value.A Z speci�cation is basically composed as ordered collections of schema de�nitions and ax-iomatic descriptions. There are complex scoping and naming rules, but the most importantspeci�cation structuring mechanism is called \schema inclusion". The name of a de�nedschema may be referred to in any other schema of axiomatic description after its de�nition,but entities within that schema may be referred to only if the schema is included in thesignature of the following schema or axiomatic description.Analysis of Z speci�cations usually means performing consistency and completeness checks,which validate the speci�cation for accuracy and completeness, style, feasibility (sometimescalled viability, seeing if a system state exists which satis�es the constraints speci�ed inthe initial condition), and expected properties. This analysis is performed by review byother speci�ers who perform a \walk through" much like a code \walk through". Proofsare also used to analyse a Z speci�cation, which is primarily done by hand, as there is noreliable automated prover for Z because a formal semantics does not exist yet.� Assessment. Z is good at identifying errors that result frommisconceptions in the model ofa system. Z supports designing through the use of constructing models, and Z does supporta re�nement approach to developing systems. It is good at determining and specifyingrelationships between di�erent levels of speci�cation and design. There is also the abilityto re-use Z schemas, especially those that are generic. Since the principles and stagesof re�nement approach in forward engineering are correspondent to those of abstractionapproach in reverse engineering, Z can be also competent in being a good formal foundationof a re-engineering approach. 5



As mentioned before, although the semantics of Z is based on a version of Zermelo-Fraenkelset theory, it is not complete or su�cient for the whole Z notations when including schemas,tuples, binding, etc. So, a formal semantics of Z does not exist yet. As a consequence,the automated support tools, such automated prover, do not exist yet. Moreover, lackingof formal semantics will also limit the potentials for automation in re-engineering whichadopts Z as formal foundation.Time is not a part of Z notation. When trying to apply Z to real-time domain, novelfeatures have to be added to Z. However, because of the rich expressibility of Z, Z has beenused in a number of real-time applications, such as timed Z [40].The main users of Z are found in UK and other European countries. Generally speaking, Zhas been applied to a large amount of applications, some of which are rather large-scaled. Itis one of the few formal methods that has been proved successful in industrial applications.In recent years, some forms of improved Z with new technology such as object-orientationhas been developed, for example, Z++ and Object-Z.2.2 Logic-based ApproachGeneral In this approach logics are used to describe system desired properties, including low-level speci�cation, temporal and probabilistic behaviours. The validaty of these properties isachieved using the associated axiom system of the used logic. In some cases, a subset of the logiccan be executed, for example the Tempura system [46]. The executable speci�cation can thenbe used for simulation and rapid prototyping purposes.Logic can be augmented with some concrete programming constructs to obtain what is knownas wide-spectrum formalism. The development of systems in this case is achieved by a set ofcorrectness preserving re�nement steps. Examples of these form are TAM [58] and the Re�nementCalculus [57].Examples� ITL [11] [47] [46] [10]. ITL (Interval Temporal Logic) has been developed in [11] [48]. Thiskind of logic is based on intervals of time, thought of as representing �nite chunks of systembehaviour. An interval may be divided into two contiguous subintervals, thus leading tochop operator.� Duration Calculus [12] [13]. Duration Calculus was introduced in [12] as a logic tospecify and reason about requirements for real-time systems. It is an extension of IntervalTemporal Logic where one can reason about integrated constraints over time-dependentand Boolean valued states without explicit mention of absolute time. Several rather large-scale case studies have shown that Duration Calculus provides a high level of abstractionfor both expressing and reasoning about about speci�cations.� Hoare Logic [19]. Hoare Logic has a long history, it may be viewed as an extensionof First-order Predicate Calculus [19] that includes inference rules for reasoning aboutprogramming language constructs.Hoare Logic provides a means of demonstrating that a program is consistent with itsspeci�cation. Hoare Logic is not capable of specifying a system at high levels, however, ithas distinct advantages in the low level speci�cations. These two features make Hoare Logica suitable means in the �rst stage of reverse engineering, i.e. from source code program6



to an abstraction at very low level. Some research has been done in this area, such as thedevelopment of the reverse engineering tool AutoSpec [14] [24].There is no real-time feature in Hoare Logic. Some extension can be added to make HoareLogic more suitable for real-time domain. A Real-time Hoare Logic has been proposed [30].Hoare Logic is one of the mathematical pillars for program veri�cation and formal methods.Hoare Logic and its variants are used in numerous formal methods tools.� WP-Calculus [18]. Weakest Precondition Calculus was �rst proposed by E. W. Dijkstra in1976. A precondition describes the initial state of a program, and a postcondition describesthe �nal state. By using the semantics of predicate logic and other suitable formal logics,WP-Calculus has been proven to be a formalism suitable for reverse engineering of sourcecode, especially at the low abstraction levels.� Modal Logic [42] [15]. Modal logic is the study of context-dependent properties such asnecessity and possibility. In modal logic, the meaning of expressions depends on an implicitcontext, abstracted away from the object language. Temporal logic can be regarded as aninstance of modal logic where the collection of contexts models a collection of momentsin time. A modal logic is equipped with modal operators through which elements fromdi�erent contexts can be combined. There are several approaches to the semantics ofmodal logic, such as `neighbourhood' semantics. Until now, there is no application ofmodal logic in software reverse engineering area.� Temporal Logic [56]. Temporal logic has its origins in philosophy, where it was used toanalyse the structure or topology of time. In recent years, it has found a good value inreal-time application.In physics and mathematics, time has traditionally been represented as just another vari-able. First order predicate calculus is used to reason about expressions containing the timevariable, and there is thus apparently no need for a special temporal logic.However, philosophers found it useful to introduce special temporal operators, such as 2(henceforth) and 3 (eventually), for the analysis of temporal connectives in languages. Thenew formalism was soon seen as a potentially valuable tool for analysing the topology oftime. Various types of semantics can be given to the temporal operators depending onwhether time is linear, parallel or branching. Another aspect is whether time is discrete orcontinuous [41].Temporal logic is state-based. A structure of states is the key concept that makes temporallogic suitable for system speci�cation. Mainly, the types of temporal semantics includeinterval semantics, point semantics, linear semantics, branching semantics and partial ordersemantics [41].The various temporal logics can be used to reason about qualitative temporal properties.Safety properties that can be speci�ed include mutual exclusion and absence of deadlock.Liveness properties include termination and responsiveness. Fairness properties includescheduling a given process in�nitely often, or requiring that a continuously enabled transi-tion ultimately �re.Various proof systems and decision procedures for �nite state systems can be used to checkthe correctness of a program or system.In real-time temporal logics, quantitative properties can also be expressed such as period-icity, real-time response (deadline), and delays. Early approaches to real-time temporal7



logics were reported in [51] [5]. Since then, real-time logics have been explored in greatdetail.� RTTL [49] [50]. RTTL (Real-Time Temporal Logic) uses a distinguished temporal domain,the ESM (Extended State Machine) state variables, and the set of ESM transitions to formtemporal formula. These are then proven using an axiomatisation of the system's ESMtrajectories.RTTL has a complex and non-compositional proof system. All of the ESMs have to bedesigned before any theorems that may be proved about them. There is a decision procedurefor �nite ESMs but due to the undecidability of predicate logic, a procedure for in�niteESMs can never be found. There is a method for RTTL, but it is basic and containsinformal steps. Time is global and there is no maximum parallelism model.Perhaps more importantly, RTTL has a very \expressive" syntax, the user can chooseeither temporal domain expressions or operators. This 
exibility may result in \cleaner"speci�cations.No special development method is proposed in RTTL or required by RTTL. If applied toreverse engineering area, RTTL has a 
exibility to �t di�erent methodologies.� RTL [33]. RTL [33] is a real-time logic with four basic concepts: actions which may becomposite or primitive, state predicates which provide assertions regarding the physicalsystem state, events which are markers on the (sparse) time line, and timing constraintswhich provide assertions about the timing of events.Work is presently being carried out on �nding an e�cient general decision procedure forRTL formulas, presently it is a time consuming exercise to verify safety and liveness as-sertions using standard deductive proofs. Also, a design method is mentioned which mayprovide an environment for the engineering of large real-time systems, Jahanian and Moksuggest that RTL may form a uni�ed basis for a theory of decomposition.RTL's event occurrence function allows for a rich expression of periodic and non-periodicreal-time properties. However, unstricted RTL is undecidable. It does not treat datastructures or in�nite state systems. RTL formulas impose a partial order on computationalactions which is useful for representing high level timing requirements.RTL has been used with some success in industrial applications and it is also being used ina major IBM project called \ORE" which is integrating RTL with a real-time programminglanguage. There is a feeling of con�dence with RTL due to its pragmatic nature.� TPCTL [27]. Timed Probabilistic Computation Tree Logic (TPCTL deals with real-time constraints and reliability. Formulas of TPCTL are interpreted over a discrete timeextension of Milner's Calculus of Communication Systems called TPCCS. Probabilities areintroduced by allowing two types of transitions, one labeled with actions and the otherlabeled with probabilities.The semantics of TPCTL is de�ned over the reactive transitions of TPCCS processes.TPCTL is a logic essentially extending the branching time modalities of CTL [17] withtime and probabilities. Since formulas are interpreted over TPCCS processes, which areobserved through actions that label transitions, the semantics of TPCTL is de�ned in termsof transitions rather than states.TPCTL is one of the few logics that can express both hard and soft real-time deadlines,and it is possible to represent levels of criticality in TPCTL.8



Because of the action based nature of TPCTL, it is di�cult to specify state-based propertiessuch as \henceforth, if the train is at the crossing then the gate must be down". Propositionssuch as \the gate is down" must be encoded indirectly through actions that change thestate of the model, in which case the speci�cation becomes unnecessarily complicated.TPCTL has no special development method. However, no practice has been carried outthat using TPCTL as a independent tool to specify real-time systems.Sample Description ITL is used as a sample here.� Syntax and Semantics. The syntax of ITL is de�ned as following, where i is a constant,a is a static variable (does not change within an interval), A is a state variable (can changewithin an interval), v a static or state variable, g is a function symbol, p is a predicatesymbol.Expressions: exp ::= i j a j A j g(exp1 ; :::; expn) j {a : fFormulae:f ::= p(exp1 ; :::; expn) j exp1 = exp2 j exp1 < exp2 j :f j f1 ^ f2 j 8 v � f j skip j f1 ; f2 j f �The informal semantics of the most interesting constructs are as following:{ {a : f : the value of a such that f holds.{ 8 v � f : for all v such that fholds.{ skip: unit interval(length 1).{ f1 ; f2 : holds if the interval can be decomposed(\chopped") into a pre�x and su�xinterval, such that f1 holds over the pre�x and f2 over the su�x.{ f �: holds if the interval is decomposable into a �nite number of intervals such that foreach of them f holds.The formal semantics is as followings: Let X be a choice function which maps any nonemptyset to some element in the set. We write � �v �0 if the intervals � and �0 are identical withthe possible exception of their mapping for the variable v.{ M�[[v ]] = �0 (v).{ M�[[g(exp1 ; :::expn)]] =ĝ (M�[[exp1 ]]; :::;M�[[expn ]]).{ M�[[{a : f ]] = �X (u) if u 6= fgX (a) otherwisewhere u = �0(a) j � �a �0 ^M�[[f ]] = tt{ M�[[p(exp1 ; :::; expn)]] = tt i� p̂ (M�[[exp1 ]]).{ M�[[:f ]] = tt i� M�[[f ]] = � .{ M�[[f1 ^ f2 ]] = tt i� M�[[f1 ]] = tt and M�[[f2 ]] = tt .{ M�[[8 v � f ]] = tt i� for all �0s:t :� �v �0;M0�[[f ]] = tt .{ M�[[skip]] = tt i� j � j= 1 . 9



{ M�[[f1 ; f2 ]] = tt i�(exists a k,s:t :M�0 :::�k [[f1 ]] = tt and((� is in�nite and M�k :::[[f2 ]] = tt) or(� is �nite and k �j � j and M�k :::�j�j[[f2 ]] = tt)))or (� is in�nite and M�[[f1 ]]).{ M�[[f �]] = tt i�if � is in�nite then(exist l0 ; :::; ln ; s:t :l0 = 0 andM�ln :::[[f ]] = tt andfor all 0 � i < n; li <= li+1 and M�li ;:::;�li+1 [[f ]] = tt :)or(exists an in�nite number of lis:t :l0 andfor all 0 � i ; li <= li+1 and M�li ;:::;�li+1 [[f ]] = tt :)else (exist l0 ; :::; lns:t :l0 = 0 and ln =j � j andfor all 0 � i ; li <= li+1 and M�li ;:::;�li+1 [[f ]] = tt :)� Assessment. ITL was �rst proposed by Moszkowski [47]. ITL avoids the proliferationof time variables in speci�cations, as do all temporal logics. ITL is su�ciently general toexpress any discrete computation. An executable subset of ITL, called Tempura [46], is welldeveloped. Zedan and Cau proposed a set of new re�nement techniques of ITL [10], whichgives ITL a strong ability to describe all the popular possible features of real-time systems.Since ITL has an executable subset Tempura, its veri�cation and simulation can be largelyfacilitated. The development method of ITL �ts popular re-engineering methodologies well.Generally speaking, ITL is a formal logic with enough expressibility of real-time systemsand suitable for re-engineering methodologies.2.3 Algebraic ApproachGeneral In this approach, an explicit de�nition of operations is given by relating the behaviourof di�erent operations without de�ning states. Similar to the model-vased approach, no explicitrepresentation of concurrency.Examples� OBJ[25]. OBJ is a wide spectrum �rst-order functional language that is rigorously basedon equational logic. This semantics basis supports a declarative, speci�cational style, fa-cilitates program veri�cation, and allows OBJ to be used as a theorem prover.� LARCH [26]. The Larch family of algebraic speci�cation languages was developed at MITand Xerox PARC to support the productive use of formal speci�cations in programming.One of its goals is to support a variety of di�erent programming, including imperativelanguages, while at the same time localising programming language dependencies as muchas possible. Each Larch language is composed of two components: the interface languagewhich is speci�c to the particular programming language under consideration and the sharedlanguage which is common to all programming languages. The interface language is usedto specify program modules using predicate logic with equality and constructs to deal withside e�ects, exception handling and other aspects of the given programming language. Theshared language includes speci�cation-building operations inspired by those in CLEAR,10



although these are viewed as purely syntactic operations on lists of axioms rather than assemantically non-trivial as in CLEAR.Sample Description OBJ is used as a sample here.OBJ [25] is a broad spectrum algebraic speci�cation/programming language based on ordersorted equational logic. It is a speci�cation language in which an algebra is de�ned using objects.Objects are carrier sets along with operations, and equational theories which are treated by theOBJ interpreter as re-write axioms. Each object is built from primitive sorts and enrichmentsof existing objects.Proofs of equivalence are achieved automatically in OBJ by rewriting processes into theirnormal forms and testing for syntactic equivalence.There are now a number of enhanced OBJ interpreters, including OBJ1, OBJ2 and OBJ3.Here we prefer using the most up-to-date one: OBJ3.OBJ3 is based on order sorted equational logic, which provides a notion of subsort that rigor-ously supports multiple inheritance, exception handling and overloading. OBJ3 also providedsparameterised programming, which gives powerful support for design, veri�cation, reuse, andmaintenance. This approach uses two kinds of module: objects to encapsulate executable code,and in particular to de�ne abstract data types by initial algebra semantics; and theories to spec-ify both syntactic structure and semantic properties for modules and module interfaces. Eachkind of module can be parameterised, where actual parameters are modules. For parameter in-stantiation, a view binds the formal entities in an interface theory to actual entities in a module,and also asserts that the target module satis�es the semantic requirements of the interface theory.2.4 Process Algebra ApproachGeneral In this approach, explicit representation of concurrent processes is allowed. Systembehaviour is represented by constraints on all allowable observable communication between pro-cesses.Examples� CSP [29] [28]. The Communicating Sequential Processes (CSP) formal speci�cation no-tation for concurrent systems was �rst introduced in [29]. Since this original proposal didnot include a proof method, a complete version of CSP was proposed in [28].� CCS [45]. Calculus of Communicating Systems (CCS) was proposed by Milner in 1989. Itis a formalism similar to CSP. CCS is also suitable for distributed and concurrent systems.At present, several variations of CCS has been developed, which forms a CCS family. CCSfamily includes CCS, CCS+, CCS*, SCCS, TCCS and TPCCS [22].Two underlying concepts of CCS are agents and actions. A CCS model consists of a set ofcommunicating processes (agents in CCS terminology). CCS adopts operational semantics.CCS is a successful formalism to build system models with respect to concurrency and dis-tribution. Compared with CSP, the emphasis of CCS is on de�ning a series of equivalences(bisimulations), each equivalence de�ning a di�erent model of concurrency. Thus certainprocesses that might be considered identical in CSP, would be di�erent in CCS. CCS hasa form of modal logic to specify the observable behaviours of processes. CSP has a richer11



set of laws than CCS allowing for optimising design and implementations. CCS concen-trates on a minimal set of operators needed for the full expression of non-deterministicconcurrency and its resulting equivalences.CCS is not a real-time formalism either. Some extensions of CCS with real-time featurehave been developed, such TCCS, SCCS, and TPCCS.� ACP [6] [3]. Algebra of Communicating Processes (ACP) was proposed by J.A. Bergstrain 1984. Until now, a rather large variety of ACP has been proposed, such as Real TimeACP(ACP�), Discrete Time ACP. ACP is also an action-based process algebra, which maybe viewed as a modi�cation of CCS. However, ACP is an executable formalism. ACP isequipped with a process graph semantics, and adopts bisimulation proof system. ACPallows a variety of communication paradigms, including ternary communication, throughthe choice of the communication function.� LOTOS [32] [39]. LOTOS (Language Of Temporal Ordering Speci�cation) was developedto de�ne implementation-independent formal standards of OSI services and protocols. LO-TOS has two very clearly separated parts. The �rst part provides a behavioural modelderived from process algebra, principally from CCS but also from CSP. The second part ofLOTOS allows speci�ers to describe abstract data types and values, and is based on theabstract data type language ACT ONE.By combining the two formalism, CCS/CSP and ACT ONE integrately, LOTOS has astrong ability to describe both the \data" and \control" of the systems, i.e., ACT ONE forthe data part and CCS/CSP-based language for the control part. LOTOS is able to capturea relatively complex temporal pattern of events, involving non=determinism, concurrencyand synchronisation, by means of small algebraic expression built by using few conceptuallysimple operators [61].LOTOS has formally de�ned syntax, static semantics and dynamic semantics. The staticsemantics are de�ned by an attributed grammar [32] and the dynamic semantics are de-scribed operationally in terms of inference rules.Since LOTOS has an operational semantics, it is possible to implement these semantics inan interpreter. LOTOS has \a number of" various support tools, which are although notmature or narrow-aspected, do have some successful points [20].LOTOS does not support real-time speci�cations. Although a Timed LOTOS has beenproposed, it is not proven a suitable formalism for real-time systems.LOTOS has problems in specifying distributed systems - it does not support dynamicrecon�guration which is an important and interesting characteristics in those systems. Itsmodel of concurrency is based in the known \interleaved semantics" in which an observercan see one event a time and concurrency is represented sequentially. Many models basedon \true concurrency semantics" have been proposed although it seems that none of themwill be present in the next version of LOTOS. This is a weak point in represent distributedprocessing where in many situations things happen simultaneously and no ordering betweenevents can be established. Also, LOTOS has weak data speci�cation mechanisms andcannot express time explicitly.� TCSP [54]. Timed CSP [54] is an extension of Hoare's CSP, with a dense temporal modelproviding a global clock. A delay operator is included along with some extended paralleloperators. There is an assumption of a minimum delay between any two dependent actionoccurrences, but no minimum delay on any two independent actions. The semantics of12



TCSP is given by timed traces, and a speci�cation relation sat is provided for verifyingpredicates over traces.Processes in Timed CSP are built from sequences of communication actions. The semanticmodel of TCSP is based on observation and refusal timed traces.It is important in speci�cation language for real-time systems that the temporal relation-ships between actions is maintained through the manipulation of the speci�cation. Ina non-real-time process algebra, the concurrency operators are usually conservative, i.e.,they degenerate into non-deterministic interleaves of the constituent processes' actions. InTCSP, the concurrency operators are non-conservative, they do not degenerate. Instead,the algebraic rules for concurrent processes de�ne the e�ect of composition on the temporaldomain. For example, in the process where there is concurrent composition of two WAITprocesses, the result is a process that waits for the maximum of two delays.There exist no tools for the manipulation of speci�cations written in TCSP.� TPCCS [27]. Timed Probabilistic Calculus of Communicating Systems (TPCCS) [27]is essentially an extension of Milner's CCS with discrete time and probabilities. To in-crease the description ability, a logic named Timed Probabilistic Computation Tree Logic(TPCTL) is proposed to describe the logic of and between TPCCS processes. ThereforeTPCCS, together with TPCTL, forms a framework for speci�cation and veri�cation ofreal-time and reliability in distributed systems. TPCCS, as a process algebra, is used formodeling the operational behaviour of distributed real-time systems; and TPCTL, as alogic, is used for expressing properties of the systems. A veri�cation method for automati-cally proving that a system described in TPCCS satis�es properties formulated in TPCTL,is also well de�ned [27].The main advantage of TPCCS is that it has a powerful description ability for real-timedistributed systems. TPCCS can reason about both time and probabilities in distributedsystems. In particular, TPCCS{ extend CCS with probabilities by adding a probabilistic choice operator and by intro-ducing a probabilistic transition relation,{ add discrete time to the extended CCS where the timing model is based on a minimaldelay assumption, i.e., communications must occur as soon as possible,{ de�ne a strong bisimulation equivalence for which a sound and complete axiomatisa-tion is given.TPCCS has a very formally de�ned syntax and semantics, which bring lots of conveniencein the automation of speci�cation and veri�cation. However, the calculation of probabilitiesis not mentioned in TPCCS and TPCTL. A tool named Timing and Probability Workbench(TPWB) has been developed. TPWB Partially supports automatic veri�cation of TPCCS.Sample Description CSP is used as a sample here.� Syntax and Semantics of CSP A CSP speci�cation is a hierarchy of processes. Acomplete speci�cation can be viewed as a single process which is composed of sub-processes,each of which is decomposed into component processes.
13



The CSP notation has three primitive processes for input, output and assignment:A!e Output the value e to A;B?x From channel B input to x ;x ::= e Assign x the value e.A number of operators exist for combining processes, for example:PkQ Processes P and Q operate in parallel;PuQ Either P or process Q operates. The choice is non-deterministic;P ;Q Process P operates followed by Q .The basic concept in CSP considers a process as a mathematical abstraction of interac-tions between the system and its environment. Recursion is used to describe long lastingprocesses. A second feature is the use traces to record the sequence of actions a processhas carried out. The abstract description is then given a more concrete explanation usingalgebraic law, and the last step is the implementation.The notation for CSP uses �rst order logic symbols plus some additional symbols for traces,functions, etc.There is a family of increasingly sophisticated models for providing CSP speci�cation se-mantics. These computational models include the counter model, the trace model, thedivergences model, the readiness model and the failure model.� Assessment of CSPThe main contribution of CSP is as a programming language for parallel processing, prin-cipally in the area of synchronising communications.CSP supports an event model that enables the description of entities that have propertiesand relationships that vary over time. It allows us to model a dynamic reality, to specifysystems that perform various actions in particular orderings, and to express timing con-straints between these actions and on the synchronisation of various system components.CSP speci�cations may be couched at any level of abstraction, viewed quite simply as asystem of processes executing independently, communicating over unbu�ered unidirectionalchannels, and synchronising on particular events.Speci�cations may be manipulated through the application of a number of algebraic laws,and combined by means of a small number of operators which are known to be sound.Various semantic models allow proposed properties to be proven, and to demonstrate thatparticular requirements have been satis�ed.These features make CSP a suitable formalism in the area of concurrency. However, likemany other methods/languages, timing constraints associated with real-time operationscannot be handled, or have to be in a clumsy and ine�cient way. CSP is not good athandling asynchronous events, such as interrupts.There is no tools for CSP in strict sense. However, the Occam Transformation Systemdeveloped by Oxford University's Programming Research Group is an automated tool toassist in carrying out algebraic transformation. Since Occam follows the main principles ofHoare's CSP, this tool may bring some convenience to CSP, too.
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2.5 Net-Based ApproachGeneral Graphical notations are popular notations for specifying systems as they are easier tocomprehend and, hence, more accessible to non-specialists. In this approach, graphical languageswith a formal semantics are used, which bring special advantages in system development andre-engineering.Examples� Petri Net [55] [52]. Petri Net theory is one of the �rst formalisms to deal with concurrency,nondeterminism and causal connections between events. According to [44] it was the �rstuni�ed theory, with levels of abstraction, in which to describe and analyse all aspects ofcomputer in the context of its environment.Petri nets provide a graphic representation with formal semantics of system behaviour.Until now, a large amount of vanities of Petri Net Theory has been proposed. Generally,petri nets can be classi�ed into ordinary (classic) petri nets and timed petri nets.� Timed Petri Net [43] [21] [7] [8] [38] [53]. Petri Net theory was the �rst concurrentformalisms to deal with real-time. Two basic timed versions of Petri nets have been intro-duced: Timed petri Nets [124] and Time Petri Nets [43]. Both have been used in recentwork [21] [7] [8] [38] [53]. There are two questions that arise when time is introduced tonet theory: (i) the location of the time delays(at places or transitions) and (ii) the type ofdelay (�xed delays, intervals or stochastic delays).Timed Petri Nets are derived from classical Petri nets by associating a �ring �nite duration(a delay) with each transition of the net. The transition is disabled from occurrence for thedelay period, but is �red immediately after becoming enabled. These nets are used mainlyin performance evaluation.Time Petri Nets (TPNs) are more general than Timed Petri Nets. A Timed Petri Net canbe simulated by a TPN, but not vice versa. Both a lower and an upper bound are associatedwith each transition in a TPN. A state in the reachability graph is a tuple consisting of amarking, and a vector of possible �ring intervals of enabled transitions in that marking.� Statecharts [31]. Statecharts [31] provides an abstraction mechanism based on �nitestate machine. It represents an improved version of the structured methods. A graphictool called \Statemate" [2] exists to implement the formalism. Methods similar to that ofStatecharts may be found in [23].Statecharts have been proved to be at least as expressive as state machines, and the succinctjusti�cation for them is provided by the following \equation":Statecharts = state-transitions + depth + orthogonality + broadcast communication.Statecharts provides an abstraction mechanism based on �nite state machine. It repre-sents an improved version of the structured methods. Charts denote composition of statemachine into super-machines which may execute concurrently. The state machines containtransitions which are marked by enabling and output events. It is assumed that eventsare instantaneous, and a global discrete clock is used to trigger sets of concurrent events.Statecharts are hierarchical, and may be composed into complex charts. The semantics ofStatecharts is given by maximal computation histories. An axiomatic system is presented.Statecharts support typical structural top-down system development method. It does not�t the procedures of reverse engineering, which abstracts speci�cations from source code.Statecharts have no real-time features, although certain e�orts are undergoing.15



Sample Description Petri Net is use as a sample here.� Syntax and Semantics of Petri NetsThe classic Petri Nets model is a 5-tuple (P ;T ; I ;O ;M ). P is a �nite set of places (oftendrawn as circles), representing conditions. T is a �nite set of transitions (often drawnas bars), representing events. I and O are sets of input and output functions mappingtransitions to bags of places(the incidence functions). M is the set of initial markings.Places may contain zero or more tokens (often drawn as black circles). A marking (or state)of the Petri nets is the distribution of tokens at a moment in time, i.e. M : P ! N whereN is the non-negative integers. Tokens in Petri nets model dynamic behaviour of systems.Markings change during execution of the Petri nets as the tokens \travel" through the net.The execution of the Petri nets is controlled by the number and distribution of the tokens(the state). A transition is enabled if each of its input places contains at least as manytokens as there exists arcs from that place to the transition. When a transition is enabledit may �re. When a transition �res, all enabling tokens are removed from its input places,and a token is deposited in each of its output places.Given an initial state (distribution of tokens), the reachability set is the set of all statesthat result from executing the Petri net. Properties such as boundness, liveness, safety andfreedom from deadlock can be checked by analysing the reachability graph. The reachabilitygraph is usually constructed using an interleaving operational semantics.In Petri nets causal dependencies and independencies in some set of events are explicitlyrepresented. It is therefore easy to provide a non-restrictive partial order semantics. Eventswhich are independent of each other are not projected onto a linear timescale. Instead anon-interleaving partial order relation of concurrency is introduced.� Assessment of Petri NetsThe advantages of using Petri nets are numerous. They are easy to comprehend due totheir graphical form, they can be used to model hardware, software and human behaviour,and they allow formal reasoning of system behaviour. Some experts suggest using bothPetri nets and formal logic for developing systems and the former to model the system, thelatter to verify it.Ordinary Petri nets have been criticised for not being able to deal with fairness and datastructures, e.g. the data in a measure header, although the number of tokens at a particularplace in the net can simulate a local program variable. Structuring mechanisms such ascomposition operators are not inherently part of the theory, and there is no calculus totransform a net into a real-time programming language. Unlike state machine, a \place"in a Petri net cannot easily be identi�ed with a place in the corresponding program code.A further problem is that the reachability graph su�ers from state explosion as Petri netsbecome larger, thus impacting on the ability to scale up analysis to larger systems. OrdinaryPetri nets are still an object of intense research aimed at putting Petri nets theory on �rmmathematical ground. However, practically speaking, such standard nets are not up to thetask of modeling complex systems. For this reason, higher level nets (coloured nets) andstochastic nets have been introduced to extend the modeling power of Petri nets.
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3 CRITERIA AND RESULTSIn this section, we summarise a wide spectrum of existing formal methods from the point ofview of software re-engineering. Generally speaking, some of them already have a rather goodadvantage in certain aspects, such as ITL for real-time systems, and TPCCS & TPCTL forsystems with reliability and probabilities. However, all of them have certain 
aws or weaknessin some aspects as described in section 2.We list our �ndings through the review in forms of tables according to the following criteria:� Temporal Model { Temporal model is the model of time used by the formal methods. Asparse model has discrete instances of time and there is a minimum granularity. A densemodel is not discrete, between any two instances in time there is an in�nite number ofother instances.� Automated Tools { This criterion refers to whether the formal method has relevant auto-mated tools to support its development, such as checking syntax, verifying semantics andauto-execution.� Reliability { This criterion refers to the reliability of the formalism.� Proof System { This refers to whether there is any proof system and what the type of thesystem is (when there is one).� Industrial Strength { This criterion refers to the potential of the formal method for large-scale/industrial applications.� Methods of Veri�cation { This criterion refers to the existing methods of veri�cation ofthe formal method. Normally, there are two types of the methods of veri�cation: modelchecking and theorem proving.� Concurrency { This criterion refers to the explicit representation and reasoning of concur-rency.� Communication { This criterion refers to the explicit representation and reasoning of com-munication.� Reverse Engineering { This criterion refers to whether the formal method has been appliedin any reverse engineering domain.Criteria Z VDM BTemporal Model none none noneAutomated Tools a few none goodReliability good good goodProof System semi-axiomatic semi-axiomatic axiomaticIndustrial Strength great some greatMethods of Veri. model-checking model-checking bothConcurrency none none noneCommunication none none noneReverse Eng. yes no noTable 1: Model/State-Based Formalisms17



Criteria HOL WP-Calc. TL MLTemporal Model none none dense/sparse noneAutomated Tools some some some or few fewReliability good good good goodProof System axiomatic axiomatic axiomatic axiomaticIndustrial Strength some some great greatMethods of Veri. theorem proving theorem proving both bothConcurrency none none norm exist noneCommunication none none norm exist noneReverse Eng. yes yes no noTable 2-1: Logic-Based FormalismsCriteria ITL DC TAM RTTL RTLTemporal Model sparse dense sparse sparse sparseAutomated Tools few none none few noneReliability good good good good goodProof System axiomatic axiomatic axiomatic axiomatic axiomaticIndustrial Strength great some great some someMethods of Veri. theorem prov. theorem prov. theorem prov. theorem prov. theorem prov.Concurrency par. comp. none exist interleaved interleavedCommunication sync./async. none exist sync. noneReverse Eng. no no no no noTable 2-2: Logic-Based FormalismsCriteria OBJ LarchTemporal Model none noneAutomated Tools few someReliability good goodProof System axiomatic axiomaticIndustrial Strength some greatMethods of Veri. theorem prov. theorem prov.Concurrency interleaved interleavedCommunication sync. syncReverse Eng. no noTable 3: Algebraic Formalisms
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Criteria CSP CCS ACP LOTOS TCSPTemporal Model none none none none denseAutomated Tools none none good some noneReliability good good good good goodProof System axiomatic bisimulation bisimulation bisimulation axiomaticIndustrial Strength some some some great someMethods of Veri. both both both model-checking bothConcurrency interleaved interleaved interleaved interleaved bothCommunication sync/async. sync. sync. sync. sync.Reverse Eng. no no no no noTable 4: Process Algebra FormalismsCriteria Petri Nets Timed Petri Nets StatechartsTemporal Model none dense/sparse sparseAutomated Tools some none noneReliability good good goodProof System reachability reachability axiomaticIndustrial Strength some some someMethods of Veri. model-checking model-checking model-checkingConcurrency interleaved interleaved existCommunication sync. sync. sync.Reverse Eng. yes no noTable 5: Graphic-Based FormalismsThe above �ve categories are corresponding to subsections of Section 2. We believe we should usethe sixth category in order to better summarise those so-called \combined" approaches.Criteria TPCCS + TPCTL Petri Nets + PredicateTemporal Model sparse sparse/denseAutomated Tools none noneReliability good goodProof System axiomatic reach. ps axiom.Industrial Strength some unknownMethods of Veri. theorem proving model-checkingConcurrency interleaved interleavedCommunication sync. sync.Reverse Eng. no noTable 6: Combined FormalismsThrough reading these tables, we can draw the following conclusions of the current situationof formal methods for re-engineering:� Some formalisms are rather good in certain aspects of software development while othersare good in other aspects. For example, ITL has a strong ability for representing andreasoning of most features of real-time systems. TPCCS & TPCTL is good at dealing withsystems with reliability and probability features. Z is capable for large scale industrial19



applications. B has a comprehensive automated toolkit. DC has advantages for its abilityof dealing with dense temporal models. Various process algebras are excellent for theirabilities of representing and reasoning of concurrency and communication. Finally, the mostimportant features of net-based formalisms are their graphical representations: concise,easy to understand, and very clear.� Only a very few formalisms have been applied as the theoretical foundation of reverseengineering;� Although some formalisms are suitable for certain stages of reverse engineering, there isnot any formalism covering all reverse engineering stages. For example, Hoare Logic cancope with the low level abstraction of program source code, but not high level abstraction.This also happens to the formalisms such as Wp-Calculus and predicate logic. Therefore,a new wide spectrum formalism is needed for the re-engineering process, e.g. integratingWp-Calculus and ITL could be a solution.It is not hard to see that most existing formal methods were not designed for reverse en-gineering as well as re-engineering. This urges that research into suitable formal methods forre-engineering should be established.4 DISCUSSION AND ANALYSISThis review is conducted in the view of developing a practical approach for the re-engineering ofexisting system including real-time critical application. Re-engineering generally consists of threestages, i.e., restructuring, reverse engineering and forward engineering. Because most existingformal approaches were developed for forward engineering, whether a formal approach has beenused for reverse engineering is specially used as a criterion.Through the review, we found that using formal methods in reverse engineering existingsystems (real-time systems, in particular) is still a research area that has not been addressedproperly, because (1) there are formal methods for reverse engineering and (2) even if a formalmethod can cope with reverse engineering well, it is still a problem whether this formal methodcan be integrated with an existing matured forward engineering formal method.Graphical notations are also popular notations for reverse engineering (understanding) exist-ing systems. Petri Net is a useful for building a graphical model for re-engineering.Another factor that should be taken into consideration when re-engineering computing sys-tems is recent rapid development of object-oriented technology. We believe that an approach thatintegrates formal methods, graphic techniques and object-oriented techniques can contribute tosolve the problem of re-engineering:� existing software can be easily understood and reverse engineered through using a graphictool;� object-oriented techniques, which have been recognised as the best way currently availablefor structuring software systems, can help maintenance in grouping together data andoperations performed on them, thereby encapsulating the whole system behind a cleaninterface, and organising the resulting entities in a hierarchy based on specialisation infunctionalities;� formal methods can provide a solid theoretical foundation for integrating graphic andobject-oriented techniques in building a practical software maintenance and re-engineeringtool. 20



Therefor our goal is to devise a uniform coherent semantic theory that enables a compre-hensive formal understanding of re-engineering model when applied to the analysis and thedevelopment of complex computing systems in real applications. This should allow diverse kindsof formalisms to be developed and integrated.The uni�ed theory provides a formal basis within which an object-oriented formal notationwill be developed that uni�es existing widely-used formalisms. In addition, sound transfor-mational calculi together with veri�cation and validation techniques will be developed. Ourapproach to this is to build a wide-spectrum language in which concrete and abstract (e.g. spec-i�cation statement) graphical notations could be easily intermixed. The developed calculi willthen allow us to transform from one form of speci�cation/program (represented graphically) toanother.The novel aspects of this proposal are in the incorporation of the outcome of extensive researchin a number of key areas of software maintenance into a formally uni�ed semantic model.We intend to use a wide-spectrum language approach to the proposed formal re-engineeringof existing computing systems, particularly real-time systems. Our extensive experience withthe design and use of the Wide Spectrum Language (WSL) [4,16,63] and TAM [10,59,64] haveillustrated the practical use of such an approach. In our next research stage, we therefore aimto:1. develop a single \wide-spectrum" language in which both abstract speci�cations written inour extended logic and executable code may be described in graphical notations,2. de�ne a re�nement relation on speci�cations and programs described in the language, and3. develop a family of sound re�nement calculi to serve for both forward and backward re-�nement.References[1] Abrial, J. R., Schuman, S. A. and Meyer, B., Speci�cation Language Z, Massachusetts ComputerAssociates Inc., Boston, 1979.[2] Alur, R. and Dill, D. L., \Automata for Modeling Real-Time Systems", In M.S. Paterson editor,ICALP 90: Automata, Languages and Programming, Lecture Notes in Computer Science, 1990.[3] Baeten, J. C. M. and Bergstra, J. A., \Real Time Process Algebra", Formal Aspects of Computing ,Vol. 3, pp. 142{188 (Feb 1991).[4] Bennett, K. H., Bull, T. and Yang, H., \A Transformation System for Maintenance | Turning Theoryinto Practice", IEEE Conference on Software Maintenance-1992, Orlando, Florida, November, 1992.[5] Benveniste, A. and Harter, P. K., \Proving Real-Time Properties of Programs with Temporal Log-ics", Proceedings of ACM SIGOPS 8th annual ACM symposium on Operating systems Principles,December 1981.[6] Bergstra, J. A. and Klop, J. W., \Process Algebra for Synchronous Communication", Informationand Control, Vol. 60, pp. 109{137 (Jan/Feb/Mar 1984).[7] Berthomieu, B. and Diaz, M., \Modeling and Veri�cation of Time Dependent Systems Using TimedPetri Nets", IEEE Transactions on Software Engineering , Vol. 17, pp. 259{273 (March 1991).[8] Billington, J., Wheeler, G. R. and Wilbur-Ham, M. C., \PROTEAN: a High-level Petri Net Toolfor the Speci�cation and Veri�cation of Communication Protocol", IEEE Transactions on SoftwareEngineering , Vol. 14, pp. 301{316 (March 1988).21
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