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a b s t r a c t 

One of the fundamental goals of mobile networks is to enable uninterrupted access to wireless services 

without compromising the expected quality of service (QoS). This paper reports a number of significant 

contributions. First, a novel analytical model is proposed for holistic handover (HO) cost evaluation, that 

integrates signaling overhead, latency, call dropping, and radio resource wastage. The developed math- 

ematical model is applicable to several cellular architectures, but the focus here is on the Control/Data 

Separation Architecture (CDSA). Second, data-driven HO prediction is proposed and evaluated as part of 

the holistic cost, for the first time, through novel application of a recurrent deep learning architecture, 

specifically, a stacked long-short-term memory (LSTM) model. Finally, simulation results and preliminary 

analysis reveal different cases where non-predictive and predictive deep neural networks can be effec- 

tively utilized, based on HO management requirements. Both analytical and machine learning models are 

evaluated with a benchmark, real-world dataset measuring human behaviors and interactions. Numeri- 

cal and comparative simulation results demonstrate the potential of our proposed deep learning-driven 

HO management framework, as a future benchmark for the mobile networking and machine learning 

communities. 

© 2019 The Authors. Published by Elsevier B.V. 
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. Introduction 

Next generation wireless cellular networks are envisioned to

e self-organized, efficient, and cost-effective [1] . Since 5G Self-

rganizing Network (SON) is a new paradigm, there exist numer-

us design challenges, ranging from mobility management to re-

ource management for seamless access to wireless services with-

ut compromising the expected Quality of Service (QoS). 

Mobility management has two main subsets: handover (HO)

anagement and location management. The former covers aspects

f users Access Point (AP) or Base Station (BS) switching, while the

atter is based on location tracking of a user. HO prediction is one

f the most widely used approaches in HO management for cel-

ular networks since it allows proactive radio resource allocation.

ccurate HO prediction can significantly reduce HO latency, signal-

ng overhead, and call drop rate. 
∗ Corresponding author 
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The Control/Data Separation Architecture (CDSA) is a promising,

nhanced network architecture, with a logical separation between

he Control Plane (CP) and Data Plane (DP). The CDSA assigns CP

or coverage provisioning, while DP is responsible for data trans-

ission [2] . A typical CDSA with one Control Base Station (CBS)

nd four Data Base Stations (DBSs) is shown in Fig. 1 . 

CDSA offers a number to advantages over conventional cellular

rchitectures including better energy efficiency and system capac-

ty. In addition, it prevents DBSs from excessive overheads [2] . This

s mainly because CP and DP are combined in the conventional ar-

hitecture, where each BS is responsible for coverage, mobility, and

ata transmission tasks, that leads to a signalling overhead. How-

ver, in CDSA, CBSs are responsible for connectivity and mobility

ssues, thus preventing DBSs from excessive overhead. 

In this paper, a novel analytical model for holistic HO cost

valuation, taking into account signaling overhead, latency, call

ropping, and radio resource wastage, is presented. In addition,

ovel stacked long-short-term-memory (LSTM) and multi-layered

erceptron (MLP) based mobility prediction models are proposed
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Sample CDSA architecture. There are four DBSs under the coverage of one 

CBS. User Equipments (UEs) can be in active and idle states according to their DBS 

connection. 
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and evaluated as a part of the holistic cost function. Comparative

simulation results depict the superiority of LSTM over MLP, for

accurate HO prediction. The performance improvement can be

attributed to LSTM’s inherent recurrent nature, that helps better

model time series data. 

In summary, this paper reports three major contributions out-

lined below: 

1. Development of a novel analytical model for holistic HO cost

evaluation model, by integrating signaling overhead, latency,

call dropping, and radio resource wastage. The developed math-

ematical model is applicable to several cellular architectures,

including CDSA. 

2. A HO prediction algorithm is proposed to further minimize

the holistic cost. It is shown that high prediction accuracy

can significantly minimize the cost function, consequently re-

ducing user dissatisfaction, HO latency, overhead, and resource

wastage. 

3. The impact of prediction accuracy as part of the holistic cost

is evaluated to estimate HO accuracy requirements, consider-

ing the holistic cost, and a novel deep neural network based

learning model is developed for predictive HO management. It

is shown that the predictive approach significantly outperforms

the non-predictive method, for the case where the former of-

fers more than the required minimum accuracy. On the other

hand, when the achieved prediction accuracy equals the re-

quired minimum accuracy, both predictive and non-predictive

approaches perform equally well. However, non-predictive ap-

proaches outperform predictive methods when the required

minimum accuracy is not achieved by the machine learning al-

gorithm. Thus, a future context-aware approach is posited, in

which the mobile network can optimally switch between pre-

dictive and non-predictive approaches, based on HO manage-

ment requirements. 

The remainder of this paper is organized as follows: Section 2

provides an up-to-date literature survey, while Section 3 presents

the background information on HO elements. The holistic

HO cost and minimum requirements for prediction accu-

racy are derived in Section 4 . Section 5 presents data-driven

HO prediction models based on shallow MLP and deep stacked

LSTM networks. Comparative performance evaluation and results

are discussed in Section 6 . Lastly, Section 7 concludes the paper

and outlines some future work directions. 

2. Related work 

In the literature, machine learning has been widely used to

address the issue of HO prediction in mobile networks. Specifi-
ally, Markov Chains [3–8] and Artificial Neural Networks (ANN)

9–11] have been extensively employed. More specifically, in [3] ,

uthors employed two different methods to predict mobile users’

rajectories. Specifically, Dempster-Shafer processes were used to

stimate the next location of users, while a second-order Markov

hain was employed at road segments to determine the segment

he user would take. 

Online Markov chains were proposed in [4,5] to decrease the

ignalling overhead and latency caused by HOs. Given the serving

S of a mobile user, the algorithms predict the target BS by execut-

ng the proposed online learning algorithm. The revisit problem of

arkov chains, when applied to mobile user’s trajectory prediction,

as identified in [6] . As a solution for this problem, the authors

roposed to build a 3D transition matrix instead of the conven-

ional 2D, in order to distinguish the orders of HOs. The authors

n [7] model the mobility behaviour of users with Markov Re-

ewal Process (MRP) to predict both single and multi-transitions.

he case of having close probabilities in the transition matrix,

hich can cause serious accuracy degradation, were studied in [8] ,

nd the concept of not making a prediction in case of not having

nough assurance was introduced. The term enough is represented

y a threshold value, and if the probabilities of the candidate states

annot meet the threshold value, the agent chooses not to make a

rediction. 

ANNs are employed in [9,11] to learn user patterns and use

hem for future location predictions in UMTS networks, thereby

ecreasing the location update signalling overhead. The Self-

rganizing Map (SOM) algorithm is utilized in [10] for femtocells

o learn and decide if HOs are taking place inside the indoor en-

ironment necessary. Thus, the ping-pong HOs taking place among

emto and macro cells can be avoided. 

However, none of these studies have explored a holistic cost

unction for HO management, although individual cost has been

onsidered in a few studies. Lack of this global cost assessment

s thus an open challenge, with no complete evaluation avail-

ble, other than a number of individual key performance indicators

KPIs). 

Recently, several heuristic approaches have also been employed.

or example, authors in [12] proposed a hybrid intelligent HO de-

ision algorithm based on Artificial Bee Colony and Particle Swarm

ptimization, in order to select an optimal network during verti-

al HOs. Similarly, a hybrid Markov-based model for human mo-

ility prediction is presented in [13] . Nevertheless, real-time com-

unication requires algorithms that are fast and effective in se-

ecting optimal available networks. Therefore, low computational

omplexity, real-time learning, and optimization algorithms are re-

uired, such as those recently proposed in [14,15] . One of the main

hallenges of designing a real-time cognitive system is to concur-

ently acquire long-term learning, fast decision making, and low

omputational complexity. The authors in [16] developed a novel

andom neural network based optimization system. However, such

eal-time AI driven optimization engines are yet to be practically

xploited. 

Deep learning implementations in mobile networks are not lim-

ted to these aforementioned studies. In [17] , for example, the au-

hors extensively studied a deep learning formulation for the mo-

ile encrypted traffic classification problem. Various deep learning

rchitectures, presented in the literature, are reproduced, trained,

nd tested with three different data sets, and a comprehensive per-

ormance comparison in terms of accuracy, precision, and recall is

rovided. 

In general, the deep learning framework has a broad application

rea, with a growing number of state-of-the-art works reported

o-date. For example, recent work in [18] exploited Deep Sparse

utoencoders (DSAE) to recognize facial expressions. The proposed

ethod was tested with a data set and attained 95.79% accuracy.
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n [19], Deep Belief Networks (DBF) was applied to produce more

ualitative analysis of gold immunochromatographic strip (GICS)

mages. The objective was to differentiate the test and control lines

n GICS images, and very high accuracy levels were achieved for

arious concentrations. Both [18,19] are representative case studies

epicting the capability of deep learning algorithms as universal

pproximators. 

. Background 

HO management has been one of the main challenges for cel-

ular wireless networks. Cellular networks comprise cells where

ach cell covers a certain area with a BS. Thus, when a user tra-

erses from one cell to another, all related information should also

e transferred to the new BS, with an effective management strat-

gy and coordination. However, this coordination causes delays and

ignalling overhead due to required signaling between BSs and UE,

nd BSs and the core network. Moreover, in dense small cells de-

loyment, HO management becomes more challenging due to the

arge number of required HOs. 

Predictive HO management is one possible solution to address

his issue, by enabling proactive HO, due to known future locations

f users. This, in turn, can mitigate the latency and signalling over-

ead significantly. 

However, proactive HO management suffers from inefficient ra-

io utilization, as it reserves resources for upcoming HO users. In

ense network deployments, resource reservation becomes even

ore problematic since radio resources are already scarce in such

cenarios. Furthermore, wrong predictions result in adverse conse-

uences, as reserved resource will not be utilized. On the other

and, advance resource reservation with predictive HO manage-

ent, decays the call dropping probability [20–22] . Thus, there

re a number of elements to consider before employing a predic-

ive HO process, such as latency, signalling overhead, call dropping

robability, and radio resource wastage. 

.1. HO latency 

HO latency is defined as time spent during the whole HO

rocess, which includes preparation, execution, and completion

hases. As shown in Fig. 2 , this process for the conventional, non-

redictive method starts with the measurement report and then

ollows steps from 3 to 12. Each of these messages among nodes

UE, DBS, MME, S-GW) takes some time to execute, which leads to

O latency. 

.2. Signalling overhead 

The signalling overhead also results from messages among

forementioned nodes during the HO. Therefore, there is a direct

elationship between latency and signalling overhead, since both

esult from messaging during the HO process. In other words, in-

reasing the latency increases the signalling overhead, and vice

ersa. Moreover, the authors in [4,5] expressed the signaling over-

eads in terms of HO latency. 

.3. Predictive HO and call dropping ratio 

The predictive HO concept offers in-advance preparation for up-

oming HOs by employing machine learning or data mining tools.

n the other hand, this in-advance preparation requires reserving

he radio resources for HO users before HOs take place. Besides,

hese reserved resources are not allowed to be used by any other

ser. Hence, reserved resources are useless until HOs occur, which

s termed radio resource wastage [4] . Although advance resource
eservation is inconvenient in terms of resource wastage, it is quite

tilitarian for the call dropping ratio. 

The probability of call dropping depends on a variety of rea-

ons, such as network density, data traffic, user profile, etc. The

rban scenario, for example, has higher call dropping probability

han the rural scenario, as more intense network density, which

auses more data traffic, leads to more scarce resources. 

In this regard, the predictive HO process offers a poten-

ial solution to decrease call dropping probability in the correct

rediction case [20–22] , by reserving resources for HO users in ad-

ance. Even if there is lack of resources at the predicted DBS, for a

O user by the time the prediction is made, it is still possible to

nd enough resources before HOs are performed. In other words,

he correct prediction case permits DBSs to arrange the required

esources before HOs occur. Thus, as the DBS has time (from pre-

iction to HO trigger) to be prepared, there is a lower probability

f not having enough resources for HO users. 

Consequently, the benefits of predictive HO should be evaluated

y including all these elements jointly. In the next section, we pro-

ide our system model for a holistic HO cost, and minimum, pre-

iction accuracy requirement evaluations. 

. System model 

In this study, joint cost models for both predictive and non-

redictive HO procedures are derived. Furthermore, the aforemen-

ioned individual cost elements are distinctive for different scenar-

os, for example, user dissatisfaction could be a priority for rural

reas, while resource wastage cannot be tolerated for ultra-dense

etworks. There are two variations of predictions in the predictive

O management: correct and incorrect predictions; hence, there

ill be three different cost models namely, for the non-predictive

ase, correct and incorrect prediction cases. 

We already know from Mohamed et al. [4,5] that, on one hand,

redictive HO with correct prediction can alleviate the signalling

verhead as well as the HO latency, while on the other hand, it

nflates the radio resource wastage. Moreover, from Zhang et al.

20–22] , the call dropping ratio can be mitigated with an accurate

redictive HO process. Overall, the holistic HO cost should include

ll these elements as follows: 

 HO = pC D + (1 − p)[ C L + C OH + C W 

] , (1)

here p is the probability of not having enough resources at the

arget DBS, which will turn out to be a call drop. C D , C L , C OH , and

 W 

are the costs for call dropping, latency, signalling overhead, and

esource wastage, respectively. 

All aforementioned scenarios; e.g. no-prediction, correct and in-

orrect predictions, have their own characteristics for the elements

n (1) . In the following sections, we investigate each parameter in-

ividually for all scenarios. 

.1. HO latency 

The concept of HO latency, which is defined as the time re-

uired for the whole HO process [23] , can be written as follows:

L HO = 

{
t p + t e + t c + 100 ms , i f cell unknown 

t p + t e + t c + 20 ms , otherwise 
(2) 

here t p , t e , and t c are time required in the without-prediction

ase for HO preparation, execution, and completion, respectively. If

he target cell is unknown, a search delay, set to 80 ms by 3GPP

24] , is added to the budget in addition to a 20 ms margin. More-

ver, since the HO delay is being investigated from the UE’s point

f view, t c should be counted as zero, as its Radio Resource Con-

rol (RRC) connection is performed when the HO completion phase

tarts [23] . 
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Fig. 2. LTE X2 HO procedure as in [4] . Non-predictive HO conducts steps from 3 to 12. A predictive process with correct prediction performs steps from 6 to 12, whereas 

steps from 1 to 12 are taken in the case of an incorrect prediction. Steps A, B , and C are for the correct prediction case, and are performed in advance. 
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As we can reduce the latency of the preparation phase only [5] ,

therefore, it can be assumed as a latency cost of HO: 

 L = 

{
t p + 100 ms , i f cell unknown 

t p + 20 ms , otherwise 
(3)

With the help of correct predictions, t p can be reduced; such that

if, for example, the future locations of a user are known, prepa-

rations for upcoming HOs can be done in advance by skipping

some of the steps performed in the conventional HO. It is noted

in [5] that a predictive HO with correct prediction is better than

the conventional process in terms of the number of steps taken

during the HO process. However, whenever an incorrect prediction

occurs, due to resources being allocated to the wrong cell, the con-

ventional process is better than the predictive one. This implies

that making an incorrect prediction incurs a penalty in terms of

HO latency. 

Overall, t p can be expressed as follows for three different sce-

narios [5] : 

C L = 

{ 

C L , NP , f or no prediction(NP) 
C L , IP , f or incorrect prediction (IP) 
C L , CP , f or correct prediction(CP) 

(4)

where C L , CP < C L , NP < C L , IP . If the LTE X2 HO procedure is used and

values in [5] are adopted, the corresponding costs become as fol-

lows: C L , CP = 20 ms , C L , NP = 35 ms , and C L , IP = 45 ms . Note that we

assume the target cell is known, thus t search in [24] is zero. 

4.2. Signalling cost 

The HO signalling cost is a combination of transmissions costs

caused by the messaging between DBSs, DBS and UE, and DBS and

Mobility Management Entity (MME); processing costs at the DBS,
ME, and Serving Gateaway (S-GW); and UE’s detaching and ac-

ess costs. Therefore, it is worth noting that the signalling cost

entioned here is from both UE’s and the network’s point of view

5] . The signalling cost is defined as [25] : 

 OH = C s + C m 

, (5)

here C s and C m 

are the signalling costs for search and movement,

espectively. Similar to the latency, the signalling cost occurs at ev-

ry phase of the HO process, thus it is again safe to consider only

he preparation phase, that is the only phase is subject to a reduc-

ion. 

 OH = 

{ 

C OH , NP , for NP 

C OH , IP , for IP 

C OH , CP , for CP 

(6)

n this work, we propose a conceptual signalling cost model that

eflects the number of messages to be transferred during the pro-

ess. To realize this, we assume each messaging among the same

odies causes the same signalling cost. For example, the signalling

ost for messaging between the source DBS and the target DBS,

nd between the source DBS and the predicted DBS are assumed

o be the same, since both take place among DBSs. Therefore, the

elationship between all three cases in terms of the signalling cost

s C OH , CP < C OH , NP < C OH , IP , as shown in Fig. 2 . Since steps 1 to 5

onstitute the HO preparation phase (messaging between DBSs),

he number of messages that represent the signalling costs are as

ollows: C OH , CP = 0 , C OH , NP = 3 , and C OH , IP = 5 . 

.3. Resource wastage 

The resource reservation is performed after triggering HOs

n conventional non-predictive HO management. In contrast, in
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redictive HO, it is performed before the HOs are triggered. More-

ver, in the case of an incorrect prediction, the dimension of the

astage is larger, since reserved resources in wrongly predicted

BS are never used. In such cases, non-predictive HO is better than

he predictive one, even if it is a correct prediction scenario. The

esource wastage cost is defined as follows, for no-prediction, in-

orrect prediction, and correct prediction cases, respectively: 

C W 

= 

{ 

C W , NP , f or NP 

C W , IP , f or IP 

C W , CP , f or CP 

(7) 

here C W , NP < C W , CP < C W , IP . 

In this work, resource wastage is modelled as the product of the

emanded resource and reservation time. If the resource wastage

f the non-predictive process is assumed to be zero, the resource

astage model can be given as follows: C W , NP = 0 , C W , CP = t a d r ,

nd C W , IP = t m 

d r , where d r is a demanded resource, t a is time

lapsed between the prediction and the HO trigger, and t m 

is the

aximum possible time that the resources are reserved for the

redicted HO. In other words, the former is the time for the cor-

ect prediction case, while the latter is exclusive to the incorrect

rediction scenario. Hence, the t m 

parameter ensures the predicted

BS reserves demanded resources for a certain time, and then re-

eases them if the planned HO does not happen. Eventually, it is

orth noting that t m 

> t a . 

.4. Probability of call dropping 

When a HO is not managed properly, it ends up dropping a call,

ausing user dissatisfaction. In other words, if the target DBS has

nsufficient resources to accommodate the HO user, then call must

e dropped. In addition, according to [26] , call dropping is less tol-

rable than call blocking, which happens when the network fails

o accommodate new calls due to being short of resources. 

However, incorrect prediction does not have any impact on the

ropping probability, as the network conducts the conventional HO

rocess in the target DBS when the prediction is incorrect. There-

ore, the call dropping probabilities for non-prediction and incor-

ect prediction cases are the same, while the correct prediction

cenario has a lower probability value. 

p = 

{ 

p NP , f or NP 

p IP , f or IP 

p CP , f or CP 

(8) 

here p NP = p IP > p CP . 

By considering all four cost elements, the holistic cost function

n (1) becomes: 

C HO = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

p NP C D + (1 − p NP ) ×[
C L , NP + C OH , NP + C W , NP 

]
, f or NP 

p IP C D + (1 − p IP ) ×[
C L , IP + C OH , IP + C W , IP 

]
, f or IP 

p CP C D + (1 − p CP ) ×[
C L , CP + C OH , CP + C W , CP 

]
f or CP . 

(9) 

As all cost parameters have different scales, their effect on the

olistic cost function may be different. This will result in the dom-

nance of some elements because of their larger scale, while some

re neglected due to their small scale. Thus, feature scaling (in the

ange of [0, 1]) is applied to the cost elements in order to keep

heir impact on the same scale. The feature scaling function is

iven by: 

 

′ = 

x − x min 

x max − x 
(10) 
min 
here x max and x min are the maximum and minimum values in the

et of x . 

Hence, the following equations are obtained if (10) is applied

o (4), (6) , and (7) , respectively. Note that feature scaling is not

pplied to (8) , as it is already in the range [0, 1]. 

The HO latency is: 

C ′ L = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

C L , NP −C L , CP 

C L , IP −C L , CP 
, f or NP($C 

′ 
L , NP $) 

1 , f or IP($C 

′ 
L , IP $) 

0 , f or CP($C 

′ 
L , CP $) . 

(11) 

Then, the signalling cost is: 

C ′ OH = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

C OH , NP −C OH , CP 

C OH , IP −C OH , CP 
, f or NP($C 

′ 
OH , NP $) 

1 , f or IP($C 

′ 
OH , IP $) 

0 , f or CP($C 

′ 
OH , CP $) . 

(12) 

Finally, the resource wastage is given by 

C ′ W 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , f or NP($C 

′ 
W , NP $) 

1 , f or IP($C 

′ 
W , IP $) 

C W , CP −C W , NP 

C W , IP −C W , NP 
, f or CP($C 

′ 
W , CP $) . 

(13) 

Overall, the holistic cost function in (9) should be rearranged

ith feature scaled parameters: 

C ′ HO = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

p NP C D + 

(
1 − p NP 

)
×[ 

C L , NP −C L , CP 

C L , IP −C L , CP 
+ 

C OH , NP −C OH , CP 

C OH , IP −C OH , CP 

] 
, f or NP 

p IP C D + 

(
1 − p IP 

)
× 3 , f or IP 

p CP C D + 

(
1 − p CP 

p NP −p CP 

)
×

C W , CP −C W , NP 

C W , IP −C W , NP 
. f or CP 

(14) 

Eq. (14) can be expressed as follows after plugging the corre-

ponding cost values: 

C ′ HO = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

p NP C D + 1 . 2 

(
1 − p NP 

)
, f or NP 

p IP C D + 3 

(
1 − p IP 

)
, f or IP 

p CP C D + 

t a 
t m 

(
1 − p CP 

)
, f or CP . 

(15) 

t can be seen from (15) that C ′ 
HO , CP 

< C ′ 
HO , NP 

< C ′ 
HO , IP 

where C ′ 
HO , NP 

,

 

′ 
HO , CP 

, and C ′ 
HO , IP 

, are feature scaled versions of the holistic costs

or no-prediction, correct and incorrect predictions, respectively. 

Since the predictive process includes both the correct and incor-

ect predictions, the total cost of a predictive process is required to

nclude both; i.e. 

 HO , P = AC HO , CP + (1 − A ) C HO , IP (16)

here A is the prediction accuracy that can be defined as follows:

 = 

N 

c 
p 

N 

c 
p + N 

i 
p 

(17) 

here N 

c 
p and N 

i 
p are the number of correct and incorrect predic-

ions, respectively. 

Alternatively, the feature scaled version of (16) is: 

 

′ 
HO , P = AC ′ HO , CP + (1 − A ) C ′ HO , IP (18)

he following expression can be derived if (15), (17) , and (18) are

ombined: 

 

′ 
HO , P = 

N 

c 
p 

N 

c 
p + N 

i 
p 

×
[ 

p CP C D + 

(
1 − p CP 

)
× t a 

t m 

] 

+ 

(
1 − N 

c 
p 

N 

c 
p + N 

i 
p 

)
×

[ 
p IP C D + 

(
1 − p IP 

)
× 3 

] 
. (19) 
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Fig. 3. (a) Multi-layered perceptron and (b) Stacked long-short-term memory based HO prediction model: Example of 5 prior input location and time (taking into account 

the current location I k as well as temporal information of 5 previous inputs I k −1 , I k −2 , I k −3 , I k −4 , I k −5 ). 
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As the predictive process is employed to perform better than

the conventional non-predictive process, the overall cost in (19) is

supposed to be lower than the overall cost of the non-predictive

process. Accordingly, this constraint can be modelled as follows: 

 

′ 
HO , P ≤ C ′ HO , NP . (20)

However, this argument would change according to network

conditions. For resource-intolerant networks, for example, the re-

source wastage is priority and cannot be sacrificed. We will revert

to this issue later in this section. 

In order to find the minimum accuracy ( A min ) satisfying the

constraint (20) , the equality of C ′ HO , P and C ′ HO , NP should be consid-

ered; such that: 

C ′ HO , P = C ′ HO , NP , 

A min C 
′ 
HO , CP + (1 − A min ) C 

′ 
HO , IP = C ′ HO , NP , 

A min = 

C ′ HO , NP − C ′ HO , IP 

C ′ 
HO , CP 

− C ′ 
HO , IP 

. (21)

In other words, any predictor, which is to be employed in a

predictive HO process, should satisfy at least the accuracy level in

(21) to meet the constraint in (20) . Moreover, it is obvious from

(16) and (18) that the only way to decrease C ′ HO , P is to increase the

accuracy; i.e. the more the accuracy, the less the HO cost C ′ 
HO , P 

.

Therefore, since the accuracy level plays a vital role, the focus of

the predictive HO scheme should be on increasing the accuracy

level as much as possible. To this end, it is worth investigating ap-

propriate methods to boost the accuracy of predictors. 

In addition, prioritization can also be taken into account by ap-

pending corresponding parameters to the derived equations. These

parameters are responsible for prioritizing the elements in (1) ;

such that 

¨
 HO = pαC D + (1 − p)[ βC L + γC OH + ζC W 

] , (22)

where C̈ HO is an element-prioritized version of C HO ; { α, β , γ , ζ }

∈ R are the prioritization parameters for user dissatisfaction, la-

tency, signalling overhead, and resource wastage, respectively. For

ultra-dense networks, for example, the resource wastage can be

the most important element, as the network can sacrifice user

satisfaction in order to accommodate more users. On the con-

trary, it can be the least crucial element in rural areas, as there

is more likely to be an abundance of resources due to the lim-

ited number of users. In other words, these prioritization pa-

rameters enable networks to prioritize any element(s) based on

the circumstances they experience. Therefore, the minimum accu-
acy requirement in (21) is subject to an alteration based on the

rioritization parameters introduced in (22) . 

. Data-driven HO prediction 

This section describes the proposed machine learning-driven

O prediction algorithms, to further minimize the cost function

nd improve mobility management. Specifically, shallow MLP and

eep stacked LSTM learning based HO prediction approaches are

escribed. Note that different input combinations, hidden neurons,

nd LSTM cells have been explored to achieve the best possible HO

rediction. 

.1. MLP based HO prediction 

This section describes the three-layered feed-forward MLP net-

ork architecture summarized in Fig. 3 (a). The network consists of

n input layer, a hidden layer with rectified linear activation func-

ions, and a softmax output layer. The network was trained using

he stochastic gradient-decent and Adam optimizer to minimize

he categorical cross-entropy. For training, different number of hid-

en neurons ranging from 16 to 128 were used. Comparative sim-

lation results showed that, when the number of neurons in the

idden layer increase, the validation accuracy increases. However,

urther increase in the number of hidden neurons led to network

verfitting on the training data, thus leading to poor generaliza-

ion on the validation set. For the proposed HO prediction model,

4 hidden neurons provided the most optimal results. More details

re presented in subsequent sections. 

.2. Stacked LSTM based HO prediction 

This section describes the LSTM network architecture sum-

arised in Fig. 3 (b). The LSTM network consists of an input layer,

wo stacked LSTM layers followed by a softmax layer. Inputs (Time

nd Locations) of time instance I k , I k −1 , ..., I k −5 (where k is the cur-

ent time and 5 is the number of prior inputs) are fed into stacked

STM layers. In the network architecture, the input at layer k is

he value of hidden state h t computed by layer k − 1 . The lower

STM has 32 cells, which encode the input and passes on hid-

en states to the second LSTM layer with 32 cells. The output of

he second LSTM is fed into a fully connected layer which has 20

eurons, with softmax activation. The architecture was trained to

inimize the categorical cross-entropy using stochastic gradient-

ecent algorithm and Adam optimizer. Note that previous works
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Table 1 

Structure of the data. 

x y date and time (dd/mm/yyyy hh.mm) ID 

Table 2 

Structure of the data after pre-processing. 

date and time (dd/mm/yyyy) cell ID 
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Table 3 

Summary of train, validation, and test samples for each user. 

User ID Train Validation Test 

56 10080 1440 2880 

82 14979 2140 4280 

99 18774 2682 5364 

101 12264 1752 3504 

106 30428 4347 8694 

109 22232 3176 6352 

266 17010 2430 4860 

268 21987 3141 6282 

280 30358 4337 8674 

291 7741 1106 2212 

297 12467 1781 3562 

Table 4 

Parameters for numerical simulations. 

Parameter Value Description 

p NP 0.6 Probability of no enough resource (NP) 

p IP 0.6 Probability of no enough resource (IP) 

p CP 0.3 Probability of no enough resource (CP) 

C D 1 Dissatisfaction cost 

t a /t m 1/5 Ratio of advance reservation and 

maximum waiting times 

β , γ , ζ 1 Prioritization parameters 
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27,28] have shown that the stacked LSTM, due to its inherent re-

urrent nature, can better model long-term dependencies and ex-

loit temporal correlation in inputs, as compared to the MLP. 

. Performance evaluation 

HO prediction is treated as a classification problem in

hich each DBS constitutes one class. Hence, the task is to

redict the next location of the user given the current time and

revious locations visited. The MLP and stacked LSTM based data-

riven approaches for HO prediction are trained, validated and

ompared using the PyTorch library. The modeled MLP/LSTM en-

ines learn patterns belonging to the input layer and classify them

ccording to their serving DBSs. The proposed network architec-

ures and employed parameters were presented in Section 5 . Next,

he benchmark dataset used in this study is described. 

.1. Data set 

The data set was developed by MIT Human Dynamics Lab [29] ,

ased on social studies conducted on human behaviours and in-

eractions. The data belongs to a data server configuration com-

any at Chicago, and was collected from employees of the com-

any [30] . Each participating employee was given a badge with a

nique ID number, and parameters such as location, audio inten-

ity, etc., were collected through the distributed badges. Locations

f users were estimated via Zigbee RSSI (Received Signal Strength

ndicator) readings using an algorithm detailed in [30] , where the

ocations of employees were mapped to 502 evenly distributed

rids with specific x and y coordinates. Furthermore, the data con-

ists of x and y coordinates of grids, where the employees are lo-

ated, along with corresponding time and dates, as presented in

able 1 . In total, 1,006,190 sequences belonging to 39 IDs are avail-

ble. Sampling frequency is provided in data description on the

ataset website [31] , specifically: “10 locations with longest stays

x, y) per employee (identified by the id of the badge assigned to

he employee) per minute (time), estimated from Zigbee RSSI to

nchor nodes.” Note that the amount of samples is not the same

or each ID, and there are also missing entries throughout the data

et. 

.1.1. Data preprocessing 

We first selected 11 IDs, whose number of sequences are pro-

ided in Table 3 . The pre-processed data was split into Train (70%),

alidation (10%) and Test (20%) sets to facilitate this study. Specif-

cally, we down-sampled the data by creating 20 square-shaped

ells based on x and y coordinates, and labelled them from 1 to

0 sequentially. Next, each user was associated with one grid that

eflected the corresponding cell. In other words, locations of users

ith x and y coordinates are mapped to their respective cells. In

ddition, the locations were encoded into a 20-D vector. Both LSTM

nd MLP employ inputs (time and locations) comprising time in-

tances I k , I k −1 , ..., I k −n as shown in Fig. 3 , where n is the number

f prior inputs and k is the current time step. Table 2 shows the

tructure of data after pre-processing. 
The motivation for this pre-processing is to exploit the tempo-

al correlation between past locations and to make the data suit-

ble for the classification problem, such that each cell constitutes

 class. Moreover, the computational cost is also reduced as the

umber of output classes is reduced from 502 to 20. 

.2. Numerical results 

Numerical results related to prediction accuracy and the holistic

ost are first presented in order to establish the importance of the

ccuracy level for predictive HO management. The parameters used

or numerical simulation are depicted in Table 4 . 

The numerical results for various α are shown in Fig. 4 . The

ntersection points of predictive and non-predictive processes re-

ect the minimum required accuracy, since the holistic cost exhib-

ted by the predictive and the non-predictive approach is equal. As

hown in Fig. 4 , lower values of α decrease the minimum required

ccuracy (around 35% for α = 0 . 1 ) and also the holistic cost. On

he other hand, higher values of α increase the required minimum

ccuracy level (more than 80% for α = 10 ). The aforementioned re-

ults imply that the accuracy level plays a vital role in predictive

O management, and prioritization parameters are key to deter-

ine the minimum accuracy level. 

Consequently, the holistic cost and minimum accuracy require-

ent with prioritization parameters can benefit the designing of a

redictive HO management system, as summarized below: 

• The holistic cost and minimum accuracy requirement can help

jointly determine the applicability of the designed predictor. 

• The prioritization parameters contribute to organizing the

holistic HO cost based on conditions experienced in the net-

work. 

• The minimum accuracy requirement information renders the

design process more formal and effective, as predictors can be

chosen according to the minimum accuracy requirement and

computational cost. 

.3. Experimental results 

For HO prediction, both MLP and LSTM based data-driven ap-

roaches are used. First, a MLP based learning model is trained to
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Fig. 4. Numerical results for various α values. Holistic cost is calculated through (15) , which includes user dissatisfaction; HO latency; overhead; and resource wastage, and 

using values in Table 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

MLP and LSTM validation accuracy (%) for various input time-instances ( I k , I k −1 , ..., 

I k −n ); e.g., 4 corresponds to input comprising the current time instance and 3 prior 

time instances. 

User ID MLP LSTM 

1 4 8 12 1 4 8 12 

297 14.39 30.52 31.84 30.86 17.95 29.63 28.93 27.97 

101 25.08 27.72 31.07 31.79 30.08 30.83 31.34 30.75 

268 24.51 32.92 30.76 31.46 32.63 33.01 31.02 30.07 

99 38.81 41.69 44.01 4 4.4 4 40.47 41.93 45.21 36.31 

266 38.93 44.18 50.75 49.05 38.59 49.97 48.95 48.79 

56 43.94 46.13 46.55 46.25 44.63 43.99 49.58 47.95 

280 43.90 42.17 47.84 47.66 47.96 47.53 52.48 52.37 

291 53.24 56.06 60.89 59.59 55.95 57.61 61.58 60.61 

82 53.15 61.87 65.21 64.79 64.02 66.96 66.84 67.80 

109 65.68 71.18 73.47 72.63 73.49 75.59 77.95 76.63 

106 82.69 82.08 83.98 83.78 84.08 83.67 85.34 85.76 

e  

L  

T  

i

 

p  

(  

a  

p  
identify the optimal number of hidden neurons, ranging from 8 to

64. In addition, a LSTM based HO model is trained to identify the

optimal number of cells in the LSTM layer, ranging from 16 to 128.

Fig. 5 a demonstrates the prediction performance of MLP for four

different number of hidden layer units ( ζ ), while Fig. 5 b shows

the prediction performance of LSTM for three different number of

LSTM cells ( η). 

Before analyzing the obtained results, we evaluate the mini-

mum accuracy requirement. Using (21) with the values given in

Table 4 , and setting α to 1, the required minimum prediction ac-

curacy, A min , becomes 52.9%. 

Therefore, we conclude that any predictive system must achieve

an accuracy greater than 52.9% in order to outperform the non-

predictive system. 

The results in Fig. 5 reveal that although ζ and η seem to have

little impact on the prediction performances of MLP and LSTM, the

validation accuracy increases as the number of hidden neurons and

LSTM size is increased. However, further increase in these parame-

ters leads to overfitting, resulting in poor validation accuracy. In

addition, it is worth noting that the number of hidden neurons

and LSTM size play a significant role in the deployment of these

algorithms at large scale. We found ζ = 64 and η = 32 are optimal

for the considered dataset. Moreover, for ID 291, the MLP shows

a 7% validation accuracy improvement when ζ is changed form

16 to 64, and the LSTM shows a 6% validation accuracy improve-

ment when η is changed from 8 to 32. The complexity of a neu-

ral network can be assessed by analyzing the number of param-
ters in the network. The total number of parameters in MLP and

STM networks were found to equal 16276 and 16424, respectively.

herefore, it can be concluded that both MLP and LSTM have sim-

lar computational complexity. 

In multiple, prior-location to next-location mapping, various in-

ut time instances ( I k , I k −1 , ..., I k −n ) ranging from 1 to 12 are used

e.g., 4 corresponds to input comprising the current time instance

nd 3 prior time instances). The results for different number of

rior inputs are presented in Table 5 . It can be seen that the
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Fig. 5. Validation accuracy for both MLP ( 5 a) and LSTM ( 5 b). Users IDs (56, 82, 99, 101, 106, 109, 266, 268, 280, 291, 297) are given by the data set provider. ζ and η are 

the number of hidden layer units and LSTM size, respectively. 

Table 6 

Test accuracy (%) results of MLP and LSTM for (a) Time only input and (b) Time and 

Location input. 

User ID Time only Time & Location 

MLP LSTM MLP LSTM 

297 17.84 18.16 27.23 31.66 

101 23.74 22.03 30.59 34.45 

268 19.15 19.87 30.99 36.03 

99 29.98 29.98 40.87 43.91 

56 15.63 16.77 46.11 47.23 

280 37.79 40.55 47.78 49.30 

266 34.99 34.99 45.92 53.88 

291 57.58 56.58 55.63 59.58 

82 18.05 22.13 63.82 65.32 

109 64.75 64.75 70.44 73.96 

106 78.28 78.30 82.45 84.56 
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ddition of prior temporal information improves the overall net-

ork accuracy for both the LSTM and MLP models. However, fur-

her addition of prior temporal information leads to inclusion of

nnecessary information in the input, thus resulting in poor vali-

ation accuracy. We found 8 input time instances (i.e. current loca-

ion and 7 previous locations) to be optimal for the given dataset. 

Optimal tuning parameters for the validation set were used to

rain the MLP and LSTM for two cases: (a) Time only input and (b)

ime and Location input. Table 6 depicts test accuracy results for

oth cases. Time & Location significantly outperforms Time only for

ll users. Even though the LSTM and MLP have similar computa-

ional complexity, the LSTM outperforms MLP for all users, achiev-

ng up to 8% performance improvement for User 266. 

. Conclusion 

In this work, we first developed a novel analytical model to si-

ultaneously meet the holistic cost and minimum prediction ac-

uracy requirements. The holistic cost model integrates signaling

verhead, latency, call dropping, and radio resource wastage. Fur-

her, novel data-driven deep learning approaches were employed

o complement the holistic model and further reduce the holistic

ost. The evaluation of the holistic model at different prioritization

arameters (user dissatisfaction, latency, signalling overhead, and
esource wastage) demonstrated the impact of prediction accuracy

s part of the overall cost. We conclude that our developed model

oupled with a data-driven, deep learning approach can lead to

educed user dissatisfaction, latency, signalling overhead, and re-

ource wastage. The innovative model is thus posited as bench-

ark resource for the mobile networking and machine learning

ommunities. 

Future work includes the development of context-aware

witching between non-predictive and predictive models and

ptimal tuning of prioritization parameters ( α, β , γ , and ζ ),

ccording to network conditions and requirements, using state-

f-the-art optimization algorithms, such as reinforcement learning

32,33] and nature-inspired approaches [34,35] . This would enable

he network to perform dynamic parameter tuning, and further

nhance both the network performance and user satisfaction in

ynamic scenarios. In addition, ongoing work is aimed at carrying

ut further extensive evaluation with larger and more complex

eal-world data sets, considering required trade-offs between

omputational cost and real-time decision-making. 
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